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• Download source from opensvn repository  

(See the article on how to get a working copy of the repository.) 

Introduction 

In the previous article, we presented an approach for capturing similarity between 
words that was concerned with the syntactic similarity of two strings. Today we are 
back to discuss another approach that is more concerned with the meaning of words. 
Semantic similarity is a confidence score that reflects the semantic relation between 
the meanings of two sentences. It is difficult to gain a high accuracy score because 
the exact semantic meanings are completely understood only in a particular context. 

The goals of this paper are to: 

• Present to you some dictionary-based algorithms to capture the semantic 
similarity between two sentences, which is heavily based on the WordNet 
semantic dictionary.  

• Encourage you to work with the interesting topic of NLP.  

Groundwork 

Before we go any further, let us start with some brief introduction of the 
groundwork. 

WordNet 

WordNet is a lexical database which is available online and provides a large 
repository of English lexical items. There is a multilingual WordNet for European 
languages which are structured in the same way as the English language WordNet. 

WordNet was designed to establish the connections between four types of Parts of 
Speech (POS) - noun, verb, adjective, and adverb. The smallest unit in a WordNet is 
synset, which represents a specific meaning of a word. It includes the word, its 
explanation, and its synonyms. The specific meaning of one word under one type of 
POS is called a sense. Each sense of a word is in a different synset. Synsets are 
equivalent to senses = structures containing sets of terms with synonymous 
meanings. Each synset has a gloss that defines the concept it represents. For 
example, the words night, nighttime and dark constitute a single synset that has the 
following gloss: the time after sunset and before sunrise while it is dark outside. 
Synsets are connected to one another through the explicit semantic relations. Some 
of these relations (hypernym, hyponym for nouns and hypernym and troponym for 



verbs) constitute is-a-kind-of (holonymy) and is-a-part-of (meronymy for nouns) 
hierarchies. 

For example, tree is a kind of plant, tree is a hyponym of plant and plant is a 
hypernym of tree. Analogously, trunk is a part of a tree and we have that trunk as a 
meronym of tree and tree is a holonym of trunk. For one word and one type of POS, 
if there is more than one sense, WordNet organizes them in the order of the most 
frequently used to the least frequently used (Semcor). 

WordNet.NET 

Malcolm Crowe and Troy Simpson have developed an open-source .NET Framework 
library for WordNet called WordNet.Net. 

WordNet.Net was originally created by Malcolm Crowe and it was known as a C# 
library for WordNet. It was created for WordNet 1.6 and stayed in its original form 
until after the release of WordNet 2.0 when Troy gained permission from Malcolm to 
use the code for freeware dictionary/thesaurus projects. Finally, after WordNet 2.1 
was released, Troy released his version of Malcolm's library as an LGPL library known 
as WordNet.Net (with permission from Princeton and Malcolm Crowe, and in 
consultation with the Free Software Foundation), which was updated to work with 
the WordNet 2.1 database. 

At the time of writing the WordNet.Net library was open-sourced for a short period of 
time but it is expected to mature as more projects such as this spawn from the 
library's availability. Bug fixing and extensions to Malcolm's original library had been 
ongoing for over a year and a half prior to the release of the open source project. 
This is the project address of WordNet.Net. 

Semantic similarity between sentences 

Given two sentences, the measurement determines how similar the meaning of two 
sentences is. The higher the score the more similar the meaning of the two 
sentences. 

Steps for computing semantic similarity between two sentences: 

• First each sentence is partitioned into a list of tokens.  
• Part-of-speech disambiguation (or tagging).  
• Stemming words.  
• Find the most appropriate sense for every word in a sentence (Word Sense 

Disambiguation).  
• Finally, compute the similarity of the sentences based on the similarity of the 

pairs of words.  

Tokenization 

Each sentence is partitioned into a list of words and we remove the stop words. Stop 
words are frequently occurring, insignificant words that appear in a database record, 
article or a web page, etc. 



