
 

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber    

 

 

 

UNITS 7 AND 8: SEMANTIC ANALYSIS and ERROR HANDLING 

 

 

We want to develop an analyzer that can verify that the data packages that circulate through an 

information channel have the appropriate structure. 

 

A data package consists of two types of blocks, the blocks labeled with the letter "a" and those labeled 

with the letter "b". Valid data packages have the following structure: 

 

• They start with a block "a" 

• They can have any number of blocks greater than or equal to 1. 

• They cannot have more than two consecutive blocks with the same label. 

  

 

Example: 

 

a abbabaab aabaa abaaab ababaabb baab ... 

 

 

       

 

Se pide: 

 

 

1. Define the grammar G of the analyzer. 

 

2. Construct an LL(1) syntax parsing table for the analyzer. 

 

3. Construct an SLR(1) parsing table for the analyzer. 

 

4. Show the derivation trees that are induced in the LL(1) and SLR(1) analysis for the blocks: 

"aabaa" and "abaaab" 

 

5. Perform syntax error recovery for the SLR(1) parser. 

 

Error package (three 

consecutive “a”  blocks) 

Error package (it starts with 

a “b” block) 



 

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber    

 

1.- 
 

The problem of generating the grammar that will be used to perform the parsing can be approached from 

two points of view: 

•  Make a grammar that accepts only the valid words of the language. It has the advantage of not 

requiring any additional control, but the drawback of making recovery of the error more difficult 

and giving information about it. 

• Construct a more general grammar that accepts valid and erroneous sentences, later by means of 

actions in the production rules, the syntactic analysis must be performed. It has the advantage of 

facilitating the recovery of errors and allows giving more information about the reason for the 

error. 

 

 

Both approaches are valid, in this solution the second one will be developed. 

 

A general grammar, the symbol E is the axiom, which accepts valid information packets (also accepts 

erroneous) is: 

 

E::= S d E | S 

S::=a S | b S | a | b 

 

Factoring: 

 

E::= S E’ 

E’::= d, E |  

S::= a R | b T 

R::= S |  

T::= S |  

 

The production rules for R and T are the same and can be simplified: 

 

E::= S E’ 

E’::= d E |  

S::= a R | b R 

R::= S |  

 

The inclusion of the token "d," allows to separate the packages, it is the token that represents the blank 

spaces. 

 

2.-  
 

NN  First Follow 

EE  a b  $  

EE’’  d   $  

RR  a b  d $ 

SS  a b  d $ 

 

 

 

 

TTaabbllee  

LLLL((11))  

TT  

$$  aa  bb  dd  

NN  

EE   E::= S E’ E::= S E’  

EE’’  E’::=    E’::=d E 

RR  R::=  R::= S R::= S R::=  

SS   S::=a R S::=b R  

 

 

 

 

 

 

 



 

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber    

 

 

3.- 
 

1. E’’::= E 

2. E’::=  

3. E’::= d E 

4. E::= S E’ 

5. R::=  

6. R::= S 

7. S::= a R 

8. S::= b R 

 

State 0 Action Go To 

E’’::= ·E  [0,E]=1 

E::= ·S E’  [0,S]=2 

S::= ·a R [0,a]=D3  

S::= ·b R [0,b]=D4  

State 1 Action Go To 

E’’::= E· [1,$]=ACP  

State 2 Action Go To 

E::= S ·E’  [2,E’]=5 

E’::=  [2,$]=R2  

E’::= ·d E [2,d]=D6  

State 3 Action Go To 

S::= a ·R  [3,R]=7 

R::= · [3,d]=R5 

[3,$]=R5 

 

R::= ·S  [3,S]=8 

S::= ·a R [3,a]=D3  

S::= ·b R [3,b]=D4  

State 4 Action Go To 

S::= b ·R  [4,R]=9 

R::= · [4,d]=R5 

[4,$]=R5 

 

R::= ·S  [4,S]=8 

S::= ·a R [4,a]=D3  

S::= ·b R [4,b]=D4  

State 5 Action Go To 

E::= S E’· [5,$]=R4  

State 6 Action Go To 

E’::= d ·E  [6,E]=10 

E::= ·S E’  [6,S]=2 

S::= ·a R [6,a]=D3  

S::= ·b R [6,b]=D4  

State 7 Action Go To 

S::= a R· [7,d]=R7 

[7,$]=R7 

 

State 8 Action Go To 

R::= S· [8,d]=R6 

[8,$]=R6 

 

State 9 Action Go To 

S::= b R· [9,d]=R8 

[9,$]=R8 

 

State 10 Action Go To 

E’::= d E· [10,$]=R3  

 

 

 

 

 

 

TTaabbllee  SSLLRR((11))  
SShhiifftt  GGoo  TToo  

$$  aa  bb  dd  EE’’  EE RR  SS  

SSttaatteess  

00   D3 D4   1  2 

11  ACP        

22  R2   D6 5    

33  R5 D3 D4 R5   7 8 

44  R5 D3 D4 R5   9 8 

55  R4        

66   D3 D4   10  2 

77  R7   R7     

88  R6   R6     

99  R8   R8     

1100  R3        

 

 

 

 

 



 

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber    

 

4.- 
 

5.- 
 

Sections 4 and 5 are going to be done together, the error recovery routines will be shown and then the 

derivation tree will be drawn for the blocks "aabaa" and "abaaab", the latter is  anot valid input for having 

three consecutive "a" 

 

In order to incorporate the recovery (and detection) of errors into the downward analysis LL(1), the 

following data structures and actions associated with the productions are going to be used: 

 

• One counter for "a" and another for blocks "b", "account_a" and "account_b" initialized 

to zero. 

