

1 Juan Manuel Alonso Weber

Practical Exercise: Development of a Recursive Descent
Interpreter

In this guided practical exercise, we will approach the design of an Interpreter with basic
resources to review the main concepts of a Recursive Descent Parser. To avoid dealing
with a large and complicated grammar, we will restrict the domain to the typical arithmetic
expression calculator. This way, we can obtain results with a reduced number of
production rules.

We will begin with a very elementary approach, and complicate it in successive steps:

1. A parser for very simple operations.
2. A calculator for very simple operations (Parser + Semantic Routines).
3. Inclusion of expressions with parentheses.
4. Inclusion of operator precedence, and unary signs.

4. Inclusion of operator precedence, and unary signs

Including the reading of the next token allows to eliminate low-level operations in the
more complex parser functions that deal only with Non-Terminals rather than with tokens.
Thus, the ParseExpression() function is transformed into:

int ParseExpression () // E ::= TE' U E' ::= lambda | E
{ // returns the numeric value of the Expression
 int val ;
 int val2 ;
 int operator ;

 val = ParseTerm () ;

// ParseExpressionRest () ; // we expand this function into ParseExpression()

 // ExpressionRest is a nullable Non Terminal
 if (token == '\n' || token == ')') { // Therefore, we check FOLLOW(ExpressionRest)
 return val ; // This means that lambda has been derived
 }

 operator = ParseOperator () ;

 val2 = ParseExpression () ;

 // At this point the input has been parsed correctly
 switch (operator) { // This part is for the Semantic actions
 case '+' : val += val2 ;
 break ;
 case '-' : val -= val2 ;
 break ;
 case '*' : val *= val2 ;
 break ;
 case '/' : val /= val2 ;
 break ;
 default : rd_syntax_error (operator, 0, "Error in ParseExpressionRest for operator %c\n") ;

2 Juan Manuel Alonso Weber

 break ;
 }

 return val ;
}

The low-level operations that cannot be eliminated are the query of FOLLOW(E '), and
everything related to the semantics associated with the production.

We use the ParseExpression() function to integrate the two functions corresponding to
E (Expression) and E' (ExpressionRest). Although the grammar cannot reflect this fusion,
we can represent it with the EBNF notation:

Expression ::= Term [Operator Expression]*

Which is equivalent to:

Expression ::= Term ExpressionRest
ExpressionRest ::= Operator Expression |

lambda

The [Operator Expression] * fragment indicates that it is a nullable sequence, so we need
to insert a previous check on the FOLLOW set to determine if the analysis process should
be terminated.

