

MATERIALS SCIENCE AND ENGINEERING

TOPIC 6. CERAMIC MATERIALS

- Introduction
- Structure of Ceramic Materials
- Glasses
- Mechanical Properties of Ceramic Materials
- Processing of Ceramic Materials
- Examples of applications

INTRODUCTION

Inorganic Materials made from Metals and Non Metals united by ionic and/or covalent bonds

Can be: crystalline, amorphous or mixture of both

GENERAL PROPERTIES

GENERAL PROPERTIES

- High Young's Modulus and high melting points
- ⇒ Strong bonds (covalent and /or ionic)
- <u>Limited electrical and thermal conductivity</u>
- ⇒ Absence of electronic cloud (directional bond)
- Low thermal shock resistance
- ⇒ Coefficients of thermal expansion and thermal conductivity are low
- Refractory
- ⇒ Stability at high temperature (NO CREEP)
- Resistance to oxidation/corrosion
- ⇒ Chemical stability

CLASSIFICATION

Glasses

Based on SiO_2 + additives for $\downarrow T_f$

Traditional Ceramics (clay products)

- Porous ceramics (bricks, pottery, china)
- Compact ceramics (porcelain, earthware)
- Refractory ceramics

Clay: Al₂O₃· SiO₂·H₂O

Silica: SiO₂

Feldspar: K₂O· Al₂O₃ 6SiO₂

Egineering Ceramics or Advanced Ceramics:

- ⇒ Refractory ceramics (SiC, Al₂O₃, ZrO₂, BeO, MgO).
- ⇒ Piezoelectrics and Ferroelectrics: BaTiO₃, SrTiO₃
- Electro-optics: LiNbO₃
- → Abrasive ceramics: nitrides and carbides Si₃N₄ , SiC
- Molecular membranes
- ⇒ Superconductive ceramics (YBa₂Cu₃O₇)
- Biomaterials : Hydroxyapatite

STRUCTURE

Ceramic Bonds

Percentage of ionic and covalent character of the bond for some ceramic materials determines the CRYSTALLINE STRUCTURE

Ceramic Material	Atoms in bond	X _A - X _B	% Ionic Character	% Covalent Character
MgO	Mg—O	2,3	73	27
Al ₂ O ₃	Al—O	2,0	63	37
SiO ₂	Si-O	1,7	51	49
Si ₃ N ₄	Si-N	1,2	30	70
SiC	Si-C	0,7	11	89

STRUCTURE

T2 STRUCTURES:

- Ions packing
- Electroneutrality of ionic ceramics
- Crystalline type structures

ELECTRONEUTRALITY IN IONIC CERAMICS

Ionic structure: packing of anions with cations in interstitials

Sizes C⁺ A⁻
$$\Rightarrow$$
 (r_{cation} < r_{anion})

The ions tend to pack densely in order to reduce E_{total}

Electroneutrality

Coordination Index (By increasing C.I ⇒ increase stability)

Sharing of polyhedral (sharing vertices instead of edges or faces (increases the distance between cations)

PACKING OF IONS

STABLE

UNSTABLE

⇒vibrates in its cage of A

The relation between radius when A- and C+ are in contact ⇒ Relation of radius is critical (minimum)

	Arrangement of A- around C+ central and C.I.	Cation/anion Radius ratio $m{r}_{ extsf{C}}/m{r}_{ extsf{A}}$
	C.I. 8 Corners of a cube	0.732-1.0
t	C.I 6 Corners of an octahedron	0.414-0.732
	C.I 4 Corners of a tetrahedron	0.225-0.414
	C.I. 3 Corners of a triangle	0.155-0.225

SIMPLE CUBIC STRUCTURE: CsCl

•Cl-: cubic

•Cs+: centre of the cube

•C.I.: 8

$$\frac{r_{Cs^+}}{r_{Cl^-}} = 0.94 > 0.732 \Rightarrow C.I. = 8 \Rightarrow \text{Cubic structure}$$

Ceramics that have this type of structure: CsBr, TICI, TIBr.

FCC STRUCTURE: NaCl

•Cl-: FCC packing

•Na: all octahedral interstitials.

•4 Na+ and 4 Cl- per unit cell C.I.=6

Ceramics that have this type of structure: MgO, CaO, FeO, NiO

FCC STRUCTURE: Zn Blende-ZnS

- ■S²⁻: FCC packing
- ■Zn²⁺: ½ tetrahedral interstitials
- •4 Zn²⁺ and 4 S²⁻ per unit cell

$$\frac{r_{Zn^{2+}}}{r_{S^{2-}}} = 0.345 \Rightarrow C.I. = 4$$

According to Pauling bond Zn-S ~87% covalent

Ceramics that have this type of structure: Typical semiconductors : CdS, HgTe, NiAs, SiC, GaAs

HCP STRUCTURE: CORUNDUM (ALUMINA)

 \bullet O²⁻: HCP packing → 6 ions

•Al³+: 2/3 octahedral interstitials → 4 ions

•I.C.(Al³⁺): 6; I.C.(O²⁻): 6

Ceramics that have this type of structure: Cr_2O_3 , Fe_2O_3 , Al_2O_3 ...

CRYSTALLINE STRUCTURE OF PEROVSKITE ABO₃

A and B cations with different size $(r_A>>>r_B)$

- O²⁻ and Ca²⁺: **fcc** packing
- Ti⁴⁺: **1/4** octahedral sites
- C.I.(Ti²⁺): 6 ; C.I.(Ca²⁺): 12

Ceramics that adopt this type structure:

BaTiO₃, CaTiO₃, SrTiO₃, PbZrO₃, KNbO₃, LiNbO₃,...

Ferroelectric Materials,

Magnetic Superconductor properties (YBa₂Cu₃O₇)

Summary of Some Common Ceramic Crystal Structures

Structure name	Structu re type	Anion packing	Coordinati	on numbers	Examples	
	3,10	9	cation	anion		
Rock salt (sodium chloride)	AX	FCC	6	6	NCI, MgO, FeO	
Cesium chloride	AX	Simple cubic	8	8	CsCl	
Zinc Blende (sphalerite)	AX	FCC	4	4	ZnS, SiC	
Fluorite	AX_2	Simple cubic	8	4	CaF ₂ , UO ₂ ThO ₂	
Perovskite	ABX ₃	FCC	12 (A) 6(B)	6	BaTiO ₃ , SrZrO ₃ , SrSnO ₃	
Spinel	AB_2X_4	FCC	4(A) 6(B)	4	${\rm MgAl_2O_4}, \ {\rm FeAl_2O_4}$	

COVALENT CERAMICS

They are structural ceramics

DIAMOND → Structure type blend

 $C \rightarrow sp^3 \rightarrow c.i. \ 4 \rightarrow Tetrahedral \ CC_4$. Bond 100% covalent.

• \(\) wear resistance \(\) \(\) hardness

•↑ tensile strength Insulator

SiC → Diamond type structure (spherullite)

•Applications: Good abrasive properties. 89% covalent bond

•High hardness, chemically inert.

COVALENT CERAMICS

They are structural ceramics

Si₃N₄ → Cutting Elements, blades, rotors

$$Si \rightarrow sp^3 \rightarrow c.i. \ 4 \rightarrow SiN_4$$
 Tetrahedra

$$N \rightarrow sp^2 \rightarrow c.i. 3 \rightarrow N$$
 coordinated to 3 Si

Open structure.

70% covalent bond

Sialons $Si_{6-z}Al_zO_zN_{8-z}(1971)$

It is a solid solution between nitrides and oxides. Derived from $\mathrm{Si_3N_4}$, by substituting z atoms of Si for Al atoms. In order to compensate the valence difference, the same number of N atoms are substituted by O. Cutting tools, antifriction rollers, motors components.

Si and O are the most abundant elements in the earth's crust They are the base of traditional ceramics

Useful engineering materials because

Low priceGreat availability

Special properties

	Composition (wt%)					
Ceramic	SiO ₂	Al ₂ O ₃	K ₂ O	Mg O	CaO	Othe r
Silica refractory	96					4
Fireclay refractory	50-70	45-25				5
Mullite refractory	28	72				-
Electrical porcelain	61	32	6			1
Steatite porcelain	64	5		30		1
Portland cement	25	9			64	2

Composition of some silicate ceramics

Fundamentally in:

- Construction (bricks, cement, glass)
- Electrical and thermal insulating materials

Basic structural unit

SiO₄⁴-

- Si in tetrahedral coordination
- ➡ Bond type (Pauling): 50% ionic -50% covalent
- $r_{\rm C}/r_{\rm A}$ = 0.29 \rightarrow stable structure with tetrahedral coordination .
- \Rightarrow \uparrow packing factor \Rightarrow tetrahedra united in the corners.
- ➢ Multitude of possible structures:
 - a) Structures of isolated silicates
 - b) Ring and Chain structures
 - c) Laminar structures
 - d) 3D structures

Classification of silicates as a function of the tetrahedra ordering $[SiO_4]^{4-}$.

Type

Orthoslilicates or olivines

(island tetrahedra SiO₄⁴⁻)

Example: Forsterite (Mg₂SiO₄)

pyroslilicate

(island tetrahedra Si₂O₇⁶⁻)

Example: (Ca₂MgSi₂O₇)

•metasilicates (SiO₃)_n²ⁿ- (ring and chain structures)

Ring structures

Examples: Wollastonite (CaSiO₃), beryl Be₃Al₂(SiO₃)₆

chain structures

Example: Enstatite (MgSiO₃)

sheet or layered silicates

 $(Si_2O_5)^{2-}$

Example: Kaolinite clay Al₂ (Si₂O₅)(OH)₄

are talc $[Mg_3 (Si_2O_5)_2(OH)_2]$

micas [e.g., muscovite, KAI₃Si₃O₁₀(OH)₂

•3D (SiO₂)

Quartz, tridymite, cristobalite (SiO₂)

Mg₂SiO₄ (olivine)

pyroslilicates

Metasilicates (Ring and Chain Structure)

2 of the 4 O⁻ atoms in the tetrahedral SiO₄⁴⁻ are united to another tetrahedral in order to form **chains of silicate**

Formula: (SiO₃)_n²ⁿ⁻

Chain Structure

Sheet or layered structure

3 of the 4 O^- atoms of in the tetrahedral SiO_4^{4-} are united to another tetrahedral in order to form layers of silicates

Formula: Si₂O₅²⁻

Kaolinite Al₂(OH)₄²⁺

Talc: Mg₃(OH)₄²⁺

There is one O without bond in each tetrahedral

 \Rightarrow charge (-) \Rightarrow Joining laminas (+)

Three-Dimensional Silicates

Silica

- They share all the corners in the tetrahedra
- Unit formula : SiO₂
- Presents Allotropy
- Important component in many traditional ceramics and many types of glasses

Feldspars

- Similar structure to Silica (Al³⁺ replaces Si⁴⁺) \Rightarrow lattice with (-) charge \Rightarrow compensates the charge with voluminous cations (Na⁺, K⁺, Ca²⁺, Ba²⁺) in interstitial positions .
- Principal component of traditional ceramics

NON CRYSTALLINE CERAMICS: GLASSES

Behaviour of glass during solidification

Crystalline Solid

As $\downarrow T$ crystallizes in T_m

GLASS

As ↓T: ↑viscosity Plastic stage ⇔ Rigid stage

CONSTITUENTS OF GLASSES

3 types of oxides

Glass Formers SiO₂ and B₂O₃

- SiO₂: Fundamental subunit : SiO₄⁴⁻ tetrahedra
- **B₂O₃: Fundamental** Sub-unit : plane triangles BO₃³⁻

 triangles BO₃³⁻ become BO₄⁴⁻ tetrahedra when we add oxides of alkaline M and alkaline earths. The cations give electroneutrality. The glasses that are made only of B₂O₃ have little durability .
- Normally we add B₂O₃ to SiO₂: borosilicate glasses

Glass modifiers

(Na_2O , K_2O) and (CaO and MgO)

- Are the oxides that brake the silicate lattice
- Alkaline (Na₂O, K₂O) alkaline earths (CaO y MgO)
- They are accommodated in interstitials (do not form part of the silicate lattice)
- viscosity

 facilitates moulding and workability

Intermediates: Al₂O₃

DO NOT form glasses only by themselves.

They are incorporated in the silicate lattice

- •Al₂O₃ ⇒tetrahedra AlO₄⁴⁻ replacing SiO₄⁴⁻
- •Charge defects (Al³⁺: Si⁴⁺) compensating with alkaline cations and alkaline earths.

Improve special properties:

- PbO
- Modifies optical properties
- ↓ T_f (glass soldering)
- Radiation protection of ↑ E

CONSTITUENTS OF GLASSES

Substances constituents of glasses

COLOURS THAT METALLIC IONS GIVE TO GLASSES					
	M ⁺ as a	MODIFIER			
ION	C. I.	COLOUR			
Cr ³⁺	6	Blue			
Cr ⁶⁺	6	Green			
Cu ²⁺	8	Blue -green			
Cu+	6-8	Transparent			
Co ²⁺	6-8	Rose			
Ni ²⁺	8	Yellow -green			
Mn ²⁺	6	Light orange			
Mn ³⁺	6-8				
Fe ²⁺	6	Blue-green			
Fe ³⁺	6-10	Light yellow			
U ⁶⁺	6	Light yellow			
V3+	6	Green			
V ⁴⁺		Blue			

PROPERTIES OF GLASSES

Mechanical Properties

Brittle Materials (↑↑ elastic modulus) = f (composition, macroscopic (surface) imperfections, volume of material and T)
Low modulus of Weibull
Mechanical strength ↓ (presence of water/air + humidity)

Electrical Properties

Generally insulators ($\sigma \approx 10^{-10} - 10^{-20} \Omega \text{cm}^{-1}$) $\sigma \uparrow \uparrow$ with Temperature $\sigma \uparrow \uparrow$ with modifier (=f(size and amount of modifier))

Thermal Shock

$$\uparrow \uparrow \alpha = \downarrow R_{\text{thermal shock}}$$

Material	Thermal Expansion coeff. (°C ⁻¹)	Thermal Shock failure (°C)
Soda-lime glass	10-5	80
Sodium borosilicate (Pyrex ™ type)	10 ⁻⁴	270
Fused silica	10 ⁻⁶	1600
Lithia-alumina-silicate glass ceramic (Pyroceram ™ type)	10 ⁻⁶	670
Transparent lithia- alumina-silicate glass ceramic (Visions TM type)	10 ⁻⁶	1330

Thermal shock resistance of common glasses and glass ceramics