Tagging part of speech (+) 

This task is to identify the correct part of speech (POS - like noun, verb, pronoun, 
adverb ...) of each word in the sentence. The algorithm takes a sentence as input 
and a specified tag set (a finite list of POS tags). The output is a single best POS tag 
for each word. There are two types of taggers: the first one attaches syntactic roles 
to each word (subject, object, ..) and the second one attaches only functional roles 
(noun, verb, ...). There is a lot of work that has been done on POS tagging. The 
tagger can be classified as rule-based or stochastic. Rule-based taggers use hand 
written rules to disambiguate tag ambiguity. An example of rule-based tagging is 
Brill's tagger (Eric Brill algorithm). Stochastic taggers resolve tagging ambiguities by 
using a training corpus to compute the probability of a given word having a given tag 
in a given context. For example: tagger using the Hidden Markov Model, Maximize 
likelihood. 

Brill Tagger sample for C# 

There are two samples included for using the Brill Tagger from a C# application. The 
Brill Tagger tools, libraries and samples can be found under the 
3rd_Party_Tools_Data folder in the source repository. 

One of the available ports is a VB.NET port by Steven Abbott of the original Brill 
Tagger. That port has been in turn ported to C# by Troy Simpson. The other is a port 
to VC++ by Paul Maddox. The C# test program for Paul Maddox's port uses a 
wrapper to read stdout directly from the command line application. The wrapper was 
created using a template by Mike Mayer. 

See the respective test applications for working examples on using the Brill Tagger 
from C#. The port of Steven Abbott's work is fairly new, but after some testing it is 
likely that Paul's VC++ port will be deprecated and replaced with Troy's C# port of 
Steven's VB.NET work. 

Stemming word (+) 

We use the Porter stemming algorithm. Porter stemming is a process of removing 
the common morphological and inflexional endings of words. It can be thought of as 
a lexicon finite state transducer with the following steps: Surface form -> split word 
into possible morphemes -> getting intermediate form -> map stems to categories 
and affixes to meaning -> underlying form. I.e : foxes -> fox + s -> fox. 

(+) Currently these works are not used in the semantic similarity project and will soon be integrated. To get their 
ideas, you can use the porterstermer class and Brill tagger sample in the repository. 

Semantic relatedness and Word Sense Disambiguation 
(WSD) 

As you are already aware, a word can have more than one sense that can lead to 
ambiguity. For example: the word "interest" has different meaning in the following 
two contexts: 



• "Interest" from a bank.  
• "Interest" in a subject.  

WSD with original Micheal Lesk algorithm 

Disambiguation is the process of finding out the most appropriate sense of a word 
that is used in a given sentence. The Lesk algorithm [13]uses dictionary definitions 
(gloss) to disambiguate a polysemous word in a sentence context. The major 
objective of his idea is to count the number of words that are shared between two 
glosses. The more overlapping the words, the more related the senses are. 

To disambiguate a word, the gloss of each of its senses is compared to the glosses of 
every other word in a phrase. A word is assigned to the sense whose gloss shares 
the largest number of words in common with the glosses of the other words. 

For example: In performing disambiguation for the "pine cone" phrasal, according to 
the Oxford Advanced Learner’s Dictionary, the word "pine" has two senses: 

• sense 1: kind of evergreen tree with needle–shaped leaves,  
• sense 2: waste away through sorrow or illness.  

The word "cone" has three senses: 

• sense 1: solid body which narrows to a point,  
• sense 2: something of this shape whether solid or hollow,  
• sense 3: fruit of a certain evergreen tree.  

By comparing each of the two gloss senses of the word "pine" with each of the three 
senses of the word "cone", it is found that the words "evergreen tree" occurs in one 
sense in each of the two words. So these two senses are then declared to be the 
most appropriate senses when the words "pine" and "cone" are used together. 

The original Lesk algorithm begins anew for each word and does not utilize the 
senses it previously assigned. This greedy method does not always work effectively. 
Therefore, if the computational time is not critical we should think of optimal sense 
combination by applying local search techniques such as Beam. The major idea 
behind such methods is to reduce the search space by applying several heuristic 
techniques. The Beam searcher limits its attention to only k most promising 
candidates at each stage of the search process, where k is a predefined number. 

The adapted Micheal Lesk algorithm 

The original Lesk used the gloss of a word and is restricted on the overlap scoring 
mechanism. In this section, we introduce an adapted version of the algorithm[16] with 
some improvements to overcome the limitations: 

• Access a dictionary with senses arranged in a hierarchical order (WordNet). 
This extended version uses not only the gloss/definition of the synset but also 
considers the meaning of related words.  

