
 

1                                                                                                                               Juan Manuel Alonso Weber                                                                                                

 

Practical Exercise: Development of a Recursive Descent 
Interpreter 

 

In this guided practical exercise, we will approach the design of an Interpreter with basic 
resources to review the main concepts of a Recursive Descent Parser. To avoid dealing 
with a large and complicated grammar, we will restrict the domain to the typical arithmetic 
expression calculator. This way, we can obtain results with a reduced number of 
production rules. 

We will begin with a very elementary approach, and complicate it in successive steps: 

1. A parser for very simple operations. 
2. A calculator for very simple operations (Parser + Semantic Routines). 
3. Inclusion of expressions with parentheses. 
4. Inclusion of operator precedence, and unary signs. 

 

3. Including expressions with parentheses 
 

The next change is proposed to see how to modify the code when the grammar is 
expanded. We are going to limit ourselves to operate with expressions including 
parentheses. 

The modification is highlighted in the new grammar: 

Expression ::=   Term ExpressionRest 
  

ExpressionRest ::=  + Expression |  
- Expression |   
* Expression |  
/ Expression | 
lambda 

  
Term ::=    Number |  

( Expression ) 
 

The changes will only affect the ParseTerm() function. We see that the grammar fulfils 
the requirements for a Recursive Descending Parser (without left recursion, without 
productions that generate Non-Determinism). But now, Term generates two alternative 
productions, which forces us to calculate its FIRST set. In this case, the calculation is 
simple, since both alternatives begin with a Terminal Symbol in the first derivation: FIRST 
(Term) = {Number, ( } 

Term is not nullable symbol, therefore there is no need to calculate the FOLLOING 
(Term) set. But you must always be aware that any changes in the grammar can 
influence the calculation of all sets! 

 



 

2                                                                                                                               Juan Manuel Alonso Weber                                                                                                

 

 

We can see that almost all sets change, although the FOLLOWING(ExpressionRest) is 
the only set to consider, since for the other Non-Terminals there are no alternative or 
nullable productions. 

The necessary changes are indicated in the following fragments. ParseTerm() is 
modified to process the alternative of an expression within parentheses. First, it checks 
if the token is any of the symbols in FIRST(Term). If it is a token of numeric type, 
ParseNumber() is called, otherwise it is assumed to be an expression within parentheses 
and ParseLParen() followed by ParseExpression() and ParseRParen() are called. 
ParseLParen() is responsible for giving an error if the token is not the opening 
parenthesis (contained in FIRST(Term)). The recursive reference in advance to 
ParseExpression() requires a prototype. 

int ParseExpression () ;  // Prototype for forward reference 
 
int ParseTerm ()   // T ::= N | ( E )      returns the numeric value of the Term 
{ 
 int val ; 
 
 rd_lex () ; 
 if (token == T_NUMBER) {  // T derives alternatives, requires checking FIRST(Expression) 
  val = ParseNumber () ; 
 } else { 
  ParseLParen () ; 
  val = ParseExpression () ; 
  ParseRParen () ; 
 } 
  
 return val ; 
} 

 

ParseLParen() and ParseRParen() should have their corresponding functions, but in this 
case we have redefined them as macros based on MatchSymbol(XXX). This is a 
common practice for writing more efficient code, since each call to a function (in this case 
to ParseLParen() and ParseRParen()) implies an overhead in generating space for 
parameters, local variables, etc. 

 



 

3                                                                                                                               Juan Manuel Alonso Weber                                                                                                

 

#define ParseLParen()  MatchSymbol ('(') ; // More concise and efficient definitions 
#define ParseRParen()  MatchSymbol (')') ; // rather than using functions 
     // This is only useful for matching Literals 

 

The only additional change is in ParseExpression() where we need to check if lambda is 
being derived.  

int ParseExpression () {  // E ::= TE'       U     E' ::= lambda | E  
{ 
. . . 
 rd_lex () ;    // ExpressionRest is a nullable Non Terminal 
 if (token == '\n' || token == ')') { // Therefore, we check FOLLOW(ExpressionRest) 
  return val ;  // This means that lambda has been derived 
 } 
 
 switch (token) {  // ExpressionRest derives in alternatives 
. . . 
} 

 

Now we can test the program on the following sequences: 

1+2*3 
Value 7 
3*2+1 
Value 9 
3 
Value 3 
1+(2*3) 
Value 7 
3*(2+1) 
Value 9 
(3)*(2)+(1) 
Value 9 
(3) 
Value 3 
 
ERROR in line 9 token 10 expected, but 40 was read 

 

We see that the operator precedence of * with respect to + is not met. 3 * 2 + 1 should 
give 7, as well as for 1 + 2 * 3. 

In the following example, it can also be seen that the left associativity is not fulfilled (the 
result should be -1). Although the theory says that a recursive descending parser applies 
left to right associativity (the correct one in this case), in this implementation it happens 
that the evaluations are performed in reverse when returning from the recursive calls. 
Hence, the expressions are evaluated from right to left. 
 
1-1-1 
Value 1 
 
ERROR in line 3 token 10 expected, but 40 was read 

 
 

 


