MATERIALS SCIENCE AND ENGINEERING # TOPIC 6. CERAMIC MATERIALS - Introduction - Structure of Ceramic Materials - Glasses - Mechanical Properties of Ceramic Materials - Processing of Ceramic Materials - Examples of applications #### **INTRODUCTION** Inorganic Materials made from Metals and Non Metals united by ionic and/or covalent bonds Can be: crystalline, amorphous or mixture of both #### **GENERAL PROPERTIES** #### **GENERAL PROPERTIES** - High Young's Modulus and high melting points - ⇒ Strong bonds (covalent and /or ionic) - <u>Limited electrical and thermal conductivity</u> - ⇒ Absence of electronic cloud (directional bond) - Low thermal shock resistance - ⇒ Coefficients of thermal expansion and thermal conductivity are low - Refractory - ⇒ Stability at high temperature (NO CREEP) - Resistance to oxidation/corrosion - ⇒ Chemical stability #### **CLASSIFICATION** #### **Glasses** Based on SiO_2 + additives for $\downarrow T_f$ # **Traditional Ceramics (clay products)** - Porous ceramics (bricks, pottery, china) - Compact ceramics (porcelain, earthware) - Refractory ceramics Clay: Al₂O₃· SiO₂·H₂O Silica: SiO₂ Feldspar: K₂O· Al₂O₃ 6SiO₂ # **Egineering Ceramics or Advanced Ceramics:** - ⇒ Refractory ceramics (SiC, Al₂O₃, ZrO₂, BeO, MgO). - ⇒ Piezoelectrics and Ferroelectrics: BaTiO₃, SrTiO₃ - Electro-optics: LiNbO₃ - → Abrasive ceramics: nitrides and carbides Si₃N₄ , SiC - Molecular membranes - ⇒ Superconductive ceramics (YBa₂Cu₃O₇) - Biomaterials : Hydroxyapatite #### **STRUCTURE** #### **Ceramic Bonds** Percentage of ionic and covalent character of the bond for some ceramic materials determines the CRYSTALLINE STRUCTURE | Ceramic
Material | Atoms
in bond | X _A - X _B | % Ionic
Character | % Covalent
Character | |--------------------------------|------------------|---------------------------------|----------------------|-------------------------| | MgO | Mg—O | 2,3 | 73 | 27 | | Al ₂ O ₃ | Al—O | 2,0 | 63 | 37 | | SiO ₂ | Si-O | 1,7 | 51 | 49 | | Si ₃ N ₄ | Si-N | 1,2 | 30 | 70 | | SiC | Si-C | 0,7 | 11 | 89 | #### **STRUCTURE** # **T2 STRUCTURES:** - Ions packing - Electroneutrality of ionic ceramics - Crystalline type structures #### **ELECTRONEUTRALITY IN IONIC CERAMICS** **Ionic structure**: packing of anions with cations in interstitials Sizes C⁺ A⁻ $$\Rightarrow$$ (r_{cation} < r_{anion}) The ions tend to pack densely in order to reduce E_{total} # **Electroneutrality** **Coordination Index** (By increasing C.I ⇒ increase stability) **Sharing of polyhedral** (sharing vertices instead of edges or faces (increases the distance between cations) #### **PACKING OF IONS** **STABLE** **UNSTABLE** ⇒vibrates in its cage of A The relation between radius when A- and C+ are in contact ⇒ Relation of radius is critical (minimum) | | Arrangement of A- around C+ central and C.I. | Cation/anion
Radius ratio $m{r}_{ extsf{C}}/m{r}_{ extsf{A}}$ | |---|--|--| | | C.I. 8
Corners of a cube | 0.732-1.0 | | t | C.I 6 Corners of an octahedron | 0.414-0.732 | | | C.I 4 Corners of a tetrahedron | 0.225-0.414 | | | C.I. 3
