uc3m | Universidad Carlos III de Madrid

Department of computer science Carlos III University of Madrid

Computer Science Language Processors

Rules

- The duration of the test is $\mathbf{6 0}$ minutes
- Questions will not be answered during the test
- One cannot re-enter the classroom after leaving it
- The answers must be written using a pen (not a pencil)
1.- Given the grammar:

a) Calculate the FIRST and FOLLOW sets.

$$
\begin{aligned}
& \operatorname{FIRST}(\mathrm{D})=\{\mathrm{b}, \mathrm{c}, \mathrm{~d}\} \\
& \text { FIRST }(X)=\{\mathrm{b}, \mathrm{c}, \mathrm{f}, \lambda\} \\
& \operatorname{FIRST}(\mathrm{M})=\{\mathrm{c}, \lambda\} \\
& \text { FIRST }(A)=\{\mathrm{c}, \mathrm{f}, \mathrm{j}, \lambda\} \\
& \operatorname{FIRST}(\mathrm{B})=\{\mathrm{c}, \lambda\} \\
& \operatorname{FIRST}(\mathrm{F})=\{\mathrm{f}, \lambda\} \\
& \text { FOLLOW }(\mathrm{D})=\{\$\} \\
& \text { FOLLOW }(X)=\{\$\} \\
& \text { FOLLOW }(\mathrm{M})=\{\mathrm{b}, \mathrm{c}, j\} \\
& \text { FOLLOW }(\mathrm{A})=\{\$\} \\
& \text { FOLLOW }(\mathrm{B})=\{j, \mathrm{f}, \$\} \\
& \text { FOLLOW }(\mathrm{F})=\{\$\}
\end{aligned}
$$

b) Using the algorithm, determine if it is an LL(1) grammar.

For a grammar to be a LL(1) grammar, it must fulfill that there are not two or more productions in any cell of the analysis table. This condition will occur when:
\forall production $A::=\alpha_{i}|\ldots| \alpha_{n}$:

- $\operatorname{FIRST}(\alpha i) \cap \operatorname{FIRST}(\alpha \mathrm{i})=0 \forall \mathrm{i} \neq \mathrm{j}$
- If $\alpha \mathrm{i}::=\lambda$ then $\operatorname{FIRST}(\alpha \mathrm{i}) \cap \operatorname{FOLLOW}(A)=0 \forall \mathrm{i} \neq \mathrm{j}$

uc3m | Universidad Carlos III de Madrid

For the given grammar:
FIRST (bA) $\cap \operatorname{FIRST}(c X) \cap \operatorname{FIRST}(d)=0$
FIRST $(\mathrm{MbA}) \cap \operatorname{FIRST}(B F)=\{c, b\} \cap\{c, f, \cap\} \cap 0$
$\operatorname{FIRST}(\mathrm{cM}) \cap \operatorname{FIRST}(\lambda)=0$
FIRST (cM) $\cap \operatorname{FOLLOW}(M)=\{c\} \cap\{c, j\} \cap 0$
FIRST (MBj) \cap FIRST(F) $=\{c, \cap\} \cap\{f, \cap\} \cap 0$
FIRST (c) $\cap \operatorname{FIRST}(\lambda)=0$
FIRST $(c) \cap \operatorname{FOLLOW}(B)=\{c\} \cap\{j, f, \$\}=0$
FIRST $(f A) \cap \operatorname{FOLLOW}(\lambda)=0$
FIRST $(\mathrm{f} A) \cap \operatorname{FOLLOW}(\mathrm{F})=\{\mathrm{f}\} \cap\{\$\}=0$

Then, the grammar is not an LL(1) grammar.
c) Construct the analysis table for the $L L(1)$ table-driven top-down predictive parsing.

The parsing table for the grammar is:

	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{j}	\mathbf{f}	\mathbf{S}
\mathbf{D}	$\mathrm{D} \rightarrow \mathrm{bA}$	$\mathrm{D} \rightarrow \mathrm{cX}$	$\mathrm{D} \rightarrow \mathrm{d}$			
\mathbf{X}	$\mathrm{X} \rightarrow \mathrm{MbA}$	$\mathrm{X} \rightarrow \mathrm{MbA}$ $\mathrm{X} \rightarrow \mathrm{BF}$			$\mathrm{X} \rightarrow \mathrm{BF}$	$\mathrm{X} \rightarrow \mathrm{BF}$
\mathbf{M}	$\mathrm{M} \rightarrow \lambda$	$\mathrm{M} \rightarrow \mathrm{cM}$ $\mathrm{M} \rightarrow \lambda$		$\mathrm{M} \rightarrow \lambda$		
\mathbf{A}		$\mathrm{A} \rightarrow \mathrm{MBj}$		$\mathrm{A} \rightarrow \mathrm{MBj}$	$\mathrm{A} \rightarrow \mathrm{F}$	$\mathrm{A} \rightarrow \mathrm{F}$
\mathbf{B}		$\mathrm{B} \rightarrow \mathrm{c}$		$\mathrm{B} \rightarrow \lambda$	$\mathrm{B} \rightarrow \lambda$	$\mathrm{B} \rightarrow \lambda$
\mathbf{F}					$\mathrm{F} \rightarrow \mathrm{fA}$	$\mathrm{F} \rightarrow \lambda$

