

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

UNITS 7 AND 8: SEMANTIC ANALYSIS and ERROR HANDLING

There are two terminal networks (A and B) connected by a half-duplex C transmission channel

(transmitted in both directions, but not at the same time). It also has a network analyzer that reads the

messages that circulate through the channel

When one terminal of a network wants to establish a communication with a terminal of the other network,

four messages are exchanged through channel C described by the following protocol:

From the home network a Setup message is sent to the destination network indicating that it wants to

establish a communication with a specific machine of that network. The destination network must

respond with a SetupAck message as acknowledgment of the received Setup message. Once the

destination network terminal accepts the call request, it must send a Connect message to the terminal of

the source network. The source network must respond with a ConnectAck as an acknowledgment of the

received Connect message.

Each message consists of a series of Information Elements (EI). Each EI, in turn, consists of two fields.

The first field always has a size of 1 byte and its value corresponds to the identifier of that EI. The second

field will be the EI argument and its size depends on the EI.

 T1

T2

T3

T4

T1

T2

T3

T4

Network

A

Network

B

Channel C

Network

Analyzer

Home Network Destination Network

Setup

SetupAck

ConnectAck

Connect

Channel C

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

The messages with the EIs of which they are composed are described below. These EI must appear in the

order shown in the following table. The EI of a message may be mandatory or optional. Mandatory EI

must always be included in the message. The optional EIs may or may not appear.

MESSAGE
Information

Elements

Mandatory /

Optional

Setup

EISetup Mandatory

EIAddress Mandatory

EIOrigin Optional

EIDestination Mandatory

SetupAck
EISetupAck Mandatory

EIDirection Mandatory

Connect
EIConnect Mandatory

EIDirection Mandatory

ConnectAck
EIConnectAck Mandatory

EIDirection Mandatory

The following table describes the defined EI with the description of the fields of which it is composed.

For each field its size in bytes and its value are indicated. The first field always has a fixed value since it

is the identifier of the EI and the second field has a variable value that corresponds to the argument of

described EI:

 FIELDS

 Field 1 (Identifier EI) Campo 2 (Identifier EI)

 Name Size Value Name Size Value

EI

EISetup IDSetup 1 byte ‘A’ CREF 1 byte

[A-Z,a-z,0-9]

Any alphabetic or

numeric character

EISetupAck IDSetupAck 1 byte ‘B’ CREF 1 byte Same that Setup

EIConnect IDConnect 1 byte ‘C’ CREF 1 byte Same that SetupAck

EIConnectAck IDConnectAck 1 byte ‘D’ CREF 1 byte Same that Connect

EIDirection IDDirection 1 byte ‘E’ Direction 1 byte
AB = ‘0’

BA = ‘1’

EIOrigin IDOrigin 1 byte ‘F’ Origin 3 bytes [0-9]3. Three digits

EIDestination IDDestination 1 byte ‘G’ Destination 3 bytes [0-9]3. Three digits

Since messages of several different communications can be circulated through the same channel,

it is possible that a message of another communication appears between the four messages corresponding

to the same communication. In order to identify the communication to which a message belongs, the

CREF field of EISetup, EISetupAck, EIConnect and EIConnectAck is used. Therefore, the four

messages of which a communication is composed must contain the same value in their CREF argument of

said Information Elements.

On the other hand, the EI EIDirection indicates whether the message has been transmitted in the AB or

BA direction. Its possible values are '0' or '1' respectively.

EIOrigin and EIDestination contain in their argument the address of the origin and destination terminals

respectively.

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

Example:

Imagine that a Setup is sent from A to B, but before receiving the SetupAck from B, a Setup

from B to A corresponding to another communication has been sent

The network analyzer would collect the following data:

A 4 E 0 F 3 1 2 G 4 7 5 A 8 E 1 G 1 3 4 B 4 E 1

EISetup EIDirection EIOrigin EIDestination EISetup EIDirection EIDestination EISetupAck EIDirection

Message Setup 1 Message Setup 2 Message SetupAck 1

It is required:

1. Describe formally the automaton that the network analyzer uses as a lexical analyzer, whose tokens

are the Elements of Information (EI).

2. Define a grammar that generates messages that can be read on channel C. Is it LL(1)?. Otherwise,

make the necessary modifications to make it.

3. Can the grammar of the second exercise be used to perform an LR(1) analysis? If not, modify it to

make it so. Generate the first 8 states of the LR(1) analyzer for that grammar.

4. Describe the semantic routines that should be added to the grammar, as well as the additional data

structures (table of symbols, stacks, etc.) necessary to control whether the four messages

corresponding to a communication have been received and in their correct order. In the case of

correctly reading all messages of a communication, they will be printed on the analyzer screen. If an

erroneous message is received, an error will also be printed with the Failed Message.

