

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

UNITS 7 AND 8: SEMANTIC ANALYSIS and ERROR HANDLING

Build a compiler for the following programming language. There are three types of statements:

declaration, arithmetic / logical expression and loop and two types of data: numeric and logical. The

sentences are described as follows:

• Declaration
▪ type name_variable [, name_variable]* ;

▪ where type can be num or log and name_variable is a char string with a

máximum number of 8 characters

• Arithmetic/Logic expressions
▪ name_variable = expression_arithmetic ;

▪ name_variable = expression_logic;

▪ Arithmetic expressions can contain variables of type num and numbers with

the operators: +, -, *, /

▪ The logical expression relates variables of type num with numbers through

logical operators: <,>, =, #. The possible results of the evaluation of the logical

expression is V or F. The variable to which it is assigned must be type log.

• Loop
▪ do [sentence]+ endo [expression_logic |

variable_logic] ;

▪ where sentences can be declaration, expression or loop.

The sentences of the loop are executed at least once, and the loop is repeated while the logical expression

in endo takes the value V. The variables are local to the loop where they are declared, if variables are

used in the logical expression of the endo then there must be been declared inside the loop. The variables

declared in the main body of the program are considered local to it.

Example of a program without errors:

num a, cd;

a= cd *5;

do

 num b;

 b = b +5;

 log a;

 num cd;

 cd = b *2;

 a = cd < 50;

endo a;

cd = a+2;

Program variables

Loop variables

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

It is required:

1. Define the G grammar that would generate valid sentences of this programming language.

2. Can the grammar G of the first exercise be used to perform an LL(1) analysis? If not, modify it

so that it can. Generate the Table LL(1).

3. Construct the Table LR(1) that recognizes sentences of the language generated by the modified

grammar of section 2, showing the states and the transitions between them.

4. Specify the lexical and semantic verifications for this language.

5. Describe the semantic routines (in pseudocode) necessary to perform the semantic verifications

of the previous section associated with the LR(1) analyzer. If additional data structures are

required, explain their usefulness.

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

Solution

A grammar that generates the given language can be defined as follows:

G = {S, A, B, D, E, V, X}, {S} , { ; , type, var, do, endo, =, o, p, “,” }

(1) S::= A ; S

(2) S::= A ;

(3) A::= D

(4) A::= B

(5) A::= E

(6) D::= type V

(7) V::= var

(8) V::= var , V

(9) B::= do S endo X

(10) E::= var = X

(11) X::= o

(12) X::= o p X

The token "type" represents the strings "num" and "log", the token "var" to the set of characters that

identifies a variable, "o" is an operand (variable or number) and "p" is an operator, either of arithmetic or

logical type.

After left-factoring, the modified G’ is:

G’ = {S, S’, A, B, D, E, V, V’, X, X’}, {S} , { ; , type, var, do, endo, =, o, p, “,” }

(1) S::= A ; S’

(2) S’::= S

(3) S’::= 

(4) A::= D

(5) A::= B

(6) A::= E

(7) D::= type V

(8) V::= var V’

(9) V’::= , V

(10) V’::= 

(11) B::= do S endo X

(12) E::= var = X

(13) X::= o X’

(14) X’::= p X

(15) X’::= 

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

2

NN First Follow

SS type do var $ endo

SS’’ type do var  $ endo

AA type do var ;

BB do ;

DD type ;

EE var ;

VV var ;

VV’’  , ;

XX o ;

XX’’  p ;

