

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

DEPARTMENT OF COMPUTER SCIENCE
CARLOS III UNIVERSITY OF MADRID

Computer Science
Language Processors

Rules

• The duration of the test is 60 minutes
• Questions will not be answered during the test
• One cannot re-enter the classroom after leaving it
• The answers must be written using a pen (not a pencil)

1.- Given the grammar:

S ::= AD
A ::= bB | ʎ
B ::= Ca | D
C ::= a | ʎ
D ::= b | c

A) Construct the parsing table for the SLR(1) parser and represent the DFA that is obtained
using this methodology.

Augmented Grammar

S’ S
(1) S AD
(2, 3) A bB | λ
(4, 5) B Ca | D
(6, 7) C a | λ
(8, 9) D b | c

LR(0) canonical set

I0 = { [S’ ·S], [S ·AD], [A·bB] , [A λ·]}
I1 = goto (I0, S) = {[S’ S·]}
I2 = goto (I0, A) = {[S A·D], [D ·b], [D·c]}
I3 = goto (I0, b) = {[A b·B] , [B·Ca], [B·D], [C·a], [C λ·], [D ·b], [D·c]}
I4 = goto(I2, D) = {[S AD·]}
I5 = goto(I2, b) = {[D b·]}
I6 = goto(I2, c) = {[D c·]}
I7 = goto(I3, B) = {[A bB·]}
I8 = goto(I3, C) = {[BC·a]}
I9 = goto(I3, D) = {[BD·]}
I10 = goto(I3, a) = {[Ca·]}

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

goto(I3, b) = I5
goto (I3, c) = I6

I11 = goto(I8, a) = {[BCa·]}

We can represent the DFA as follows:

Finally, to construct the SLR(1) parsing table we need to know:

FOLLOW(A) = {b, c} FOLLOW(C) = {a} FOLLOW(S) = {$}
FOLLOW(D) = {b,c,$} FOLLOW(B) = {b,c}

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

B) Construct the parsing table for the LR(1) parser.

The states of the LR(1) parser are the following:

I0 = { [S’ ·S,$], [S ·AD,$], [A·bB,b/c] , [A λ·, b/c]}

I1 = goto (I0, S) = {[S’ S·,$]}
I2 = goto (I0, A) = {[S A·D,$], [D ·b,$], [D·c,$]}
I3 = goto (I0, b) = {[A b·B,b/c] , [B·Ca,b/c], [B·D,b/c], [C·a,a], [C λ·,a], [D ·b,b/c],
[D·c,b/c]}

I4 = goto(I2, D) = {[S AD·,$]}
I5 = goto(I2, b) = {[D b·,$]}
I6 = goto(I2, c) = {[D c·,$]}

I7 = goto(I3, B) = {[A bB·,b/c]}
I8 = goto(I3, C) = {[BC·a,b/c]}
I9 = goto(I3, D) = {[BD·,b/c]}
I10 = goto(I3, a) = {[Ca·,a]}
I11 = goto(I3, b) = {[D b·,b/c]}
I12 = goto(I3, c) = {[D c·,b/c]}

I13 = goto(I8, a) = {[BCa·,b/c]}

FIRST(A) = {λ,b} FIRST(C) = {λ,a} FIRST(S) = {b,c}
FIRST(D) = {b,c} FIRST(B) = {a,b,c}

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

C) Construct the parsing table for the LALR(1) parser.

The LALR(1) parsing table can be constructed by using the LR(1) states and merging those states that
are identical if the lookaheads are ignored, i.e., two states being merged must have the same number of
items and the items have the same core (i.e., the same productions, differing only in lookahead). The
lookahead on merged items is the union of the lookahead from the states being merged. This way, the
states that can be merged are:

• States 5 and 11 = State 511
• States 6 and 12 = State 612

The resulting parsing table for the LALR(1) after joining these states is:

D) Extract conclusions about which methods can be used or not and show how the input
string aabece would be analyzed using the correct ones.

The three methodologies cannot be used due to there are not conflicts in the corresponding parsing
tables. As it can be seen, the LR(1) is the parsing technique with the large number of states and the
parsing tables for the LALR(1) and SLR(1) parsing techniques are the same.

David Griol Barres, Antonio Berlanga de Jesús, Jesús García Herrero, Juan Manuel Alonso Weber

E) Complete the parsing table for the SLR(1) parser to provide the user with detailed
information about the different errors that can be detected during the parsing process.