Optionally, when an erroneous message is read, additional information can be given, for example,

that a Connect has been read without having read the SetupAck. In this case you can print the Setup

and the Connect and notify the incident.

.

.

.

Network A

Setup 1

Setup 2

Network B

SetupAck 1

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

Solution

For the implementation of the lexical analysis, we are going to use a non-deterministic finite automaton as

the one shown below:

The formal description is;

NFA = (T, {q0..q18}, q0, f, F)

T = {A-Z,a-z,0-9}

F = {q8, q9, q10, q11, q12, q15, q18}

f(q0, A) = q1 f(q8, ) = q0

f(q0, B) = q2 f(q9, ) = q0

f(q0, C) = q3 f(q10, ) = q0

f(q0, D) = q4 f(q11, ) = q0

f(q0, E) = q5 f(q12, ) = q0

f(q0, F) = q6 f(q13, {0-9}) = q14

f(q0, F) = q7 f(q14, {0-9}) = q15

f(q1, {A-Z,a-z,0-9}) = q8 f(q15, ) = q0

f(q3, {A-Z,a-z,0-9}) = q10 f(q16, {0-9}) = q17

f(q4, {A-Z,a-z,0-9}) = q11 f(q17, {0-9}) = q18

f(q5, {01}) = q12 f(q18, ) = q0

f(q6, {0-9}) = q13

f(q7, {0-9}) = q16

When a token is read, it returns to the initial state q0 to read the next one. In the table, f (qi, {c1, ..., cn}) =

qj means that the transition is made with any of the characters that appear between braces.

The final states generate the following tokens:

q0

q2

q1

q3

q4

q5

q6

q7

q9

q8

q10

q11

q12

q13

q16

q14

q17

q15

q18

A

B

C

D

E

F

G

[A-Za-z0-9]

[A-Za-z0-9]

[A-Za-z0-9]

[A-Za-z0-9]

[01]

[0-9]

[0-9]

[0-9]

[0-9]

[0-9]

[0-9]



David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

sTATE Token

q8 (EIsetup, A)

q9 (EIsetupack, B)

q10 (EIconnect, C)

q11 (EIconnectack, D)

q12 (EIDirection, [01])

q15 (EIOrigin, [0-9]3)

q18 (EIDestination, [0-9]3)

A posible grammar is:

1 S ::= M S

2 ::= 

3 M ::= eisetup EIDirection O EIDestination

4 ::= eisetupack EIDirection

5 ::= eiconnect EIDirection

6 ::= eiconnectack EIDirection

7 O :: EIOrigin

8 ::= 

To create the LL(1) analyzer, we start with the FIRST and FOLLOW set:

N FIRST FOLLOW

S eisetup, eisetupack, eiconnect, eiconnectack,  $

M eisetup, eisetupack, eiconnect, eiconnectack eisetup, eisetupack, eiconnect, eiconnectack, $

O EIOrigin,  EIDestination

The LL table is:

T S M O

eisetup 1 3

eisetupack 1 4

eiconnect 1 5

eiconnectack 1 6

EIDirection

EIOrigin 7

EIDestination 8

$ 2

This table is LL(1).

To know if it is LR(1) it is necessary to generate the table LR(1) and check that there is no problem. The

first eight states generated from the grammar of the previous exercise will be.

State 0 Action Go To

S’ ::= •S (0, S) = 1

S ::= •M S (0, M) = 2

 ::=  (0, $) = R2

M ::= •eisetup EIDirection O

EIDestination

(0, eisetup) = D3

 ::= •eisetupack EIDirection (0, eisetupack) = D4

 ::= •eiconnect EIDirection (0, connect) = D5

 ::= •eiconnectack EIDirection (0, connectack) = D6

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

State 1 Action Go To

S’ ::= S • (1, $) = Aceptar

State 2 Action Go To

S ::= M • S (2, S) = 7

S ::= •M S (2, M) = 2

 ::=  (2, $) = R2

M ::= •eisetup EIDirection O

EIDestination

(2, eisetup) = D3

 ::= •eisetupack EIDirection (2, eisetupack) = D4

 ::= •eiconnect EIDirection (2, connect) = D5

 ::= •eiconnectack EIDirection (2, connectack) = D6

State 3 Action Go To

M ::= eisetup • EIDirection O

EIDestination

State 4 Action Go To

M ::= eisetupack • EIDirection

State 5 Action Go To

M ::= eiconnect • EIDirection

State 6 Action Go To

M ::= eiconnectack • EIDirection

State 7 Action Go To

S’ ::= M S • (7, $) = R1

To be able to control that the flow of messages between communications is correct, a database or a list

should be used in which each record should contain the messages corresponding to a communication. The

fields of the records would be:

Field Type

CREF char

Direction char

Origen char[3]

Destino char[3]

Setup boolean

SetupAck boolean

Connect boolean

ConnectAck boolean

The CREF field saves the CREF value of the concrete communication. Direction has the value of the

direction of the Message Setup that originated the communication. Origin and Destination contain the

addresses of the origin and destination terminals of the communication respectively. The Setup,

SetupAck, Connect and ConnectAck fields are boolean values that indicate whether the message was

received.

