UNITS 7 AND 8: SEMANTIC ANALYSIS and ERROR HANDLING

We want to incorporate a repetitive sentence into a high-level language. The sentence can be represented by the following regular expression:

repeat (identifier | number) >> sentence ${ }^{+}$<<

A program consists of at least one statement, where statements can be assignments, conditionals, and loops.

NOTE: The symbols "|" and "+" are part of the regular expressions, the others are part of the language.
It is required:

1. Define the grammar G that would generate valid programs of this programming language. Consider the assignment and conditional statements as terminal symbols of the grammar.
2. Describe the semantic routines of the grammar G that generate intermediate code in quartets with the following instructions, where pos are memory addresses, registers, or a number, and reg, regl and reg2 can be a record or a number. Write the semantic routines for the two interpretations that can be made about the execution flow of the loop:
repeat (id |n) >>
sentence $_{1}$
sentence $_{\mathrm{n}}$
<<
sentence $_{k}$

uc3m

Mode A

Mode B

Statement	Meaning
(move, pos_{1}, , pos $_{2}$)	$\operatorname{pos}_{2} \leftarrow \mathrm{pos}_{1}$
(push, pos $_{1,}$,)	includes the contents of pos_{1} into the stack
(pop, , , os $_{l}$)	$\operatorname{pos}_{1} \leftarrow$ top of the stack
(label, , , label)	defines a label
(goto, , , label)	go to a label
(return, , , reg)	go to the address specified by reg
(if, reg, , label)	go to label reg es -1
(<, reg, , label)	go to label if the contents of reg is lower or equal to 0
(+, reg $\left.{ }_{1}, r e g_{2}, r e g\right)$	$r e g \leftarrow r e g_{1}+r e g_{2}$
$\left(-, r e g_{1}, r e g_{2}, r e g\right)$	$r e g \leftarrow r e g_{1}-\mathrm{reg}_{2}$
(*, reg ${ }_{1}$, reg $\left.{ }_{2}, r e g\right)$	$r e g \leftarrow r e g_{1} * r e g_{2}$
(/, reg ${ }_{1}, r e g_{2}, r e g$)	$r e g \leftarrow r e g_{1} / r r e g_{2}$

