

UNITS 7 AND 8: SEMANTIC ANALYSIS and ERROR HANDLING

We want to construct a compiler for a language of definition and application of sequential machines. In

the language you can define as many machines and process as many strings as you want. The language

format is as follows:

• To declare a sequential machine, the MS instruction is used:
MS name_of_the_sequential_machine

{

inputs { symbol1, symbol2,…,symboln}

outputs { symbol1, symbol2,…,symbolk}

states { state1, state2, …}

transitions {

(state1, symbol_input1, state2, symbol_output1)

(state1, symbol_input1, state2, symbol_output1)

…

(state1, symbol_input1, state2, symbol_output1)

}

}

• For the sequential machine to process a string, it is used:

process (name_of_automaton, string, initial_state)

The name of the sequential machine is a string of alphabetic characters. The statement of the set of states,

the set of input and output symbols, and the set of transitions can be in any order, but they must always be

included in every statement. The set of states, transitions, input and output symbols must have at least one

value. An example of a sequential machine definition in this language would be:

MS Afirst

{

outputs {1,0}

states {a, c}

inputs {L,M,N}

transitions { (a,L,a,1)

(a,M,a,1)

(a,N,c,0)

(c,L,a,0)

(c,M,a,0)

(c,N,c,1)

}

}
process (Afirst, LLM, a)

process (Afirst, LLM, c)

To use the process function, the sequential machine used must be previously declared. The function

displays, for the previous example, the following information:

MS: Afirst Input: LLM Output: 111

MS: Afirst Input: LLM Output: 011

It is required:

1. Define the grammar G that would generate valid sentences of this programming language.

2. Generate the first 15 states (including the state initial) of an LR (1) parser that recognizes statements

of the language generated by G' (modified G of section 2). Show, for the elements of those states

("items"), what transitions of the LR (1) table would be generated with the created states.

3. Describe the semantic routines (in pseudocode) of the productions involved in the G or G' grammar

that allow semantic control to verify that the MS instruction has the four sections (inputs, outputs,

states and transitions) declared. If additional data structures are required, explain their usefulness.

SOLUTION:

A grammar that generates the language of the problem is defined as follows:

G = {A, B, D, E, R, S, V, W, Z }, {() , { } automatonFD string states final initial name recognize t

transitions}, {S}

(1) A::= 

(2) A::= S

(3) B::= states { V }

(4) B::= final { U }

(5) B::= initial { t }

(6) B::= transitions { W }

(7) D::= automatonFD name { B B B B }

(8) E::= D

(9) E::= R

(10) R::= recognize (name, string)

(11) S::= E A

(12) U::= 

(13) U::= V

(14) V::= t Z

(15) W::= 

(16) W::= (t , t , t) W

(17) Z::= 

(18) Z::= , V

State 0 Action Go To

S’::= ·S [0,S]=1

S::= ·EA [0,E]=2

E::= ·D [0,D]=3

E::= ·R [0,R]=4

D::= · automatonFD

name { B B B B }

[0,automato

nFD]=D5

R::= · recognize (name ,

string)

[0,recognize

]=D6

State 1 Action Go To

S’::= S· [1,$]=ACP

State 2 Action Go To

S::= E·A [2,A]=7

A::= ·S [2,S]=8

A::=  [2,$]=R1

S::= ·EA [2,E]=2

E::= ·D [2,D]=3

E::= ·R [2,R]=4

D::= · automatonFD

name { B B B B }

[2,automato

nFD]=D5

R::= · recognize (name ,

string)

[2,recognize

]=D6

State 3 Action Go To

E::= D· [3,automato

nFD]=R8

[3,recognize

]=R8

[3,$]=R8

State 4 Action Go To

E::= R· [4,automato

nFD]=R9

[4,recognize

]=R9

[4,$]=R9

State 5 Action Go To

D::= automatonFD ·

name { B B B B }

[5,name]=D

11

State 6 Action Go To

R::= recognize · (name ,

string)

[6,(]=D11

State 7 Action Go To

S::= E A · [7,$]=R11

State 8 Action Go To

A::= S · [8,$]=R2

State 9 Action Go To

A::=  [9,$]=R1

State 10 Action Go To

D::= automatonFD name

· { B B B B }

[10,{]=D12

State 11 Action Go To

R::= recognize (· name ,

string)

[5,name]=D

13

State 12 Action Go To

D::= automatonFD name

{ · B B B B }

 [12,B]=14

B::= · states { V } [12,states]=

D?

B::= · final { U } [12,final]=

D?

B::= · initial { t } [12,initial]=

D?

B::= · transitions { W } [12,transitio

ns]=D?

State 13 Action Go To

R::= recognize (name · ,

string)

[13,","]=D?

State 14 Action Go To

D::= automatonFD name

{ B · B B B }

 [14,B]=?

B::= · states { V } [14,states]=

D?

B::= · final { U } [14,final]=

D?

B::= · initial { t } [14,initial]=

D?

B::= · transitions { W } [14,transitio

ns]=D?

To generate the code for automatonFD, with the grammar described in section 2, it is necessary to do the

semantic control that verifies that all sections are present. From the definition of the grammar of section 2

it is observed that the production in which this semantic control must be realized is:

 D::= automatonFD name { B B B B }

When the reduction takes place, then the semantic actions associated with the production will be

executed.

In addition to checking if the four sections (which is what is requested at this point), controls can also be

performed at this time that the initial state, the final ones and those that appear in the transitions are

declared in the set of states. By adding an attribute, section, to the non-terminal symbols, it will be

possible to determine which production has been applied:















reduced ns transitioif 7

reduced final if 5

reduced states if 3

reduced initial if 2

section.B

To avoid a very large set of nested "if" statements, we will produce the product of the different

"B.section", if the result is 210, then each section will have been reduced regardless of the order. If a

section is missing (because another is repeated) then the result will be different from 210. If correct, then

a data structure containing the automaton definition must be created and then a function will be invoked

to check for other semantic errors that can occur.

 D::= automatonFD name { B1 B2 B3 B4 }

 {

 k=newtemp();

 k=B1.section * B2.section * B3.section * B4.section

 IF k < > 210 then

 ERROR(Missing sections to declare)

 ELSE

 new_automaton=new_structure()

 new_automaton=create_automaton(B1.list, B2.list, B3.list, B4.list)

 IF (verify_semantics(new_automaton))=F then

 ERROR(Incorrect declaration of the automaton)

 ELSE

 D.code = instructions_declaration_of_automaton()

 ENDIF

 ENDIF

 }

Las funciones:

 newtemp  creates a temporal variable

 ERROR  generates a call to the error manager

 new_structure  declaration and memory required to contain an automaton

 create_automaton  generates a data structure to store the definition of an automaton

verify_semantics  function that returns F if there is an error in the definition of the automaton

instructions_declaration_of_automaton  function that returns an string with the declaration of

the automaton in the object code.

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

The data structure of the automaton can be as follows:

automaton{

list_of_states // definition of a list that contains the symbols of the states

initial // variable with the symbol of the initial state

list_de_final // definition of a list that contains the symbols of the final states

list_de_transitions // definition of a list that contains the transitions

}