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

The conjunction of the CREF and Direction fields can be used as a primary key in such a way that when a

Setup is received, it must be verified that there is no other communication with the same CREF and

originated from the same side of the network. It is possible that there are two communications with the

same CREF, one originating in network A and another originated in B.

Therefore, the semantic routines that would have to be performed would be:

When a Setup is read, it is checked in the list that there is no register with the same CREF and Direction

as the read Setup. If it already existsd, an Error Message would be printed. If it does not exist, a register is

added in the list with the value CREF and Direction of the Message received, the Setup field with value

TRUE (this field does not have much direction because it will always be TRUE, but if later you want to

add more functionality, we include it). The SetupAck, Connect and ConnectAck fields will have the value

FALSE since these Messages have not yet been received.

When a SetupAck is read, the list is searched if there is a register with the same CREF and with Direction

opposite to the SetupAck. In case of finding it, it is verified that the only field with value TRUE is Setup.

If any of these conditions fail, the corresponding Error Message will be given.

When a Connect is read, the same applies as with SetupAck, but now it must be checked that the Setup

and SetupAck fields are TRUE.

When a ConnectAck is read, the same check is made as with the previous Messages. In case all the

conditions are validated, it means that the four Messages of the communication have been received, so the

corresponding Message will be printed, and the register will be deleted from the list to avoid that when a

new communication with the same is generated CREF does not reject it because there is already a

communication with that CREF. In turn, a timer can also be used to eliminate the registers of

communications that have lost a Message.

The structure of the registers could be:

struct reg {

char CREF;

 char direction;

 int setup = 0;

 int setupack, = 0;

 int connect = 0;

 int connectack = 0;

}

The functions applied to the list are:

• void InsertRegister(char CREF, char direction,

char *origin, char *destination);

Inserts a register in the list with th given arguments and sets the value 1 in Setup (TRUE).

• struct reg *SearchCom(char CREF, char direction);

Returns a pointer to the item in the list or NULL if it does not exist.

• void ModifyRegister(struct reg);

Modify the register given as an argument.

• void EliminateRegister(struct reg);

Eliminate the register given as an argument.

• void Print(struct reg);

Prints the fields CREF, Direction, Origin and Destination.

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

The semantic routines that can be included in the rules of the grammar could be:

M ::= eisetup EIDirection O EIDestination

M.Code := if (register=BuscaCom(eisetup.value, EIDirection.value) == NULL))

 if (O.exist == TRUE)

 InsertRegister(eisetup.value, EIDirection.value, O.lexema,

EIDestination.lexema)

 else

 InsertRegister(eisetup.value, EIDirection.value, NULL,

EIDestination.lexema)

else {

 error(“Comunication established:”);

 Print(register);

}

M ::= eisetupack EIDirection

M.Code := if (EIDirection.value==’0’)

 direction = ‘1’

else

 direction = ‘0’;

if (register=SearchCom(eisetup.value, direction) == NULL)) {

 error(“We have not received Setup of:”);

 Print(register);

}

else

 if (register.setupack==1) {

 error (“SetupAck duplicado”);

 Print(register);

 }

 else {

 register.setupack = 1;

 ModifyRegister(register);

 }

M ::= eiconnect EIDirection

M.Code := if (EIDirection.value==’0’)

 direction = ‘1’

else

 direction = ‘0’;

if (register=BuscaCom(eisetup.value, direction) == NULL)) {

 error(“We have not received Setup of:”);

 Print(register);

}

else

 if (register.connect==1) {

 error (“Connect duplicated”);

 Print(register);

 }

 else {

 register.connect = 1;

 ModificaRegister(register);

 }

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

M ::= eiconnectack EIDirection

M.Code := if (register=SearchCom(eisetup.value, EIDirection.value) == NULL)) {

 error(“We have not received Setup of:”);

 Print(register);

}

else {

 Print(register);

 EliminateRegister(register);

}

O ::= EIOrigin

O.exists := TRUE

O ::= 

O.exists := FALSE