Corners of a triangle | 0.155-0.225 | | | | | #### SIMPLE CUBIC STRUCTURE: CsCl •Cl-: cubic •Cs+: centre of the cube •C.I.: 8 $$\frac{r_{Cs^+}}{r_{Cl^-}} = 0.94 > 0.732 \Rightarrow C.I. = 8 \Rightarrow \text{Cubic structure}$$ Ceramics that have this type of structure: CsBr, TICI, TIBr. #### **FCC STRUCTURE: NaCl** •Cl-: FCC packing •Na: all octahedral interstitials. •4 Na+ and 4 Cl- per unit cell C.I.=6 Ceramics that have this type of structure: MgO, CaO, FeO, NiO #### FCC STRUCTURE: Zn Blende-ZnS - ■S²⁻: FCC packing - ■Zn²⁺: ½ tetrahedral interstitials - •4 Zn²⁺ and 4 S²⁻ per unit cell $$\frac{r_{Zn^{2+}}}{r_{S^{2-}}} = 0.345 \Rightarrow C.I. = 4$$ According to Pauling bond Zn-S ~87% covalent Ceramics that have this type of structure: Typical semiconductors : CdS, HgTe, NiAs, SiC, GaAs # **HCP STRUCTURE: CORUNDUM (ALUMINA)** \bullet O²⁻: HCP packing → 6 ions •Al³+: 2/3 octahedral interstitials → 4 ions •I.C.(Al³⁺): 6; I.C.(O²⁻): 6 Ceramics that have this type of structure: Cr_2O_3 , Fe_2O_3 , Al_2O_3 ... # CRYSTALLINE STRUCTURE OF PEROVSKITE ABO₃ # A and B cations with different size $(r_A>>>r_B)$ - O²⁻ and Ca²⁺: **fcc** packing - Ti⁴⁺: **1/4** octahedral sites - C.I.(Ti²⁺): 6 ; C.I.(Ca²⁺): 12 Ceramics that adopt this type structure: BaTiO₃, CaTiO₃, SrTiO₃, PbZrO₃, KNbO₃, LiNbO₃,... **Ferroelectric Materials,** Magnetic Superconductor properties (YBa₂Cu₃O₇) # **Summary of Some Common Ceramic Crystal Structures** | Structure name | Structu
re type | Anion packing | Coordinati | on numbers | Examples | | |-----------------------------|--------------------|---------------|----------------|------------|---|--| | | 3,10 | 9 | cation | anion | | | | Rock salt (sodium chloride) | AX | FCC | 6 | 6 | NCI, MgO, FeO | | | Cesium chloride | AX | Simple cubic | 8 | 8 | CsCl | | | Zinc Blende (sphalerite) | AX | FCC | 4 | 4 | ZnS, SiC | | | Fluorite | AX_2 | Simple cubic | 8 | 4 | CaF ₂ , UO ₂ ThO ₂ | | | Perovskite | ABX ₃ | FCC | 12 (A)
6(B) | 6 | BaTiO ₃ , SrZrO ₃ ,
SrSnO ₃ | | | Spinel | AB_2X_4 | FCC | 4(A)
6(B) | 4 | ${\rm MgAl_2O_4}, \ {\rm FeAl_2O_4}$ | | | | | | | | | | #### **COVALENT CERAMICS** # They are structural ceramics # **DIAMOND** → Structure type blend $C \rightarrow sp^3 \rightarrow c.i. \ 4 \rightarrow Tetrahedral \ CC_4$. Bond 100% covalent. • \(\) wear resistance \(\) \(\) hardness •↑ tensile strength Insulator # **SiC** → Diamond type structure (spherullite) •Applications: Good abrasive properties. 89% covalent bond •High hardness, chemically inert. #### **COVALENT CERAMICS** #### They are structural ceramics Si₃N₄ → Cutting Elements, blades, rotors $$Si \rightarrow sp^3 \rightarrow c.i. \ 4 \rightarrow SiN_4$$ Tetrahedra $$N \rightarrow sp^2 \rightarrow c.i. 3 \rightarrow N$$ coordinated to 3 Si Open structure. 