• Apply a new scoring mechanism to measure gloss overlap that gives a more 
accurate score than the original Lesk bag of words counter.  



To disambiguate each word in a sentence that has N words, we call each word to be 
disambiguated as a target word. The algorithm is described in the following steps: 

1. Select a context: optimizes computational time so if N is long, we will define K 
context around the target word (or k-nearest neighbor) as the sequence of 
words starting K words to the left of the target word and ending K words to 
the right. This will reduce the computational space that decreases the 
processing time. For example: If k is four, there will be two words to the left 
of the target word and two words to the right.  

2. For each word in the selected context, we look up and list all the possible 
senses of both POS (part of speech) noun and verb.  

3. For each sense of a word (WordSense), we list the following relations 
(example of pine and cone):  

o Its own gloss/definition that includes example texts that WordNet 
provides to the glosses.  

o The gloss of the synsets that are connected to it through the 
hypernym relations. If there is more than one hypernym for a word 
sense, then the glosses for each hypernym are concatenated into a 
single gloss string (*).  

o The gloss of the synsets that are connected to it through the hyponym 
relations (*).  

o The gloss of the synsets that are connected to it through the meronym 
relations (*).  

o The gloss of the synsets that are connected to it through the troponym 
relations (*).  

(*) All of them are applied with the same rule. 

4. Combine all possible gloss pairs that are archived in the previous steps and 
compute the relatedness by searching for overlap. The overall score is the 
sum of the scores for each relation pair.  

When computing the relatedness between two synsets s1 and s2, the pair 
hype-hype means the gloss for the hypernym of s1 is compared to gloss for 
the hypernym of s2. The pair hype-hypo means that the gloss for the 
hypernym of s1 is compared to the gloss for the hyponym of s2. 

OverallScore(s1, s2)= Score(hype(s1)-hypo(s2)) +  
              Score(gloss(s1)-hypo(s2)) + Score(hype(s1)-gloss(s2))... 
( OverallScore(s1, s2) is also equivalent to OverallScore(s2, s1) ). 

In the example of "pine cone", there are 3 senses of pine and 6 senses of 
cone, so we can have a total of 18 possible combinations. One of them is the 
right one. 

To score the overlap we use a new scoring mechanism that differentiates 
between N-single words and N-consecutive word overlaps and effectively 
treats each gloss as a bag of words. It is based on ZipF's Law, which says that 
the length of words is inversely proportional to their usage. The shortest 
words are those which are used more often, the longest ones are used less 
often. 



Measuring overlaps between two strings is reduced to solve the problem of 
finding the longest common sub-string with maximal consecutives. Each 
overlap which contains N consecutive words, contributes N2 to the score of 
the gloss sense combination. For example: an overlap "ABC" has a score of 
32=9 and two single overlaps "AB" and "C" has a score of 22 + 11=5. 

5. Once each combination has been scored, we pick up the sense that has the 
highest score to be the most appropriate sense for the target word in the 
selected context space. Hopefully the output not only gives us the most 
appropriate sense but also the associated part of speech for a word.  

If you intend to work with this topic, you should refer to the measurements of 
Hirst-St.Onge which is based on finding the lexical chains between the 
synsets. 

Semantic similarity between two synsets 

The above method allows us to find the most appropriate sense for each word in a 
sentence. To compute the similarity between two sentences, we base the semantic 
similarity between word senses. We capture semantic similarity between two word 
senses based on the path length similarity. 

In WordNet, each part of speech words (nouns/verbs...) are organized into 
taxonomies where each node is a set of synonyms (synset) represented in one 
sense. If a word has more than one sense, it will appear in multiple synsets at 
various locations in the taxonomy. WordNet defines relations between synsets and 
relations between word senses. A relation between synsets is a semantic relation, 
and a relation between word senses is a lexical relation. The difference is that lexical 
relations are relations between members of two different synsets, but semantic 
relations are relations between two whole synsets. For instance: 

• Semantic relations are hypernym, hyponym, holonym , etc.  
• Lexical relations are antonym relation and the derived form relation.  

