

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

UNITS 2, 3 AND 4: LEXICAL ANALYSIS AND GRAMMAR DESIGN FOR THE SYNTAX

ANALYSIS

There is a very simple programming language oriented to the arithmetic calculation of a calculator. In this

language, programs consist of a sequence of expressions (there may be any expression). Valid

expressions are sequences of operators and numbers ending with the = sign. An example of a valid

program is: (only operations of +, - and * are valid)

 + * + 6 8 6 9 =

- + * - 45 23 2 5 2 =

There is no operator precedence. The expression is read from left to right. The result of the compiling

process is shown on the screen and consists of the transformation of operations into equivalent sums and

subtracts (the same operation, but without multiplications) and the result, following the example, the

output on screen would show:

6 + 8 + 6 + 8 + 6 + 8 + 6 + 8 + 6 + 8 + 6 + 8 + 9 = 93

45 – 23 + 45 – 23 + 5 - 2 = 47

 Numbers are positive integer.

It is required:

1. Define the grammar G that would generate valid statements of this programming language and

the lexical analyzer.

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

Note: Note that there are no quartets for multiplication, they have to be implemented with sums.

Instruction Meaning

(move, pos1,, pos2) pos2  pos1

(push, pos1, ,) incorporates the contents of pos1 into the Stack

(pop, , , pos1) pos1  top of the Stack

(label, , , label) defines a label

(goto, , , label) go to a label

(return, , , reg) go to the address in reg

(if, reg, , label) go to label if the content of reg is -1

(<, reg, , label) go to label if the content of reg is lower or equal to 0

(+, reg1, reg2, reg) reg  reg1 + reg2

(-, reg1, reg2, reg) reg  reg1 - reg2

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

Solution:

A grammar that generates the language of the problem is defined as follows:

G = {S, C, Z, E, E’, O, O’, U, V, T, W }, {¿, ?, (,), =>, /=>, ->, Id, Num, +, -, /, *, ;}, {S}

(1) S::= C S

(2) S::= E S

(3) S::= 

(4) E::= E’ -> V

(5) E’::= O U

(6) O::= Id

(7) O::= Num

(8) U::= O’ E’

(9) U::= 

(10) O’::= +

(11) O’::= -

(12) O’::= *

(13) O’::= /

(14) V::= Id T

(15) T::= 

(16) T::= ; V

(17) Z::= E

(18) Z::= C

(19) C::= ¿(E’) => Z W

(20) W::= ?

(21) W::= /=> Z ?

