uc3m Universidad Carlos III de Madrid

DEPARTMENT OF COMPUTER SCIENCE CARLOS III UNIVERSITY OF MADRID

Computer Science Language Processors

Rules

- The duration of the test is **60 minutes**
- Questions will not be answered during the test
- One cannot re-enter the classroom after leaving it
- The answers must be written using a pen (not a pencil)

1.- Given the grammar:

a) Calculate the FIRST and FOLLOW sets.

```
FIRST(Z) = {b, c, j}

FIRST(B) = {x, h, z}

FIRST(N') = {c, h, z}

FIRST(A') = {c, λ}

FIRST(A) = {x}

FIRST(A) = {h, z}

FOLLOW(Z) = {$}

FOLLOW(B) = {$}

FOLLOW (N') = {$}

FOLLOW (A') = {$}

FOLLOW (A) = {c, j, $}
```

b) Using the algorithm, determine if it is an LL(1) grammar.

For a grammar to be a LL(1) grammar, it must fulfill that there are not two or more productions in any cell of the analysis table. This condition will occur when:

 \forall production A ::= α_i |...| α_n :

- FIRST(α i) \cap FIRST(α i) = 0 \forall i \neq i
- If $\alpha i := \lambda$ then FIRST $(\alpha i) \cap FOLLOW(A) = 0 \forall i \neq j$

uc3m Universidad Carlos III de Madrid

For the given grammar:

FIRST (bB)
$$\cap$$
 FIRST(cN) \cap FIRST(j) = 0
FIRST (NN') \cap FIRST(Aj) = {x} \cap {h, z} = 0
FIRST (AA') \cap FIRST(c) = {h, z} \cap {c} = 0
FIRST (c) \cap FIRST(λ) = = 0
FIRST (c) \cap FOLLOW(A') {c} \cap {\$} = 0
FIRST (h) \cap FIRST(z) = 0

Then, the grammar is an LL(1) grammar.

c) Construct the analysis table for the LL(1) table-driven top-down predictive parsing.

The parsing table for the grammar is:

	b	c	j	X	h	Z	\$
Z	$Z \rightarrow bB$	$Z \rightarrow cN$	Z → j				
В				$B \rightarrow NN'$	B → Aj	B → Aj	
N'		N' → c			N' → AA'	N' → AA'	
A'		A' → c					$A' \rightarrow \lambda$
N				$N \rightarrow X$			
A					$A \rightarrow h$	A → z	

d) Show how the input string bxhc would be analyzed using the parsing table for the grammar.

Input: bxhc\$								
STACK	INPUT	OUTPUT	ACTION					
\$Z	bxhc\$		Z → bB					
\$Bb	bxhc\$	b	B → NN'					
\$N'N	xhc\$	bx	$N \rightarrow x$					
\$N'	hc\$	bx	N' → AA'					
\$A'A	hc\$	bxh	$A \rightarrow h$					
\$A'	c\$	bxhc	A' → c					
\$	\$	bxhc\$	ACCEPT					