70% covalent bond # Sialons $Si_{6-z}Al_zO_zN_{8-z}(1971)$ It is a solid solution between nitrides and oxides. Derived from $\mathrm{Si_3N_4}$, by substituting z atoms of Si for Al atoms. In order to compensate the valence difference, the same number of N atoms are substituted by O. Cutting tools, antifriction rollers, motors components. Si and O are the most abundant elements in the earth's crust They are the base of traditional ceramics Useful engineering materials because Low priceGreat availability Special properties | | Composition (wt%) | | | | | | |----------------------|-------------------|--------------------------------|------------------|---------|-----|-----------| | Ceramic | SiO ₂ | Al ₂ O ₃ | K ₂ O | Mg
O | CaO | Othe
r | | Silica refractory | 96 | | | | | 4 | | Fireclay refractory | 50-70 | 45-25 | | | | 5 | | Mullite refractory | 28 | 72 | | | | - | | Electrical porcelain | 61 | 32 | 6 | | | 1 | | Steatite porcelain | 64 | 5 | | 30 | | 1 | | Portland cement | 25 | 9 | | | 64 | 2 | Composition of some silicate ceramics Fundamentally in: - Construction (bricks, cement, glass) - Electrical and thermal insulating materials Basic structural unit SiO₄⁴- - Si in tetrahedral coordination - ➡ Bond type (Pauling): 50% ionic -50% covalent - $r_{\rm C}/r_{\rm A}$ = 0.29 \rightarrow stable structure with tetrahedral coordination . - \Rightarrow \uparrow packing factor \Rightarrow tetrahedra united in the corners. - ➢ Multitude of possible structures: - a) Structures of isolated silicates - b) Ring and Chain structures - c) Laminar structures - d) 3D structures Classification of silicates as a function of the tetrahedra ordering $[SiO_4]^{4-}$. # Type #### Orthoslilicates or olivines (island tetrahedra SiO₄⁴⁻) Example: Forsterite (Mg₂SiO₄) #### pyroslilicate (island tetrahedra Si₂O₇⁶⁻) Example: (Ca₂MgSi₂O₇) •metasilicates (SiO₃)_n²ⁿ- (ring and chain structures) Ring structures Examples: Wollastonite (CaSiO₃), beryl Be₃Al₂(SiO₃)₆ chain structures Example: Enstatite (MgSiO₃) #### sheet or layered silicates $(Si_2O_5)^{2-}$ Example: Kaolinite clay Al₂ (Si₂O₅)(OH)₄ are talc $[Mg_3 (Si_2O_5)_2(OH)_2]$ micas [e.g., muscovite, KAI₃Si₃O₁₀(OH)₂ •3D (SiO₂) Quartz, tridymite, cristobalite (SiO₂) Mg₂SiO₄ (olivine) pyroslilicates **Metasilicates (Ring and Chain Structure)** 2 of the 4 O⁻ atoms in the tetrahedral SiO₄⁴⁻ are united to another tetrahedral in order to form **chains of silicate** Formula: (SiO₃)_n²ⁿ⁻ **Chain Structure** ### **Sheet or layered structure** 3 of the 4 O^- atoms of in the tetrahedral SiO_4^{4-} are united to another tetrahedral in order to form layers of silicates Formula: Si₂O₅²⁻ Kaolinite Al₂(OH)₄²⁺ Talc: Mg₃(OH)₄²⁺ There is one O without bond in each tetrahedral \Rightarrow charge (-) \Rightarrow Joining laminas (+) #### **Three-Dimensional Silicates** #### **Silica** - They share all the corners in the tetrahedra - Unit formula : SiO₂ - Presents Allotropy - Important component in many traditional ceramics and many types of glasses #### **Feldspars** - Similar structure to Silica (Al³⁺ replaces Si⁴⁺) \Rightarrow lattice with (-) charge \Rightarrow compensates the charge with voluminous cations (Na⁺, K⁺, Ca²⁺, Ba²⁺) in interstitial positions . - Principal