TTaabbllee LLLL((11))
TT

$$;; ttyyppee vvaarr ddoo eennddoo == oo PP ,,

NN

SS 1 1 1

SS’’ 3 2 2 2 3

AA 4 6 5

BB 11

DD 7

EE 12

VV 8

VV’’ 10 9

XX 13

XX’’ 15 14

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

 3

State 0 Action Go To

S’’::= · S [0,S]=1

S::= · A ; S’ [0,A]=2

A::= · D [0,D]=3

A::= · B [0,B]=4

A::= · E [0,E]=5

D::= · type V [0,type]=D6

B::= · do S endo X [0,do]=D7

E::= · var = X [0,var]=D8

State 1 Action Go To

S’::= S · [1,$]=ACP

State 2 Action Go To

S::= A · ; S’ [2,”;”]=D9

State 3 Action Go To

A::=D · [3,”;”]=R4

State 4 Action Go To

A::=B · [4,”;”]=R5

State 5 Action Go To

A::=E · [5,”;”]=R6

State 6 Action Go To

D::= type · V [6,V]=10

V::= · var V’ [6,var]=D11

State 7 Action Go To

B::= do · S endo X [7,S]=D12

S::= · A ; S’ [7,A]=2

A::= · D [7,D]=3

A::= · B [7,B]=4

A::= · E [7,E]=5

D::= · type V [7,type]=D6

B::= · do S endo X [7,do]=D7

E::= · var = X [7,var]=D8

State 8 Action Go To

E::= var · = X [8,”=”]=D13

State 9 Action Go To

S::= A ; · S’ [9,S’]=14

S’::= · S [9,S’]=15

S’::=  [9,$]=R3

[9,endo]=R3

S::= · A ; S’ [9,A]=2

A::= · D [9,D]=3

A::= · B [9,B]=4

A::= · E [9,E]=5

D::= · type V [9,type]=D6

B::= · do S endo X [9,do]=D7

E::= · var = X [9,var]=D8

State 10 Action Go To

D::= type V · [10,”;”]=R7

State 11 Action Go To

V::= var · V’ [11,V’]=1

6

V’::= · , V [11,”,”]=D17

V’::=  [11,”;”]=R10

State 12 Action Go To

B::= do S · endo X [12,endo]=D1

8

State 13 Action Go To

E::= var = · X [13,X]=19

X::= · o X’ [13,o]=D21

State 14 Action Go To

S::= A ; S’ · [14,$]=R1

[14,endo]=R1

State 15 Action Go To

S’::= S · [15,$]=R2

[15,endo]=R2

State 16 Action Go To

V::= var V’ · [16,”;”]=R8

State 17 Action Go To

V’::= , · V [17,V]=22

V::= · var V’ [17,var]=D11

State 18 Action Go To

B::= do S endo · X [18,X]=23

X::= · o X’ [18,o]=21

State 19 Action Go To

E::= var = X · [19,”;”]=R12

State 21 Action Go To

X::= o · X’ [21,X’]=2

4

X’::= · p X [21,p]=D25

X’::=  [21,”;”]=R15

State 22 Action Go To

V’::= , V · [22,”;”]=R9

State 23 Action Go To

B::= do S endo X · [23,”;”]=R11

State 24 Action Go To

X::= o X’ · [24,”;”]=R13

State 25 Action Go To

X’::= p · X [25,X]=26

X::= · o X’ [25,o]=D21

State 26 Action Go To

X’::= p X · [26,”;”]=R14

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

4

The lexical checks for this language are related to the set of characters that are used as identifiers of

variables, they must be characters up to a maximum of 8. The following expression represents the names

of valid variables:

Semantic checks for this language should take into account:

• The scope of declaration of the variables,

• The type of data.

For the control of types, two situations can happen:

• There is only one operand in the expression so that the type of the expression (variable or

constant) must match the type of the variable on which the value is assigned.

• There is more than one operator, therefore, there must be at least one operator. In this case, it is a

necessary condition (but not sufficient) for a logical expression to be correct that all its operators

are logical. The same reasoning applies to the case of arithmetic expressions. It is the operators

who determine the type of the expression. The assignment on a variable must take into account

the type agreement.

For this domain, the semantic control is done through tables of symbols that collect this attribute. There

are two possibilities, create a table of symbols for each scope or label the fields and incorporate that

information into a single table of symbols. Whenever it is necessary to evaluate an expression (loop or

assignment) it should be verified that the variables involved have been declared in the field in which they

are used.

5

(1) S::= A ; S’

(2) S’::= S

(3) S’::= 

(4) A::= D

(5) A::= B

(6) A::= E

(7) D::= type V

(8) V::= var V’

(9) V’::= , V

(10) V’::= 

(11) B::= do S endo X

(12) E::= var = X

(13) X::= o X’

(14) X’::= p X

(15) X’::= 

The semantic routines to control the scope and type must go in the productions where the expressions are

evaluated and the variables declared. In the declaration (7) the lexeme attribute of the token "type"

contains the type of the variables that are to be declared and that must be added to the Table of symbols.

In this solution a Table of symbols will be used, labeling the scope of the variables. Each time the "do"

token is moved, a new scope label must be generated that will be applied to the variables declared in the

block. When it is reduced (11) then all the variables in the loop are removed from the Symbol Table.

B::= do {generate new label} S endo X {liberate variables}

D::= type V {}

U
8

1i

iZ]-zA-[ablename_varia




