Low cost and green technologies

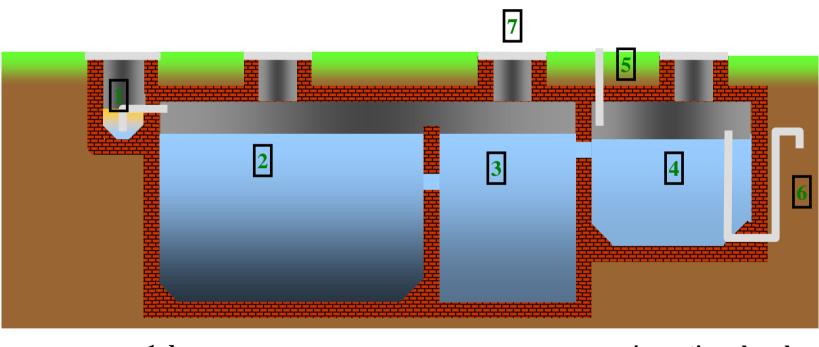
Prof. Dr. D. A. Aznar Jiménez Dpto. C. e I. de Materiales e I. Química UNIVERSIDAD CARLOS III DE MADRID

NATURAL TREATMENT SYSTEMS

Removal of pollutants of wastewater by natural means, with no chemicals added.

Natural systems can be divided in 6 groups:

- Primary: stabilization ponds. Lagooning: aerobic, anaerobic, facultative, maturation
- ✓ Sub superficial application : filtering trenches and wells, fast infiltration
- ✓ Surface application: surface runoff, green filter, Macrophytes filter, sand filters, peat beds
- ✓ Biofilm processes: bacterial beds, biodiscs
- ✓ Conventional treatments : extended aeration, active sludge, ...



STABILIZATION TANKS

- •Simple systems:
 - cesspits
 - septic tanks
 - digester/decanter tanks
- •Very low maintenance cost
- •Main biological process: anaerobic
- •Advised for small urban areas (< 1000 eq-pop) or isolated settlements.

SEPTIC TANKS

1 degreaser

2 anaerobic decantation/digestion chamber

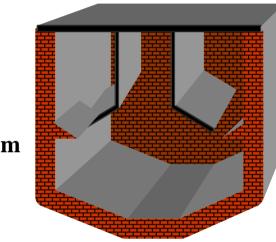
3 anaerobic digestion chamber

4 aeration chamber

5 ventilation

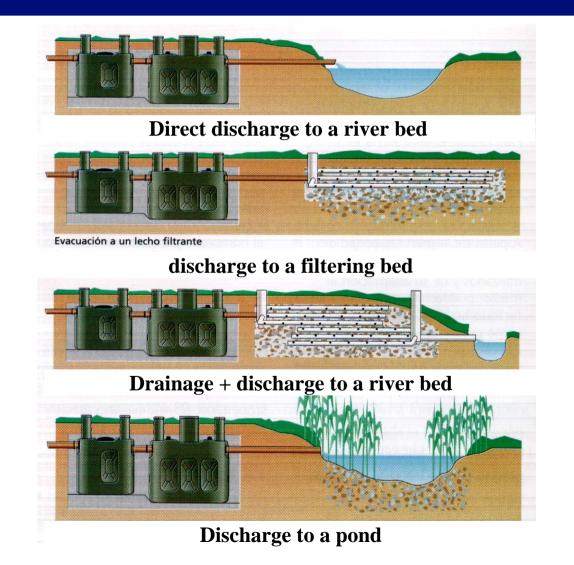
6 Discharge

7 Man hole

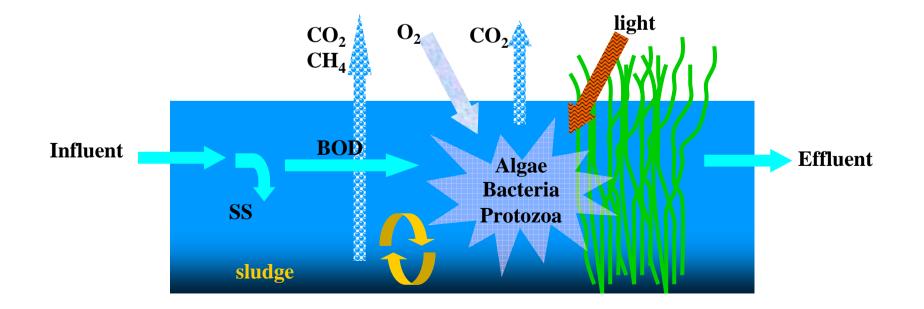

DESIGN OF SEPTIC TANKS

- $V = 1,5 \cdot Q \qquad \Rightarrow \qquad Q < 6 \text{ m}^3/\text{day}$
- $V = 4,5 + 0,75 \cdot Q \implies 6,0 \text{ m}^3/\text{day} < Q < 40,0 \text{ m}^3/\text{day}$
- •length = 2-3 width
- •1,2 m < $h_{effective}$ < 1,7 m
- guard > 0,3 m
- •2 compartments 60/40 3 compartments 50/25/25
- •Discharge pipe 7,5 cm < \emptyset < 15,0 cm

DIGESTER/ DECANTER TANKS


 $t_{d} \text{ (medium flow)} = 2,5 \text{ h}$ $t_{d} \text{ (maximum flow)} = 1,0 \text{ h}$ $t_{d} \text{ (sludge}$ digestion) = 4 months h = 6-9 m

Type of discharge	Decanter volume (L/eq.h.)	Digester volume (L/he)
Small plants (< 5.000 eq.h)	40	100
Plants with industrial discharges	40	50
Plants with industrial discharges and high SS	50	75
eq.pop. 60 g BOD ₅		


DISCHARGE OF THE TREATED WATER

LAGOONS

- •Natural or aerated
- •Tanks of large surface and small relative depth
- •Aerobic process, occasionally anaerobic (deep areas)
- •Low installation and maintenance costs
- •Small urban nuclei (< 2000 eq. pop.) where cost of land is low.

FACULTATIVE LAGOONS

Aerobic/anaerobic systems

✓load ratio

$$\lambda_5 = 20 \text{ T} - 60$$
 $\lambda_5 = \text{kg BOD}_5/\text{Ha}\cdot\text{day}$ td = 5-30

 $(56 < \lambda_5 < 200)$

T = average temperature (°C)

variable surface as a function of flow (0,8-4

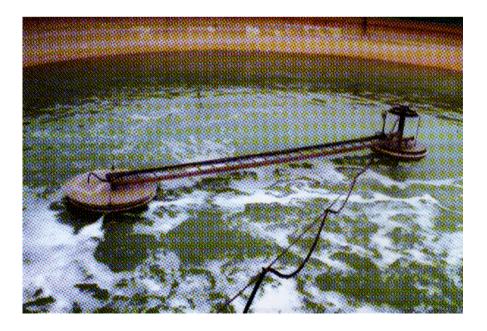
m)

A = $(10 \cdot \text{Li} \cdot \text{Q})/\lambda_5$ A = lagoon area (m²)

Li = Influent concentration (mg BOD_5/L) O = Influent flow (m³/dev)

 $Q = Influent flow (m^3/day)$

depth: 1-2,5 m td = 5-30 days



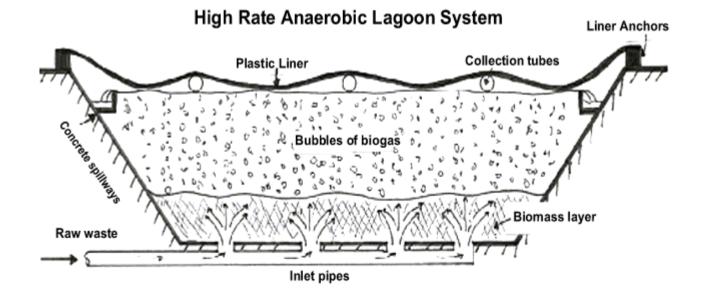
AERATED LAGOONS

Aerobic systems

- ✓ Mechanical aeration
 - (1-2 kW/1.000 m³)
- ✓ Perfect mixing (≈3 kW/1.000 m³)
- ✓ depth: 1,8-6 m
- \checkmark td = 2-10 days
- √load ratio (80 95 kg
- DOB₅/Ha·day)
- ✓ variable surface as a function of flow (0,8-4 m)

ANAEROBIC LAGOONS

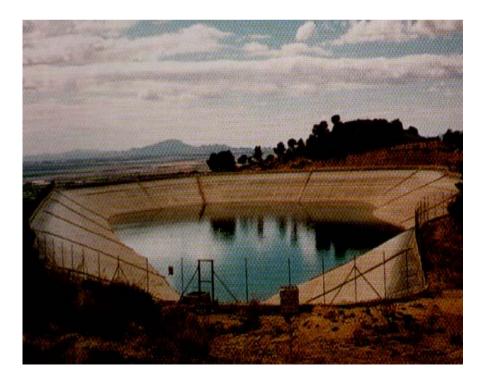
Anaerobic systems


- ✓ depth: >3 m
- $\checkmark t_d = 20-50 \text{ days}$
- ✓load ratio: 100-500 g
- BOD₅/m³/day
- ✓ mineralization of sludge,
- removal 5-10 years

ANAEROBIC LAGOON

- Sedimentation
- Hydrolysis.
- Formation of acids.
- Formation of methane.

MATURATION LAGOONS


Aerobic systems

 $\checkmark < 1 \text{ m}$

 \checkmark td > 10 days

 $\checkmark \mathbf{Disinfect}$ and remove minor

contaminants

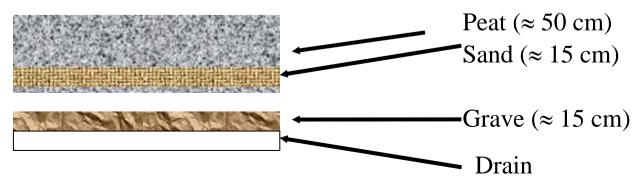
FACTORS INFLUENCING PERFORMANCE

- Climatic: temperature, solar radiation, wind, rainfall, evaporation.
- Physical: stratification, flow lines, depth.
- Chemical: pollutant load, peak values, presence of toxics and inhibitors, greases, nutrients, pH.
- Biological: macrophytes, microphytes, bacteria, algae, protozoa, fungi, insects.

ADVANTAGES	DISADVANTAGES	
Low maintenance cost	Large extension of land	
Small energetic needs	Extraction and removal of sludge	
Does not require qualified personnel	Odor problems	
Acceptable removal of BOD and SS	Production of insects	
Flow variation	Eutrophication of discharges	
It is a natural process	Water lost by evaporation	

LAGOONING SYSTEM

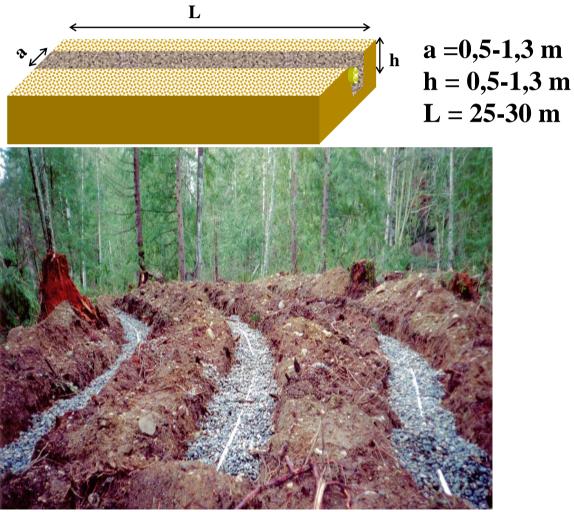
Aerial view of a lagooning system.

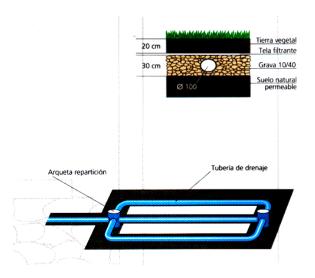


BIOLOGICAL FILTERS

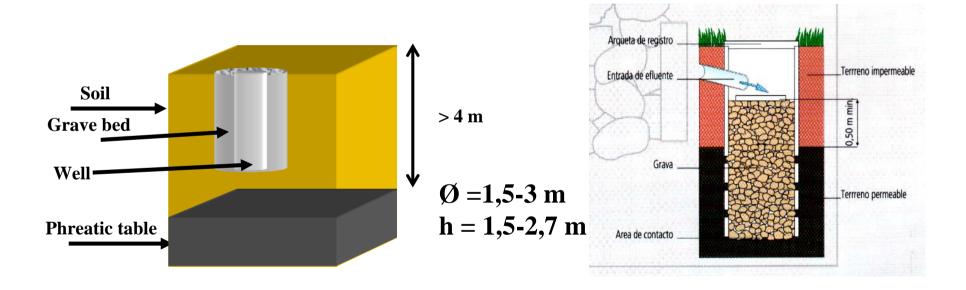
- •Systems based in:
 - •depurating capacity of the soil
 - •other types of beds (peat, sand,...).
- •Possible use/benefits of water y its nutrients
 - Make use of nutrients (Green filter)
 - No use of nutrients (infiltration).
- Systems have a very low cost.

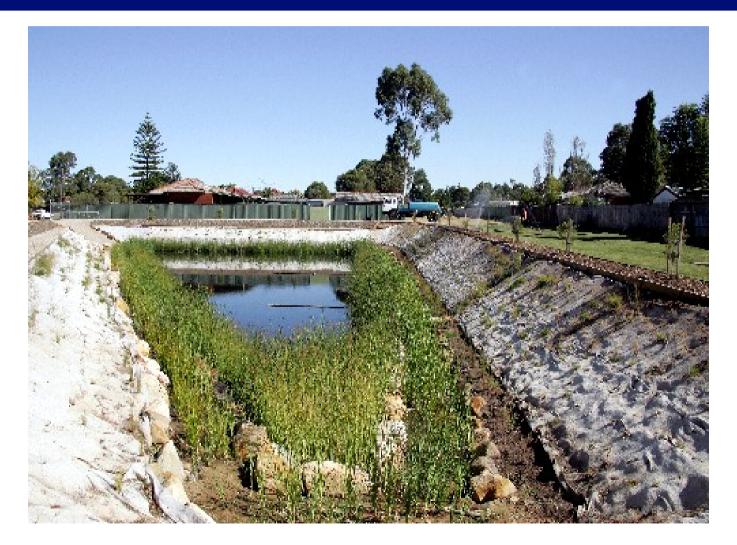
PEAT BEDS


Act as filtering and adsorption elements

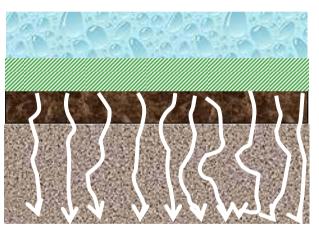


FILTERING TRENCHES


Depurating capacity of soil (edaphodepuration)



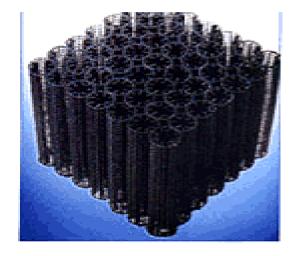
FILTERING WELLS


FAST INFILTRATION

GREEN FILTERS

Addition of water to wetlands covered by vegetation (macrophytodepuration), using the natural capacity to decontaminate (edaphodepuration).

- •Vegetal species
 - ✓ Evapotranspiration
 - ✓ nutrient assimilation
 - \checkmark tolerance to the humidity conditions of the soil
 - ✓ potential productivity,
- Soil
 - ✓ availability (5 ha/1000 eq.pop)
 - ✓ permeability (intermediate)
 - ✓ Far from wells and sources of drinking water
 - ✓ Slope between 2 and 6%
- Discharge
 - ✓ presence of toxics
 - ✓ flow/rainfall

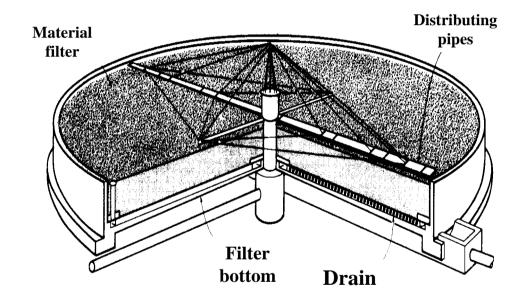


PERCOLATING FILTERS

■ Filtering bed (peat, volcanic, polymers,

...)

Contact with attached


microorganisms

PERCOLATING FILTERS

Aerobic/anaerobic system

Recycling of the effluent (~50-90%)
Biomass carried over