

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

UNITS 7 AND 8: SEMANTIC ANALYSIS and ERROR HANDLING

We want to incorporate a repetitive sentence into a high-level language. The sentence can be represented

by the following regular expression:

 repeat (identifier | number) >> sentence+ <<

A program consists of at least one statement, where statements can be assignments, conditionals, and

loops.

NOTE: The symbols "|" and "+" are part of the regular expressions, the others are part of the language.

It is required:

1. Define the grammar G that would generate valid programs of this programming language.

Consider the assignment and conditional statements as terminal symbols of the grammar.

2. Describe the semantic routines of the grammar G that generate intermediate code in quartets

with the following instructions, where pos are memory addresses, registers, or a number, and

reg, reg1 and reg2 can be a record or a number. Write the semantic routines for the two

interpretations that can be made about the execution flow of the loop:

repeat (id | n) >>

sentence1

…

sentencen

<<

sentencek

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

Mode A

 Mode B

Statement Meaning

(move, pos1,, pos2) pos2  pos1

(push, pos1, ,) includes the contents of pos1 into the stack

(pop, , , pos1) pos1  top of the stack

(label, , , label) defines a label

(goto, , , label) go to a label

(return, , , reg) go to the address specified by reg

(if, reg, , label) go to label reg es -1

(<, reg, , label) go to label if the contents of reg is lower or equal to 0

(+, reg1, reg2, reg) reg  reg1 + reg2

(-, reg1, reg2, reg) reg  reg1 - reg2

(*, reg1, reg2, reg) reg  reg1 * reg2

(/, reg1, reg2, reg) reg  reg1 / reg2

id|n>0

Sentence1

Sentencen

Sentencek

Yes

No

id|n>0

Sentence1

Sentencen

Sentencek

Yes

No