• A flag indicating the start of the analysis, "start", initialized to zero 

 

• S::= a R { start = 1; 

account_b = 0; 

account_a = account_a  + 1; 

if account_a>2 then  

ERROR(“more than two consecutive blocks”) 

    if_end 

} 

• S::= b R { if start=0 then 

ERROR(“start with block b”) 

    if_end 

    start = 1; 

account_a = 0; 

account_b = account_b  + 1; 

if account_b>2 then  

ERROR(“more tan two consecutive b blocks”) 

    if_end 

   } 

• R::=  { (* end of word * ) 

start = 0; 

account_ a = 0; 

account_b = 0; 

} 

 

When an error occurs, as the control is done with the Action and not with the production rule, the token is 

read in the input and the analysis continues. 

 

The analysis tree is: 

 

 

The value that the variables take after applying the 

corresponding production rule has been represented. 

It can be observed that there has been no call to the 

error routine. 

 

 

 

 

 

 

 

 

 

 

S 

a R 

S 

a R 

S 

b R 

S 

a R 

S 

a R 

 

start=1; 
account_a=1;account_b=0; 

start=1; 
account_a=2;account_b=0; 

start=1; 
account_a=0;account_b=1; 

start=1; 
account_a=1;account_b=0; 

start=1; 
account_a=2;account_b=0; 

start=0; 
account_a=0;account_b=0; 

E 

E’ 

  



 

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber    

 

 

For the second word, when applying for the 

fifth time the production rule S ::= aR, the 

ERROR routine is called, the analysis 

continues without interruption. 

 

 

 

 

 

 

 

 

 

 

 

For the SLR(1) analysis: 

 

It can be observed in the SLR(1) analysis 

table that when rule 7 and 8 are reduced is 

because the corresponding token "a" or "b" has been read in the input, this will be the moment to count 

the number of blocks "a" and "b". In addition, a variable "last" will be used to indicate which type of 

block "a" or "b" has been the last reduced. 

 

The input [7,$]=R7 and [7,d]=R7 is associated to the following action: 

{  

if last = “b” then 

     account_a = 0; 

if_end 

last = “a”; 

account_a = account_a +1; 

if account_a > 2 then 

ERROR(“more than two consecutive blocks”) 

if_end 

} 

 

The input [9,$]=R8 and [9,d]=R8 is associated to the following action: 

{  

if last = “a” then 

     account_b= 0; 

if_end 

last = “b”; 

account_b = account_b +1; 

if account_b > 2 then 

ERROR(“more than two b consecutive blocks”) 

if_end 

} 

Finally in [1,$]=ACP we have to control if the block started with “a” or “b” using the following rule: 

{  

if last = “b” then 

     ERROR(“Start with block b”) 

if_end 

} 

The rule R::= can be used to initialize the variables. 

 

The analysis trees are: 

 

S 

a R 

S 

b R 

S 

a R 

S 

a R 

S 

a R 

 

start=0; 

account_a=1;account_b=0; 

start=1; 
account_a=0;account_b=1; 

start=1; 
account_a=1;account_b=0; 

start=1; 
account_a=2;account_b=0; 

start=1; ERROR; 
account_a=3;account_
b=0; 

start=1; 
account_a=0;account_b=1; 

S 

b R start=0; 
account_a=0;account_b=0; 

E 

E’ 

 
 



 

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber    

 
 

 
 

If the proposed grammar only accepts the specified language, then the actions will have to complete the 

"gaps" of the analysis table, along with the actions to read the following token. 

 

S 

a 

R 

S 

a 

R 

S 

b 

R 

S 

a 

R 

S 

a 

R 

last=“a”; account_a=1;account_b=0; 

S 

 

E
’ 

last=“”; account_a=0;account_b=0; 

last=“a”; account_a=2;account_b=0; 

last=“b”; account_a=0;account_b=1; 

last=“a”; account_a=1;account_b=0; 

last=“a”; account_a=2;account_b=0; 

last=“a”; account_a=1;account_b=0; 

E’ 

 

R 

a 

S 

R 

b 

S 

R 

a 

S 

R 

a 

S 

R 

a 

S 

S 

last=“b”; account_a=0;account_b=1; 

R 

 

E
’ 

last=“”; account_a=0;account_b=0; 

last=“a”; account_a=2;account_b=0; 

last=“a”; account_a=3;account_b=0; ERROR 

last=“b”; account_a=0;account_b=1; 

last=“a”; account_a=1;account_b=0; 

last=“a”; account_a=1;account_b=0; 

R 

b 

S 

last=“a”; account_a=1;account_b=0; 

E’ 

 


