vcdm | Universidad Carlos lll de Madrid

UNIT 5: TOP-DOWN PARSING TECHNIQUES

We want to develop a translator for a language of arithmetic expressions to code C, Pascal or Java. The
characteristics of the language are:

e Operands are variables and integer numeric constants.

e The arithmetic operators are: +, -, *, /

e All operations are integer.

e There is no precedence between the different arithmetic operators. Expressions are evaluated
from left to right.

e The operator> loads the result of the arithmetic operation to the left of the operator in the
variable to the right of it. To perform this "assignment™ operation on the right only an identifier
can appear as an expression, otherwise the result of evaluating the expression is lost.

e The iteration statement indicates the expressions that it affects with the operators [], the number
of iterations indicating the value of the arithmetic expression enclosed in parentheses that will
appear after the symbol].

e When the variables are first used, they are initialized with a value of 0.

Example:

3>A>[2*A-1+b>b](A)

The operations that are performed are: value 3 is assigned to variable A, the operation 2 * A-1 + b is
performed and the result, 5, is assigned to variable b, this last operation is repeated 5 times, therefore,

after running the entire line, variable b will take the value 15.

An erroneous expression could be:

It is required
1. Define the grammar G for the translator.

2. Construct the LL(1) analysis table for the translator.

David Griol Barres, Antonio Berlanga de Jess, Jests Garcia Herrero, Juan Manuel Alonso Weber LJEIMJ:

vcdm | Universidad Carlos lll de Madrid

Solution:

1. The tokens of the proposed grammar in this solution are: {[,], (,),>, op, id, num}. The token "op"
represents any operation (+, -, *, /), can be treated as a grammatical symbol because they have the same
precedence. The token "id" represents variables and "num" represents numeric constants (it could also
return the lexical analyzer a single token for variables and constants). The production rules of the
grammar are:

S—-E>S|E
E—[S](E)|PopE|P

P —id | num

The axiom, S, constructs the line of expressions joined with the > operator and the iterations. The non-
terminal "E" constructs the arithmetic expressions, set of operands joined by an operator

After factoring the grammar:

S—-ES
S >S|A
E—[S](E)|PE’
E’—opE|A
P —id | num
2.
TN First Follow
E Id num [) > 1 8
= Op Py) > 1 8
P Id num op) > 1 %
S Id num [] $
S’ > A] $
Table ZT
LL(1) $ > () [1 id num op
E E— [S] (E) E>PE E—>PE’
E® |EE>A E-—oA E'— A E'— A E’—>opE
| P P—id P— num
S S—-ES S—-ES” S—ES
S’ SS»A S’—>>S§ S A

David Griol Barres, Antonio Berlanga de Jess, Jests Garcia Herrero, Juan Manuel Alonso Weber LJEIMJ:

