
 

 
 

UNITS 7 AND 8: SEMANTIC ANALYSIS and ERROR HANDLING 

 

We want to construct a compiler for a language of definition and application of sequential machines. In 

the language you can define as many machines and process as many strings as you want. The language 

format is as follows: 

 

• To declare a sequential machine, the MS instruction is used: 
MS name_of_the_sequential_machine 

{ 

inputs { symbol1, symbol2,…,symboln} 

outputs { symbol1, symbol2,…,symbolk} 

states { state1, state2, …} 

transitions { 

(state1, symbol_input1, state2, symbol_output1) 

(state1, symbol_input1, state2, symbol_output1) 

… 

(state1, symbol_input1, state2, symbol_output1) 

} 

} 

 

• For the sequential machine to process a string, it is used: 

 
process ( name_of_automaton, string, initial_state) 

 

The name of the sequential machine is a string of alphabetic characters. The statement of the set of states, 

the set of input and output symbols, and the set of transitions can be in any order, but they must always be 

included in every statement. The set of states, transitions, input and output symbols must have at least one 

value. An example of a sequential machine definition in this language would be: 

 
MS Afirst 

{ 

outputs {1,0} 

states {a, c} 

inputs {L,M,N} 

transitions { (a,L,a,1) 

(a,M,a,1) 

(a,N,c,0) 

(c,L,a,0) 

(c,M,a,0) 

(c,N,c,1) 

} 

} 
process (Afirst, LLM, a) 

process (Afirst, LLM, c) 

 

To use the process function, the sequential machine used must be previously declared. The function 

displays, for the previous example, the following information: 

 
MS: Afirst Input: LLM Output: 111 

MS: Afirst Input: LLM Output: 011 

 

 

 

 

 

 



 
 

 

It is required: 

 

1. Define the grammar G that would generate valid sentences of this programming language. 

 

2. Generate the first 15 states (including the state initial) of an LR (1) parser that recognizes statements 

of the language generated by G' (modified G of section 2). Show, for the elements of those states 

("items"), what transitions of the LR (1) table would be generated with the created states. 

 

3. Describe the semantic routines (in pseudocode) of the productions involved in the G or G' grammar 

that allow semantic control to verify that the MS instruction has the four sections (inputs, outputs, 

states and transitions) declared. If additional data structures are required, explain their usefulness.  

 

 



 
 

SOLUTION: 

 
A grammar that generates the language of the problem is defined as follows: 

 

G = {A, B, D, E, R, S, V, W, Z }, {( ) , { } automatonFD string states final initial name recognize t 

transitions}, {S} 

(1) A::=    

(2) A::= S 

(3) B::= states { V } 

(4) B::= final { U } 

(5) B::= initial { t } 

(6) B::= transitions { W } 

(7) D::= automatonFD name { B B B B } 

(8) E::= D 

(9) E::= R 

(10)  R::= recognize ( name, string ) 

(11) S::= E A 

(12)  U::=  

(13)  U::= V 

(14) V::= t Z 

(15) W::=  

(16) W::= ( t , t  , t )  W 

(17) Z::=  

(18) Z::= , V 



 
 

 

State 0 Action Go To 

S’::= ·S  [0,S]=1 

S::= ·EA  [0,E]=2 

E::= ·D  [0,D]=3 

E::= ·R  [0,R]=4 

D::= · automatonFD 

name { B B B B } 

[0,automato

nFD]=D5 

 

R::=  · recognize ( name , 

string ) 

[0,recognize

]=D6 

 

State 1 Action Go To 

S’::= S· [1,$]=ACP  

State 2 Action Go To 

S::= E·A  [2,A]=7 

A::= ·S  [2,S]=8 

A::=  [2,$]=R1  

S::= ·EA  [2,E]=2 

E::= ·D  [2,D]=3 

E::= ·R  [2,R]=4 

D::= · automatonFD 

name { B B B B } 

[2,automato

nFD]=D5 

 

R::=  · recognize ( name , 

string ) 

[2,recognize

]=D6 

 