Using the example, the antonym of the tenth sense of the noun light (light#n#10) in 
WordNet is the first sense of the noun dark (dark#n#1). The synset to which it 
belongs is {light#n#10, lighting#n#1}. Clearly it makes sense that light#n#10 is an 
antonym of dark#n#1, but lighting#n#1 is not an antonym of dark#n#1; therefore 
the antonym relation needs to be a lexical relation, not a semantic relation. Semantic 
similarity is a special case of semantic relatedness where we only consider the IS-A 
relationship. 

The path length-based similarity measurement 

To measure the semantic similarity between two synsets we use hyponym/hypernym 
(or is-a relations). Due to the limitation of is-a hierarchies, we only work with "noun-
noun", and "verb-verb" parts of speech. 

A simple way to measure the semantic similarity between two synsets is to treat 
taxonomy as an undirected graph and measure the distance between them in 
WordNet. Said P. Resnik : "The shorter the path from one node to another, the more 



similar they are". Note that the path length is measured in nodes/verteces rather 
than in links/edges. The length of the path between two members of the same 
synsets is 1 (synonym relations). 

This figure shows an example of the hyponym taxonomy in WordNet used for path 
length similarity measurement: 

 

In the above figure, we observe that the length between car and auto is 1, car and 
truck is 3, car and bicycle is 4, car and fork is 12. 

A shared parent of two synsets is known as a sub-sumer. The least common sub-
sumer (LCS) of two synsets is the sumer that does not have any children that are 
also the sub-sumer of two synsets. In other words, the LCS of two synsets is the 
most specific sub-sumer of the two synsets. Back to the above example, the LCS of 
{car, auto..} and {truck..} is {automotive, motor vehicle}, since the {automotive, 
motor vehicle} is more specific than the common sub-sumer {wheeled vehicle}. 

The path length gives us a simple way to compute the relatedness distance between 
two word senses. There are some issues that need to be addressed: 

• It is possible for two synsets from the same part of speech to have no 
common sub-sumer. Since we did not join all the different top nodes of each 
part of speech taxonomy, a path cannot always be found between the two 
synsets. But if a unique root node is being used, then a path will always exist 
between any two noun/verb synsets.  

• Note that multiple inheritance is allowed in WordNet; some synsets belong to 
more than one taxonomy. So if there is more than one path between two 
synsets, the shortest such path is selected.  

• Lemmatization: when looking up a word in WN, the word is first lemmatized. 
Therefore, the distance between "book" and "books" is 0 since they are 
identical. But "Mice" and "mouse"?  

• This measurement only compares the word senses which have the same part 
of speech (POS). This means that we do not compare a noun and a verb 



because they are located in different taxonomies. We just consider the words 
that are nouns, verbs, or adjectives respectively. With the omission of the 
POS tagger, we will use Jeff Martin's Lexicon class. When considering a word, 
we first check if it is a noun and if so we will treat it as a noun and its verb or 
adjective will be disregarded. If it is not a noun, we will check if it is a verb...  

• Compound nouns like "travel agent" will be treated as two single words via 
the tokenization.  

Measuring similarity (MS1) 

There are many proposals for measuring semantic similarity between two synsets: 
Leacock & Chodorow, P.Resnik. In this work, we experimented with two simple 
measurements: 

Sim(s, t) = 1/distance(s, t). 

• where distance is the shortest path length from s to t by using node 
counting.  

Measuring similarity (MS2) 

This formula is proposed by Wu & Palmer, the measure takes into account both path 
length and depth of the least common sub-summer : 

Sim(s, t) = 2 * depth(LCS)/[depth(s) + depth(t)] 

• where s and t: denote the source and target words being compared.  
• Depth(s): is the shortest distance from root node to a node S on the 

taxonomy where the synset of S lies .  
• LCS: denotes the least common sub-submer of  s and t.  

Semantic similarity between two sentences 

We will now describe the overall strategy to capture semantic similarity between two 
sentences. Given two sentences X and Y, we denote m to be length of X, n to be 
length of Y. The major steps can be described as follows: 

1. Tokenization.  
2. Perform word stemming.  
3. Perform part of speech tagging.  
4. Word sense disambiguation.  
5. Building a semantic similarity relative matrix R[m, n] of each pair of word 

senses, where R[i, j] is the semantic similarity between the most appropriate 
sense of word at position i of X and the most appropriate sense of word at 
position j of Y. Thus, R[i,j] is also the weight of edge connect from i to j. If a 
word does not exist in the dictionary we use the edit-distance similarity 
instead and output a lower associated weight; for example: an abbreviation 
like CTO (Chief of Technology Officer). Another solution for abbreviation is 
using abbreviation dictionary or abbreviation pattern recognization rules.  