component of traditional ceramics #### **NON CRYSTALLINE CERAMICS: GLASSES** # Behaviour of glass during solidification # **Crystalline Solid** As $\downarrow T$ crystallizes in T_m #### **GLASS** As ↓T: ↑viscosity Plastic stage ⇔ Rigid stage #### **CONSTITUENTS OF GLASSES** #### 3 types of oxides Glass Formers SiO₂ and B₂O₃ - SiO₂: Fundamental subunit : SiO₄⁴⁻ tetrahedra - **B₂O₃: Fundamental** Sub-unit : plane triangles BO₃³⁻ triangles BO₃³⁻ become BO₄⁴⁻ tetrahedra when we add oxides of alkaline M and alkaline earths. The cations give electroneutrality. The glasses that are made only of B₂O₃ have little durability . - Normally we add B₂O₃ to SiO₂: borosilicate glasses Glass modifiers (Na_2O , K_2O) and (CaO and MgO) - Are the oxides that brake the silicate lattice - Alkaline (Na₂O, K₂O) alkaline earths (CaO y MgO) - They are accommodated in interstitials (do not form part of the silicate lattice) - viscosity facilitates moulding and workability Intermediates: Al₂O₃ **DO NOT** form glasses only by themselves. # They are incorporated in the silicate lattice - •Al₂O₃ ⇒tetrahedra AlO₄⁴⁻ replacing SiO₄⁴⁻ - •Charge defects (Al³⁺: Si⁴⁺) compensating with alkaline cations and alkaline earths. #### **Improve special properties:** - PbO - Modifies optical properties - ↓ T_f (glass soldering) - Radiation protection of ↑ E #### **CONSTITUENTS OF GLASSES** # **Substances constituents of glasses** | COLOURS THAT METALLIC IONS GIVE TO GLASSES | | | | | | |--|---------------------|---------------|--|--|--| | | M ⁺ as a | MODIFIER | | | | | ION | C. I. | COLOUR | | | | | Cr ³⁺ | 6 | Blue | | | | | Cr ⁶⁺ | 6 | Green | | | | | Cu ²⁺ | 8 | Blue -green | | | | | Cu+ | 6-8 | Transparent | | | | | Co ²⁺ | 6-8 | Rose | | | | | Ni ²⁺ | 8 | Yellow -green | | | | | Mn ²⁺ | 6 | Light orange | | | | | Mn ³⁺ | 6-8 | | | | | | Fe ²⁺ | 6 | Blue-green | | | | | Fe ³⁺ | 6-10 | Light yellow | | | | | U ⁶⁺ | 6 | Light yellow | | | | | V3+ | 6 | Green | | | | | V ⁴⁺ | | Blue | | | | #### **PROPERTIES OF GLASSES** # **Mechanical Properties** Brittle Materials (↑↑ elastic modulus) = f (composition, macroscopic (surface) imperfections, volume of material and T) Low modulus of Weibull Mechanical strength ↓ (presence of water/air + humidity) # **Electrical Properties** Generally insulators ($\sigma \approx 10^{-10} - 10^{-20} \Omega \text{cm}^{-1}$) $\sigma \uparrow \uparrow$ with Temperature $\sigma \uparrow \uparrow$ with modifier (=f(size and amount of modifier)) # **Thermal Shock** $$\uparrow \uparrow \alpha = \downarrow R_{\text{thermal shock}}$$ | Material | Thermal Expansion coeff. (°C ⁻¹) | Thermal Shock failure (°C) | |---|--|----------------------------| | Soda-lime glass | 10-5 | 80 | | Sodium borosilicate
(Pyrex ™ type) | 10 ⁻⁴ | 270 | | Fused silica | 10 ⁻⁶ | 1600 | | Lithia-alumina-silicate
glass ceramic
(Pyroceram ™ type) | 10 ⁻⁶ | 670 | | Transparent lithia-
alumina-silicate glass
ceramic (Visions TM
type) | 10 ⁻⁶ | 1330 | Thermal shock resistance of common glasses and glass ceramics