State 3 Action Go To 

E::= D· [3,automato

nFD]=R8 

[3,recognize

]=R8 

[3,$]=R8 

 

State 4 Action Go To 

E::= R· [4,automato

nFD]=R9 

[4,recognize

]=R9 

[4,$]=R9 

 

State 5 Action Go To 

D::= automatonFD · 

name { B B B B } 

[5,name]=D

11 

 

State 6 Action Go To 

R::= recognize · ( name , 

string ) 

[6,(]=D11  

State 7 Action Go To 

S::= E A · [7,$]=R11  

State 8 Action Go To 

A::= S · [8,$]=R2  

State 9 Action Go To 

A::=  [9,$]=R1  

State 10 Action Go To 

D::= automatonFD  name 

· { B B B B } 

[10,{]=D12  

State 11 Action Go To 

R::= recognize  ( · name , 

string ) 

[5,name]=D

13 

 

State 12 Action Go To 

D::= automatonFD  name  

{ · B B B B } 

 [12,B]=14 

B::= · states { V } [12,states]=  

D? 

B::= · final { U } [12,final]=

D? 

 

B::= · initial { t } [12,initial]=

D? 

 

B::= · transitions { W } [12,transitio

ns]=D? 

 

State 13 Action Go To 

R::= recognize  ( name · , 

string ) 

[13,","]=D?  

State 14 Action Go To 

D::= automatonFD  name  

{ B · B B B } 

 [14,B]=? 

B::= · states { V } [14,states]=

D? 

 

B::= · final { U } [14,final]=

D? 

 

B::= · initial { t } [14,initial]=

D? 

 

B::= · transitions { W } [14,transitio

ns]=D? 

 

 

 



 

 

To generate the code for automatonFD, with the grammar described in section 2, it is necessary to do the 

semantic control that verifies that all sections are present. From the definition of the grammar of section 2 

it is observed that the production in which this semantic control must be realized is: 

 

 D::= automatonFD name { B B B B } 

 

When the reduction takes place, then the semantic actions associated with the production will be 

executed. 

 

In addition to checking if the four sections (which is what is requested at this point), controls can also be 

performed at this time that the initial state, the final ones and those that appear in the transitions are 

declared in the set of states. By adding an attribute, section, to the non-terminal symbols, it will be 

possible to determine which production has been applied: 

 















reduced ns transitioif   7

reduced final if   5

reduced states if   3

reduced initial if   2

section.B   

 

To avoid a very large set of nested "if" statements, we will produce the product of the different 

"B.section", if the result is 210, then each section will have been reduced regardless of the order. If a 

section is missing (because another is repeated) then the result will be different from 210. If correct, then 

a data structure containing the automaton definition must be created and then a function will be invoked 

to check for other semantic errors that can occur. 

 

 D::= automatonFD name { B1 B2 B3 B4 }        

    { 

    k=newtemp(); 

    k=B1.section * B2.section * B3.section * B4.section 

    IF k < > 210 then 

     ERROR(Missing sections to declare) 

    ELSE 

     new_automaton=new_structure() 

     new_automaton=create_automaton(B1.list, B2.list, B3.list, B4.list) 

     IF (verify_semantics(new_automaton))=F then 

      ERROR(Incorrect declaration of the automaton) 

     ELSE 

      D.code = instructions_declaration_of_automaton() 

     ENDIF 

    ENDIF 

       } 

 

Las funciones: 

 newtemp  creates a temporal variable 

 ERROR   generates a call to the error manager 

 new_structure  declaration and memory required to contain an automaton 

 create_automaton  generates a data structure to store the definition of an automaton 

verify_semantics  function that returns F if there is an error in the definition of the automaton 

instructions_declaration_of_automaton  function that returns an string with the declaration of 

the automaton in the object code. 
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The data structure of the automaton can be as follows: 

 

automaton{ 

list_of_states  // definition of a list that contains the symbols of the states 

initial   // variable with the symbol of the initial state 

list_de_final  // definition of a list that contains the symbols of the final states 

list_de_transitions // definition of a list that contains the transitions 

} 

 