6. We formulate the problem of capturing semantic similarity between sentences 
as the problem of computing a maximum total matching weight of a bipartite 



graph, where X and Y are two sets of disjoint nodes. We use the Hungarian 
method to solve this problem; please refer to our previous article on 
capturing similarity between two strings.  

7. The match results from the previous step are combined into a single similarity 
value for two sentences. There are many strategies to acquire an overall 
similarity of two sets. In the previous section, we presented two simple 
formulas to compute semantic similarity between two word-senses. For each 
formula we apply an appropriate strategy to compute the overall score:  

o Matching average: where match(X, Y) are the 
matching word tokens between X and Y. This similarity is computed by 
dividing the sum of similarity values of all match candidates of both 
sentences X and Y by the total number of set tokens. An important 
point is that it is based on each of the individual similarity values, so 
that the overall similarity always reflects the influence of them. We 
apply this strategy with the MS1 formula.  

o Dice coefficient: This strategy returns the ratio of the 
number of tokens that can be matched over the total of tokens. We 
apply this strategy with the MS2 formula. Hence, Dice will always 
return a higher value than Matching average and it is thus more 
optimistic. In this strategy we need to predefine a threshold to select 
the matching pairs that have values exceeding the given threshold.  

o (Cosine, Jarccard coefficients will be considered in other particular 
cases associated to vector similarity measures).  

For example: Given two sentences X and Y, X and Y have lengths of 3 and 2, 
respectively. The bipartite matcher returns that X[1] has matched Y[1] with a 
score of 0.8, X[2] has matched Y[2] with a score of 0.7: 

o using Matching average, the overall score is : 2*(0.8 + 0.7) / (3 + 2) 
= 0.6.  

o using Dice with a threshold is 0.5, since both the matching pairs have 
scores greater than the threshold, so we have total of 2 matching 
pairs.  

The overall score is: 2*(1 + 1)/ (3+2) = 0.8. 

8. If computational time is critical, we can use a simple fast heuristic method 
as follows. The pseudo code for computing similarity of two sentences X and Y 
is: 

sum_X = 0; 
sum_Y = 0; 
 
for (int i=0; i < |X|; i++) 
{ 
  max_i=0; 
 for (int j=0; j < |Y|; j++)  



     if (R[i, j] > max_i) max_i=R[i, j] > max_i; 
 sum_X += max_i; 
 
} 
for (int j=0; j < |Y|; j++) 
{ 
  max_j=0; 
 for (int i=0; i < |X|; j++)  
     if (R[i, j] > max_j) max_j=R[i, j] > max_i; 
 sum_Y += max_j; 
 
} 
 
overallSim = (sum_X + Sum_Y) / 2 * (|X| + |Y|) 

Using the code 

To run this code, you should install WordNet 2.1. Currently the source code is stored 
at the opensvn repository. Please read the article : Using the WordNet.Net 
subversion repository before downloading the source code. This code is used to test 
the semantic similarity function: 

void Test() 
{ 
    SemanticSimilarity semsim=new SemanticSimilarity() ; 
    float score=semsim.GetScore("Defense Ministry",  
                               "Department of defence"); 
} 

Future works 

Time restrictions are a problem; whenever possible we would like to do: 

• Improve the usability of this experiment.  
• Extend the WSD algorithm with supervised learning with such methods as the 

Naive Bayesian Classifier model.  
• Disambiguate part of speech using probabilistic decision trees.  

Conclusion 

In this article, you have seen a simple approach to capture semantic similarity. This 
work might have many limitations since we are not a NLP research group. There are 
some things that need to improve, once the final work is approved we will move a 
copy to the CodeProject. This process may take a few working days. 

There is a Perl open source package for semantic similarity from T. Pedersen and his 
team. Unfortunately, we do not know Perl; it would be very helpful if someone could 
migrate it to .NET. We'll stop here for now and hope that others might be inspired to 
work on WordNet.Net to develop this open source library to make it more useful. 
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