Formal Languages and Automata Theory Exercises Finite Automata
 Unit 3 - Part 1

Authors:

Araceli Sanchis de Miguel
Agapito Ledezma Espino
Jose A. Iglesias Martínez
Beatriz García Jiménez
Juan Manuel Alonso Weber

* Several exercises are based on the ones proposed in the following books:
- Enrique Alfonseca Cubero, Manuel Alfonseca Cubero, Roberto Moriyón Salomón. Teoría de autómatas y lenguajes formales. McGraw-Hill (2007).
- Manuel Alfonseca, Justo Sancho, Miguel Martínez Orga. Teoría de lenguajes, gramáticas y autómatas. Publicaciones R.A.E.C. (1997).
- Pedro Isasi, Paloma Martínez y Daniel Borrajo. Lenguajes, Gramáticas y Autómatas. Un enfoque práctico. Addison-Wesley (1997).

Formal Languages and Automata Theory

1. Given the alphabet $\{0,1\}$, construct a DFA which recognizes those elements of the universal language with an odd number of zeros.
2. Given the alphabet $\{\mathrm{a}, \mathrm{b}\}$, construct a DFA which recognizes string with length " 3 " of the universal language. (After Unit 4: Obtain the G3 corresponding to this automaton).
3. Given the alphabet $\{a, b\}$. Explain how a DFA would be implemented to recognize the language of n-length strings. Firstly, design the automaton for specific values of $\mathrm{n}, \mathrm{e} . \mathrm{g}$. n $=4$, and then design the automaton for any value of n.
4. Given the alphabet $\{\mathrm{a}, \mathrm{b}\}$, design a DFA which recognizes strings with an even number of a's and an odd number of b's.
5. Given the alphabet $\{0,1\}$. Design a DFA to recognize the language L which consists of string with the same number of substrings " 01 " and substrings " 10 ". Examples: 101 is included in $L(\mathbf{1 0 1}, 101)$; however 1010 is not included in $L(\mathbf{1 0 1 0}, 1010,1010)$.
6. We want to design a device that, given a string which consists of binary numbers, will be able to find if the keyword " 1011 " is included in the input string and it also would be used as a basis to count the number of times this keyword is included. For instance, for the input string 0101011011011 , the device would detect two occurrences of the keyword (the " 1 " in the seventh position is not considered as the beginning of a new apparition). It is required to design the corresponding DFA.
7. In several programming languages, comments are included between the marks "/*"and "* $/$ ". Let L be the language of every string of comments limited by these marks. Then, every element in L begins /* and ends with */, but it does not include any intermediate */. To simplify the problem, consider that the input alphabet is $\{\mathrm{a}, \mathrm{b}, /, *\}$. Indicate the DFA which recognizes L.
8. Design a DFA to recognize binary numbers which multiple of 3. (After Unit 4: Obtain the G3 corresponding to this automaton).
