uc3m Universidad Carlos III de Madrid

DEPARTMENT OF COMPUTER SCIENCE CARLOS III UNIVERSITY OF MADRID

Computer Science Language Processors

Rules

- The duration of the test is **60 minutes**
- Questions will not be answered during the test
- One cannot re-enter the classroom after leaving it
- The answers must be written using a pen (not a pencil)

1.- Given the grammar:

D ::= bA | cX | d X ::= MbA | BF M ::= cM | 1 A ::= MBj | F B ::= c | 1 F ::= fA | 1

a) Calculate the FIRST and FOLLOW sets.

 $FIRST(D) = \{b, c, d\}$ $FIRST(X) = \{b, c, f, \lambda\}$ $FIRST(M) = \{c, \lambda\}$ $FIRST(A) = \{c, f, j, \lambda\}$ $FIRST(B) = \{c, \lambda\}$ $FIRST(F) = \{f, \lambda\}$

FOLLOW(D) = {\$} FOLLOW(X) = {\$} FOLLOW (M) = {b, c, j} FOLLOW (A) = {\$} FOLLOW (B) = {j, f, \$} FOLLOW (F) = {\$}

b) Using the algorithm, determine if it is an LL(1) grammar.

For a grammar to be a LL(1) grammar, it must fulfill that there are not two or more productions in any cell of the analysis table. This condition will occur when:

 \forall production A ::= α_i |...| α_n :

- FIRST(α i) \cap FIRST(α i) = 0 \forall i \neq j
- If $\alpha i ::= \lambda$ then FIRST(αi) \cap FOLLOW(A) = 0 $\forall i \neq j$

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

uc3m Universidad Carlos III de Madrid

For the given grammar:

FIRST (bA) \cap FIRST(cX) \cap FIRST(d) = 0 FIRST (MbA) \cap FIRST(BF) = {c, b} \cap {c, f, \cap } \cap 0 FIRST (cM) \cap FIRST(λ) = 0 FIRST (cM) \cap FOLLOW(M) = {c} \cap {c, j} \cap 0 FIRST (MBj) \cap FIRST(F) = {c, \cap } \cap {f, \cap } \cap 0 FIRST (c) \cap FIRST(λ) = 0 FIRST (c) \cap FOLLOW(B) = {c} \cap {j, f, \$} = 0 FIRST (fA) \cap FOLLOW(λ) = 0 FIRST (fA) \cap FOLLOW(F) = {f} \cap {\$} = 0

Then, the grammar is not an LL(1) grammar.

c) Construct the analysis table for the LL(1) table-driven top-down predictive parsing.

The parsing table for the grammar is:

	b	с	d	j	f	\$
D	D → bA	$D \rightarrow cX$	$D \rightarrow d$			
Χ	X → MbA	X → MbA			$X \rightarrow BF$	$X \rightarrow BF$
		$X \rightarrow BF$				
Μ	$M \rightarrow \lambda$	$M \rightarrow cM$		$M \rightarrow \lambda$		
		$M \rightarrow \lambda$				
Α		A → MBj		A → MBj	$A \rightarrow F$	$A \rightarrow F$
B		$B \rightarrow c$		$B \rightarrow \lambda$	$B \rightarrow \lambda$	$B \rightarrow \lambda$
F					$F \rightarrow fA$	$F \rightarrow \lambda$

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber