

TERTIARY TREATMENT

•NATURE

- •Physical processes.
- •Chemical processes.
- •Biological processes.

•OBJECTIVES

Removal of specific substances

•RESULTING FLOWS

- treated aqueous effluent
- •sludge
- •reusable substances
- Gases

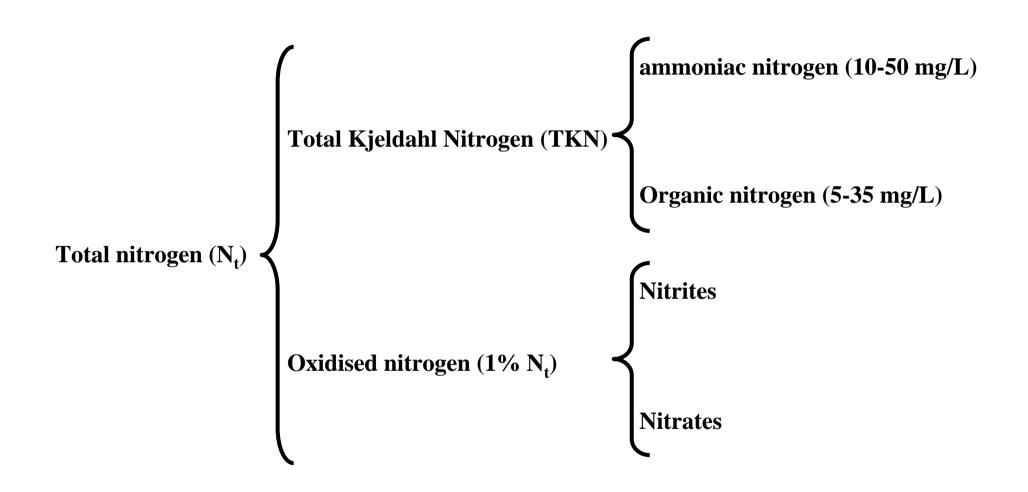
NITROGEN AND PHOSPHOROUS REMOVAL

- •MACRONUTRIENTS
 - C, H, O
- •MESONUTRIENTS
 - N, P, S, Ca, Mg, Na, K, Si
- •MICRONUTRIENTS
 - Fe, Cu, Mo, Mn, Zn

[Nutrient] \downarrow growth inhibited

•MACRONUTRIENTS

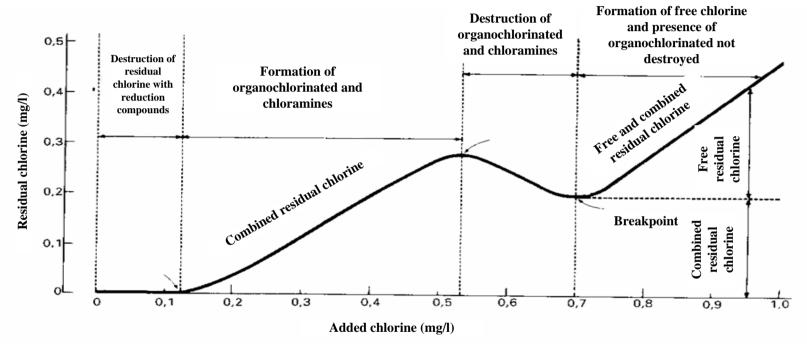
Can be taken from environment (CO₂, H₂O)


•MESONUTRIENTS

Best option. N (3-10%), P (0,5-1%)

•MICRONUTRIENTS

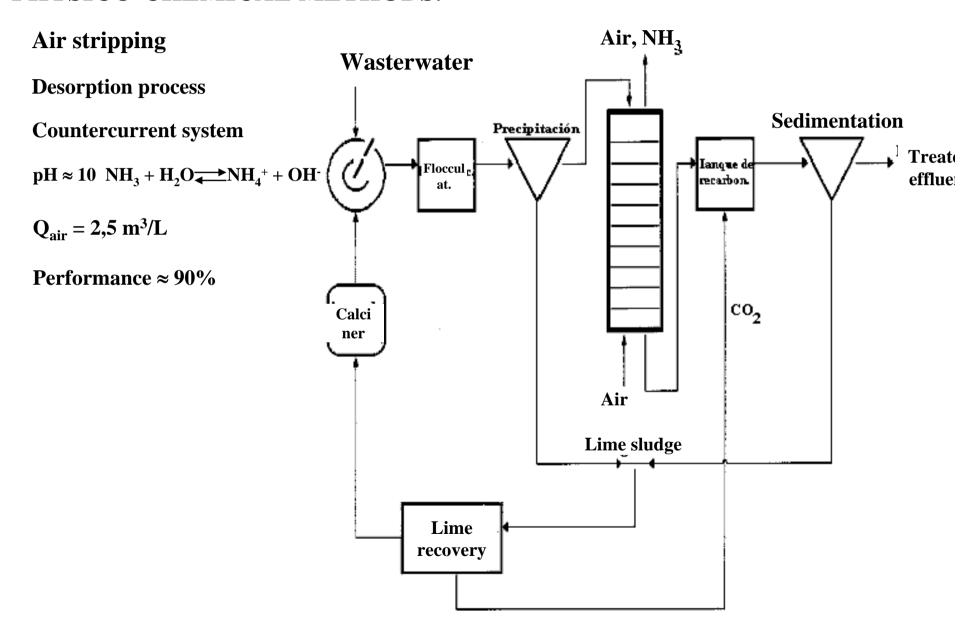
Very small quantities, total removal very expensive


NITROGEN AND PHOSPHOROUS REMOVAL

NITROGEN REMOVAL (I)

•PHYSICO-CHEMICAL METHODS.

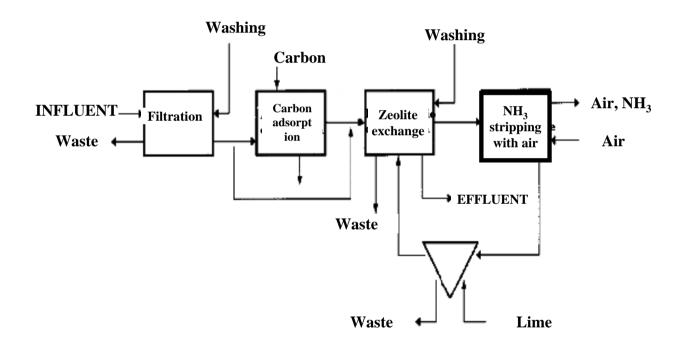
Chlorination breakpoint


$$Cl_2 + H_2O \rightarrow HCl + HOCl$$
 $NH_3 + HOCl \rightarrow NH_2Cl + H_2O$
 $NH_2Cl + HOCl \rightarrow NHCl_2 + H_2O$
 $NHCl_2 + HOCl \rightarrow NCl_3 + H_2O$

$$\frac{\text{Cl}_2}{\text{N}_{\text{NH}_3}} = 8 - 10$$

$$\frac{\text{mg CaCO}_3}{\text{mg N}_{\text{NH}_3}} = 14,3$$

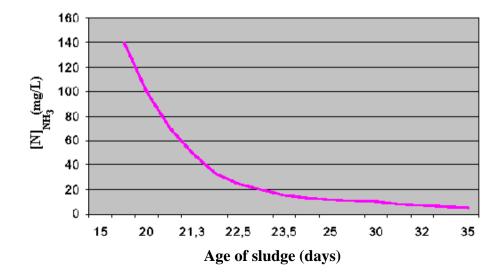
NITROGEN REMOVAL (II)


•PHYSICO-CHEMICAL METHODS.

NITROGEN REMOVAL (III)

•PHYSICO-CHEMICAL METHODS.

•Ion exchange

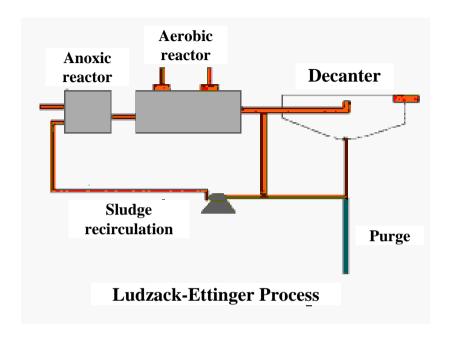

NITROGEN REMOVAL (IV)

•BIOLOGICAL METHODS.

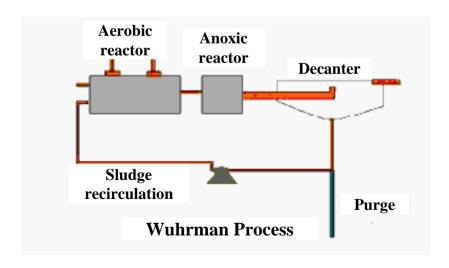
$$NH_4^+ + 2O_2 \xrightarrow{Nitrosomas} 2H^+ + NO_2^- + 1/2O_2 + H_2O \xrightarrow{Nitrobacter} NO_3^-$$

$$NO_3^- + 1,08 CH_3OH + H^+ \rightarrow 0,065 C_5H_7O_2N + 0,47 N_2 + 0,76 CO_2 + 2,44 H_2O_3$$

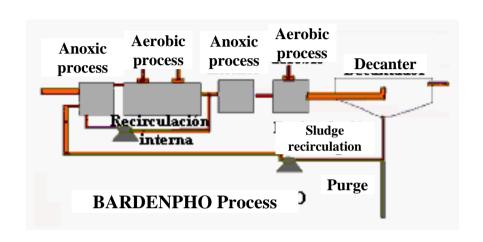
- Anoxic conditions (anaerobic)
- •Provide organic material BOD₅

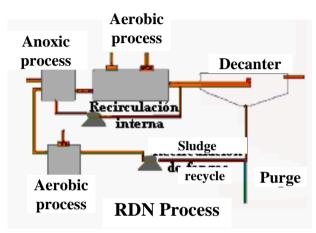

NITROGEN REMOVAL (V)

•BIOLOGICAL METHODS.

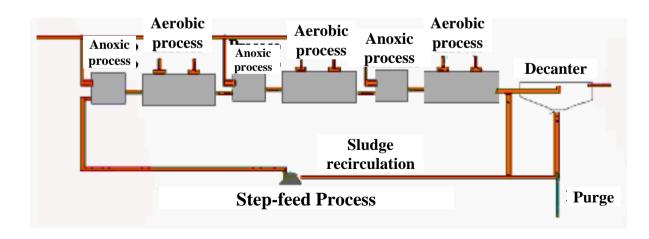

	NITRIFICATION	DENITRIFICATION
Carbon source for cellular synthesis	Inorganic	Organic
Energy source for cellular synthesis	Oxidation N(NH ₄)	Oxidation organic material
Oxygen source for oxidation reactions	O ₂ free	NO ₃ -
Medium	Aerobic	Anaerobic
Microorganisms	Aerobic autotrophic	Facultative heterotrophic
Decrease of the BOD ₅	Associated to oxidised NH ₄ ⁺	Associated to oxidised organic material
Variation of the alkalinity of medium	Alkalinity consumption 7 g HCO ₃ -/g NH ₄ +	Production of alkalinity 4,5 g HCO ₃ ⁻ / g NO ₃ ⁻
Production of biomass	$0.16~\mathrm{g~SS_v}$ / $\mathrm{g~NH_4}^+$	
Consumption of free oxygen	4,2 g O ₂ / g NH ₄ ⁺	
Oxygen retrieval		2,85 g O ₂ / g NO ₃

NITROGEN REMOVAL (VI)


Predenitrification



Postdenitrification



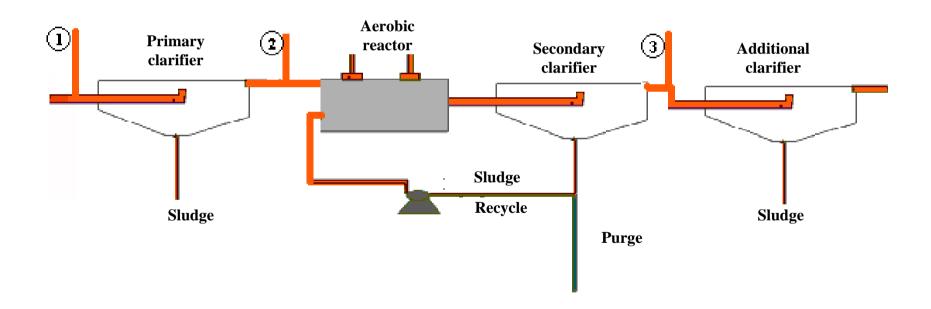
NITROGEN REMOVAL (VII)

Step-feed processes

NITROGEN REMOVAL (VIII)

Processes in oxidation channels

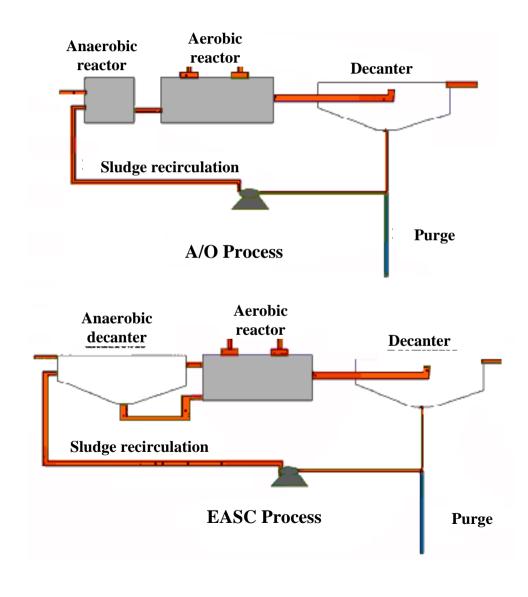
Oxidation ditch channel



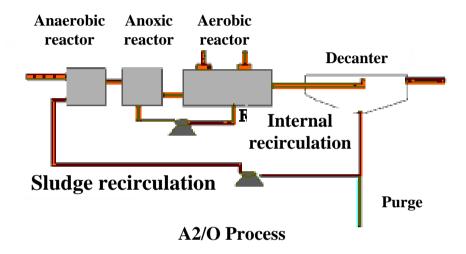
Orbal

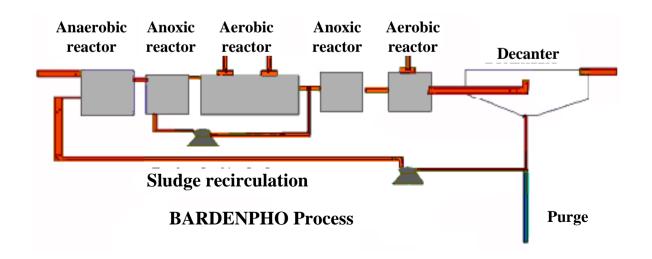
PHOSPHOROUS REMOVAL (I)

- •PHYSICAL METHODS: ultrafiltration, reverse osmosis
- •CHEMICAL METHODS: precipitation.


Alternatives to addiction of reactants

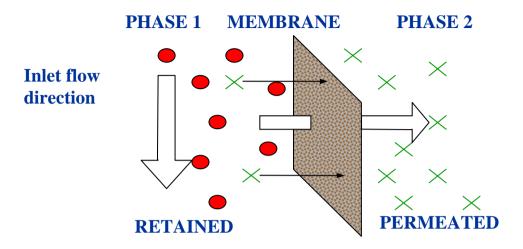
- **®** Precipitation in the primary clarifier
- **O Simultaneous precipitation**
- **O** Separate precipitation


PHOSPHOROUS REMOVAL (II)


•BIOLOGICAL METHODS.

NITROGEN AND PHOSPHOROUS REMOVAL

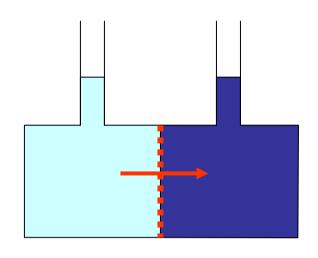
•BIOLOGICAL METHODS.

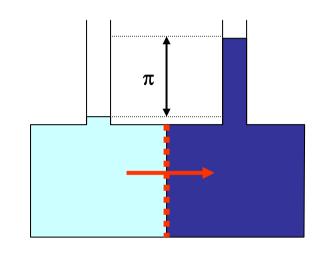


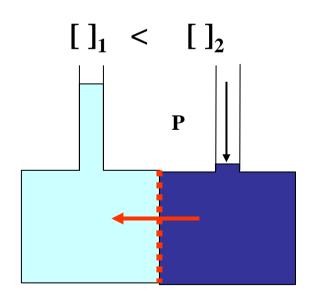
NITROGEN AND PHOSPHOROUS REMOVAL BIOLOGICAL METHODS.

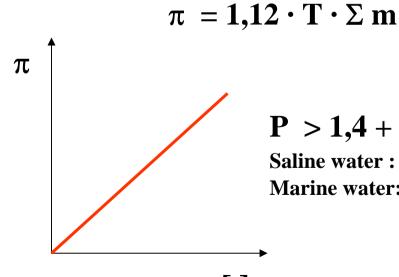
MAIN BIOLOGICAL METHODS TO REMOVE PHOSPHORUS AND NITROGEN

Method	Ren	ioves	Applied to	Sequence	Detention	Observations
	N (%)	P(%)	line		time (h)	
A/O	25	90	Main	anaerobic- aerobic	2-4	Sludge phosphorous-rich, use as fertilizer
PhoStrip	25	95	Auxiliary	aerobic- anaerobic- precipitation	4-6	Less use of chemicals than in conventional precipitation
Sequencing batch reactor (SBR)	variable	variable		anaerobic- aerobic-anoxic	3-24	Very versatile process, recommended for small flows
A ² / O	75	90	Main		5-8	Modification of the A/O process
Bardenpho	80	70	Main	anaerobic- anoxic-aerobic- anoxic-aerobic	15-20	Recirculation from the 1 st aerobic step to the anoxic step. Low production of sludge with phosphorous.
Orbal	90	30	Main	anoxic-aerobic (cyclic)	14-24	Concentric circular channels. High mineralization


MEMBRANES (I)

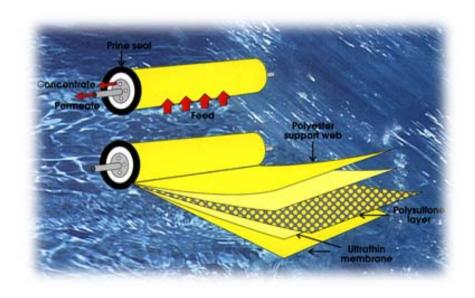



Technique	Driving force	Type of barrier	Ø particle (µm)	Operation pressure (atm)	Removes
Filtration	Pressure	Inert	> 10	1-2	suspended solids
Microfiltration	Pressure	Inert	0,1-10	1-4	suspended solids, bacteria, latex, etc.
Ultrafiltration	Pressure	Inert	0,01-0,1	5-10	Virus, proteins, oil, colloids, etc.
Nanofiltration	Pressure	Inert	10-3-10-2	20-40	Colorants, antibiotics, lactose, etc.
Reverse osmosis	Pressure	Inert or active	10-4-10-3	30-60	Organic and inorganic salts
Pervaporation	Pressure	Inert or active	10 ⁻⁵ -10 ⁻³	0-1	Separation of solvents
Separation of gases	Pressure or concentration	Inert	< 10 ⁻⁴	0-1	Separation of gases
Dialysis	concentration	Inert or active	10-3-10-2		Macromolecules, sales, etc.
Electrodialysis	Electric potential	Active	10-3-10-2		Deacidification, desalting, etc.


MEMBRANES (II)

REVERSE OSMOSIS: recovery of diluted solutions

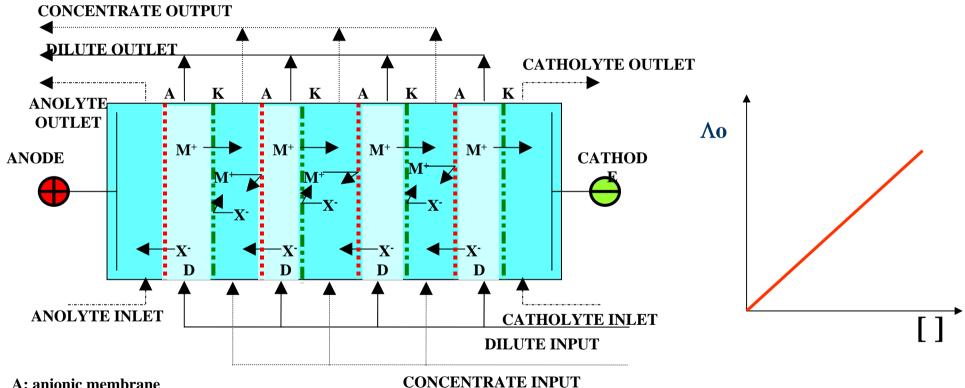
 $P > 1.4 + \pi \, (Mpa)$


Saline water: 4,2-5,6 MPa

Marine water: 7,0-8,4 MPa

MEMBRANES (III)

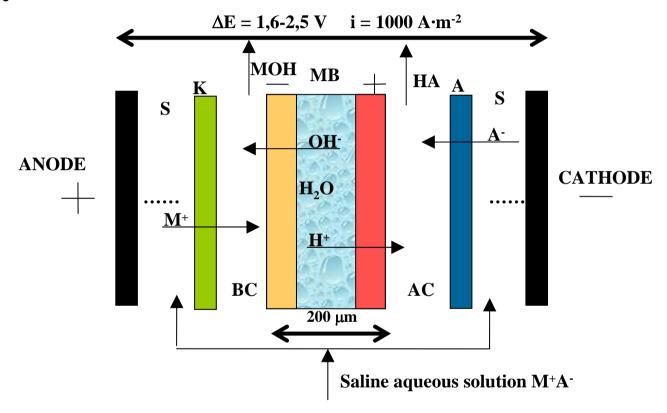
REVERSE OSMOSIS


	Cellulose acetate	Polyamide	TFC	Polysulfone
рН	4-7	4-11	2-12	2-12
Tolerance to chlorine	Tolerance	0,1 ppm	poor	poor
Resistance to bacteria	None	God	Good	Good
Temperature limit (°C)	35	38	50-80	70
Rejection (%)	90-80	95-95	97-99,5	90-98

MEMBRANES (IV) **ELECTRODIALYSIS (ED):**

Recovery of concentrated solutions

A: anionic membrane


K: cationic membrane

D: dilute compartment

C: concentrate compartment

MEMBRANES (V) ELECTRO-ELECTRODIALYSIS (EED):

Synthesis of concentrated solutions

EED cell with 3 compartments with bipolar membranes (BM).

K: monopolar cationic membrane.

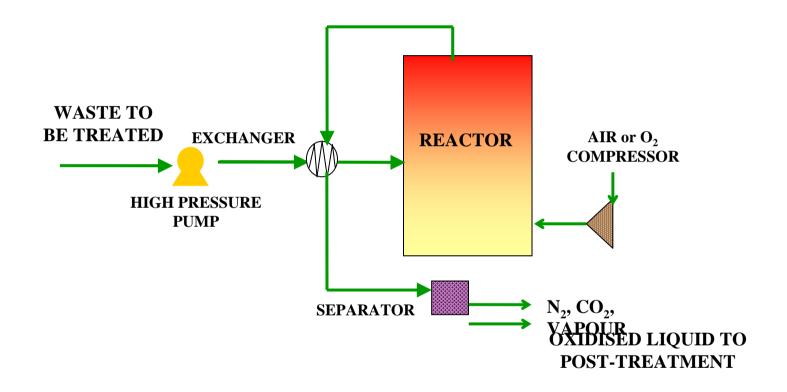
A: monopolar anionic membrane.

S: saline compartment.

AC: acid compartment. BC: basic compartment.

OXIDATION TECHNOLOGIES (I)

• CONVENTIONAL


- **✓** Moderate Temp and P
- \checkmark H₂O₂, Cl₂, O₃, NaClO, KMnO₄, H₂O₂/Fe²⁺, ...
- \checkmark COD > 5000 mg/L
- **✓** Critical variables: pH and Temp
- **✓** Difficult to destroy hydrocarbons and halogenated compounds

ADVANCED

- **✓** Wet oxidation: High Temp and P
- ✓ Oxidation with supercritical water (T>374 °C, p>220 atm)
- ✓ Oxidant + UV
- **✓** Electrochemical
- **✓** Solar detoxification

OXIDATION TECHNOLOGIES (II)

Wet oxidation

OXIDATION TECHNOLOGIES (III)

Wet oxidation

DESTRUCTION EFFICIENCY OF TOXIC CHEMICAL PRODUCTS

PRODUCT	T _{OX.} (°c)	TIME (h)	Efficacy (%)
Acrolein	275	1	99,96
Acrylonitrile	275	1	99,00
2,4- Dimethylphenol	275	1	99,99
2,4-Dinitrotoluene	275	1	99,74
1,2- diphenylhydrazine	275	1	99,88
Nitrophenol	275	1	99,60
Phenol	275	1	99,80
Formic acid	300	1	99.30
Chloroform	275	1	99,90
Carbon tetrachloride	275	1	99,70
1,2-Dichloroethane	275	1	99,70
nNitrosodimethylamine	275	1	99,60
Hexachlorocyclopentadiene	300	1	99,90
Toluene	275	1	99,70
Dibutyl phthalate	275	1	99,50
Pyrene	275	1	99,95
Policyclic benzene (PCB)	320	2	63,00

DISINFECTION (I)

OBJECTIVE

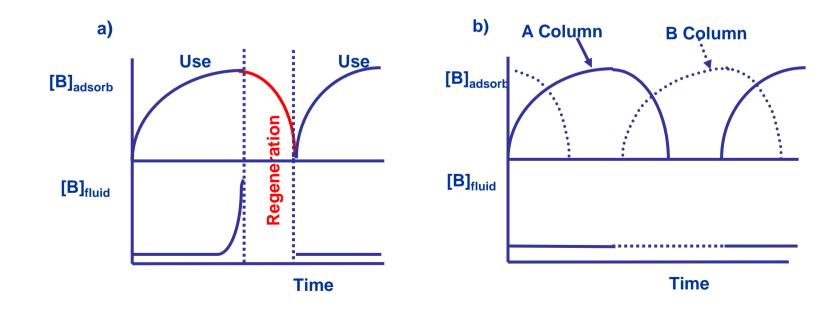
- **✓** Conditioning of consumption water
- **✓** Kill pathogens

CLASSIFICATION

- **✓**Preoxidation: plant entrance
- **✓** Primary disinfection : after filtration
- **✓** Secondary disinfection : residual disinfectant

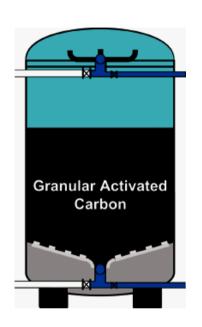
DISINFECTION (II)

DISINFECTANT	ADVANTAGES	DISADVANTAGES	APPLICATION
Chlorine	Effective Cheap Easy to apply Removes NH ₃ Primary and secondary disinfectant	Dangerous subproducts pH acid Does not remove Fe(II) and Mn(II)	Towards the end: THMS ↓ Secondary disinfectant
Ozone	Very effective Without THMS Removes organic material Oxidant/disinfectant	High cost Primary disinfectant Expensive Difficult to apply	Before secondary disinfection
UV Radiation	Effective virus and bacteria Without secondary products Easy to apply	Cannot be used with coloured water, with SS, or high BOD Primary disinfectant	Towards the end of the treatment
Chlorine dioxide	Does not produce THMS	Expensive, dangerous subproducts, useless at recommended concentrations	Before filtration Treat with active carbon.
Monochloramines	Long residual times Does not produce THMS	Dangerous subproducts Does not remove NH ₃ Not effective against virus Only as a secondary disinfectant	At the end of the process
Potassium permanganate	Does not produce subproducts Removes Fe(II) and Mn (II) Easy to apply Cheap	Poor disinfectant Does not remove ammonia	Before the filtration


Partial and accumulated yields (PR, % and AR, %) usually found in the removal of contaminant load in a effluent treatment plant.

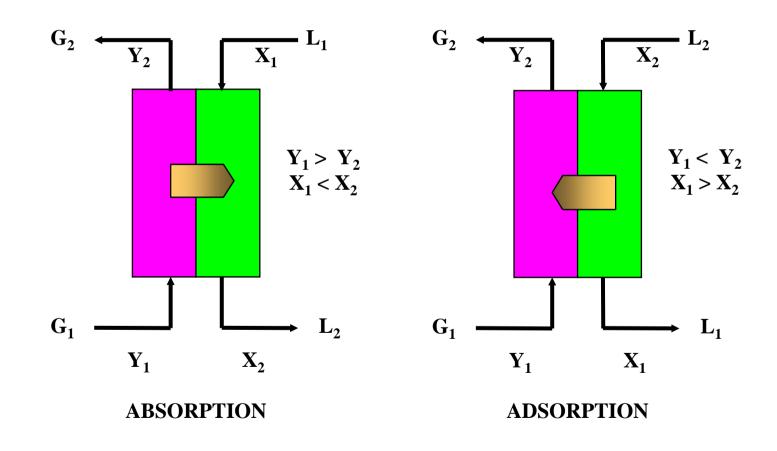
Parameter	Primary treatment		Secondary treatment		Tertiary treatment	
	PR	AR	PR	AR	PR	AR
BOD ₅	25	25	90	92,5	33	95
SS	72	72	70	91,5	33	95
Phosphorous	12,5	12,5	16,5	25	91,5	94

ADSORPTION Time

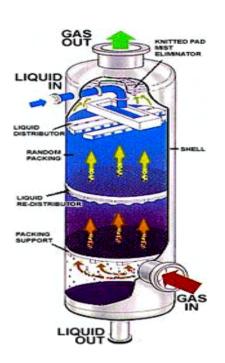

adsorption capacity: amount of substance that can be adsorbed per weight or volume unit of adsorbent,

selectivity, tendency that a substance has to be adsorbed when in presence of other substances that can also be adsorbed.

ADSORPTION WITH ACTIVATED CARBON


- **Adsorption system**
- **Circulation** in fixed bed
- \blacksquare Transference of liquid contaminant \rightarrow solid
- **Thermal regeneration of the bed.**

REMOVES


- Phenols
- Dyes
- **Toxics in general**

ABSORPTION / ADSORPTION:

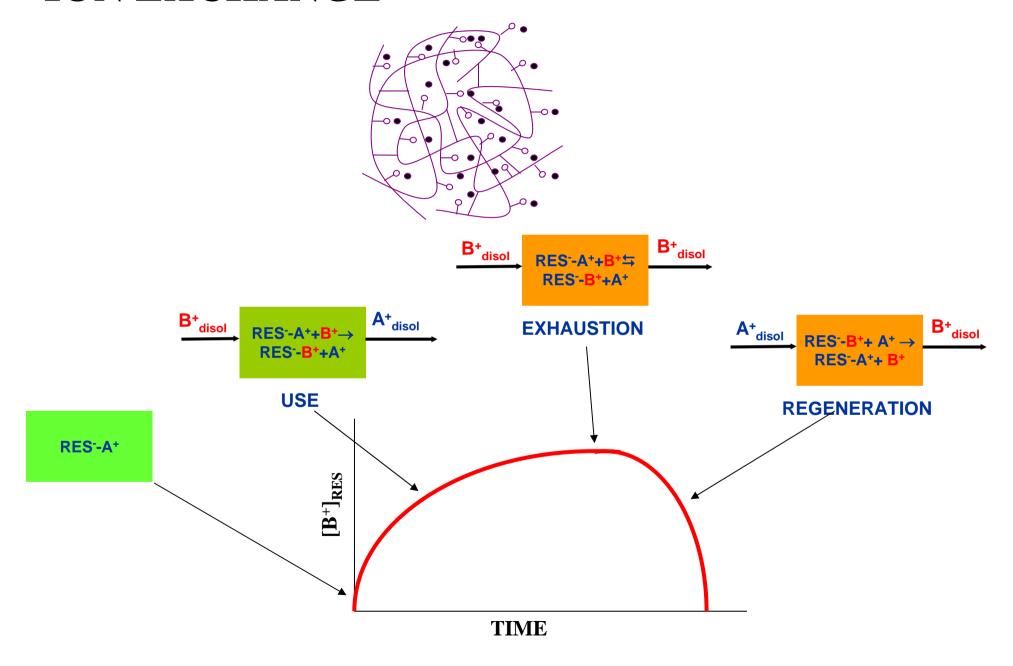
VAPOUR OR AIR STRIPPING

- **Desorption system**
- **Tountercurrent flow**
- **\blacksquare**Transference of contaminant liquid → gas

REMOVES

- **Ammonia**
- Solvents (VOCs)
- **Volatile substances**

GAS WASHING: STRIPPING


- **Absorption system**
- Bubbling through the liquid
- With or without reaction (neutralization, oxidation-reduction)
- \blacksquare Transfer of contaminant gas \rightarrow liquid

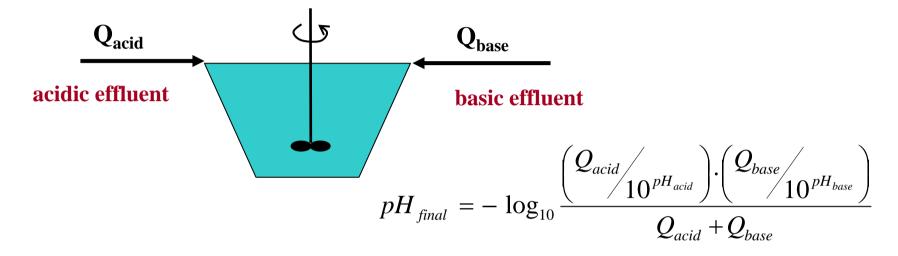
REMOVES

- **Unpleasant odors**
- Solvents (VOCs)

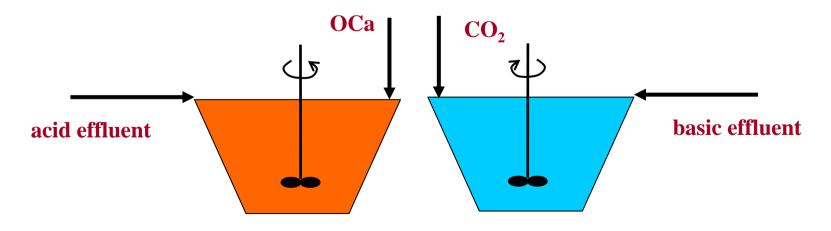
ION EXCHANGE

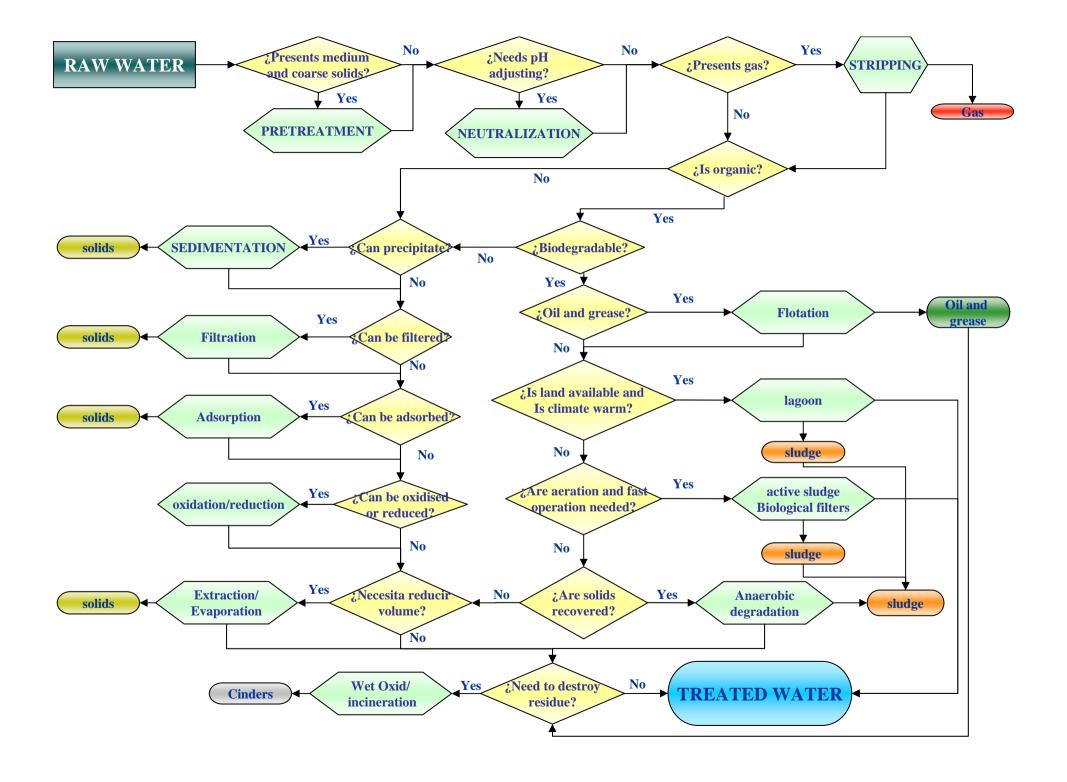
Ionic exchange Columns

- **Exchange system: anionic,**
- cationic or mixed
- Organic, inorganic and hybrid resins.
- **Circulation** in fixed bed
- ■Transference de contaminant liquid → solid


REMOVES

- **Metallic ions**
- Water softening
- **Nitrates**
- **Ionic organic compounds.**




ADJUSTING pH

HOMOGENIZATION

DOSAGE

