

Universidad Carlos III de Madrid www.uc3m.es

Materials Science and Engineering

TOPIC 4. MECHANICAL PROPERTIES

- 1. Definition of mechanical properties.
- 2.Stress-strain concepts
- 3. Elastic Deformation.
- 4. Plastic Deformation.
 - Slipping Systems.
 - Strengthening mechanisms: Solid Solution, Grain Size Reduction and Strain Hardening.
- 5.Ceramics : Flexural Strength or Modulus of Rupture

6.Polymers: Particularities. Deformation Mechanisms, rate, temperature. Creep testing.7.Hardness: definition, qualitative and quantitative testing: Brinell, Rockwell and Vickers.Relation of hardness with other mechanical properties.

UC3M

2

MECHANICAL PROPERTIES

Mechanical properties: strength, hardness, ductility, stiffness ...

Mechanical properties determine the behaviour of materials \Rightarrow determine applications.

UNIAXIAL TENSION TEST

Test mostly used **NORMALIZED**

- -It is realized at a constant load velocity
- -Destructive test

Material to test : SPECIMEN→ uniform transversal section

<u>Calibration length</u> = Should be long enough so that σ is transmitted in a uniform way

http://commons.wikimedia.org/wiki/File:Tensile_specimen_nomenclature.svg

4

STRESS-STRAIN CURVE: ELASTIC ZONE $\sigma < \sigma_v$

When the load is removed \Rightarrow The specimen recovers its original shape

E: Young's Modulus or Elastic Modulus

Stiffness of material or resistance to elastic deformation

6

STRESS-STRAIN CURVE: ELASTIC ZONE $\sigma < \sigma_v$

When the load is removed \Rightarrow The specimen recovers its original shape

E: Young's Modulus or Elastic Modulus

Stiffness of material or resistance to elastic deformation

b) Non linear

It is produced in some materials (some polymers, concrete, gray cast irons)

ELASTIC DEFORMATION: ATOMIC SCALE

The atoms tend to \Rightarrow minimize energy.

Position of atoms = f (bond, attractive forces...)

8

ELASTIC DEFORMATION: ATOMIC SCALE

$E= f (bond strength) \Rightarrow if \uparrow bond strength \Rightarrow \uparrow E$ Mechanism associated with Elastic deformation= Bonds relaxation.

At atomic scale the macroscopic elastic deformation it appears as small changes in the interatomic space and the bonds between atoms are stressed

(the atoms are displaced from the original positions without reaching other positions)

Material	Modulus E (GPa)	Density ρ (Mg m ⁻³)	Specific modulus E/ ρ (Gpa/Mg m ⁻³)
Steels	210	7.8	27
Al alloys	70	2.7	26
Alumina Al ₂ O ₃	393	3.9	100
Silica SiO ₂	69	2.6	27
Cement	45	2.4	19

Bond force \leftrightarrow T melting

9

E VALUES FOR DIFFERENT MATERIALS

Material	Modulus of Elasticity (GPa)	Modulus of Elasticity (10 ⁶ psi)	
Metal alloys			
Tungsten	407	59	
Nickel	207	30	
Titanium	107	15	
Ceramic Materials			
Alumina (Al ₂ O ₃)	393	57	
Silicon nitride Si ₃ N ₄	345	50	
Zirconia	205	30	
Magnesium Oxide (MgO)			
Soda-lime glass	69	10	
Polymers			
PVC	2.41-4.14	0.35-0.60	
PET	2.76-4.14	0.40-0.60	
PS	2.28-3.28	0.33-0.47	
PMMA	2.24-3.24	0.33-0.47	
HDPE	1.08	0.16	

Dpt. Materials Sci. and Eng. and Chem. Eng.

STRESS-STRAIN CURVE: ELASTIC ZONE σ<σ_v

Poisson's ratio ≅ Relation between transverse and axial strain All **elastic** longitudinal deformation⇒ ∆dimensional transverse

For
$$F = F_z$$

$$\upsilon = \frac{-\varepsilon_{\text{transverse}}}{\varepsilon_{\text{longitudinal}}} = -\frac{\varepsilon_x}{\varepsilon_z} = -\frac{\varepsilon_y}{\varepsilon_z}$$

Ideal materials: v=0.5Real materials : v=0.2-0.4

	υ	
natural rubber	0,499-0,49	
Polymers	0,3-0,45	
Metals	0,25-0,4	

STRESS-STRAIN CURVE: PLASTIC ZONE $\sigma > \sigma_v$

PLASTIC DEFORMATION: SLIPPING OF DISLOCATIONS

Gliding of dislocations

- $\underline{\epsilon_{P}}$ without dislocations: we have to break simultaneously various bonds and remake them through slipping.
- $\underline{\epsilon_P}$ with dislocations: The breakage and formation of bonds is sequential \rightarrow Lower energy consumption \rightarrow When dislocations are moving, it is easier to glide atoms

Consequences: they could be displaced inside the crystal with relatively low forces and produce the complete displacement on crystalline planes .

PLASTIC DEFORMATION: SLIPPING OF DISLOCATIONS

For plastic deformation without dislocations: several bonds have to be broken simultaneously and remade after sliding.

Dislocations allow for a step by step (incremental) breaking and creation of bonds: much less energetic cost!

PLASTIC DEFORMATION: SLIPPING OF DISLOCATIONS

E used to move a dislocation = $E \propto |b|^2$

Compact Direction

UC3M

$$|b| = 2R$$

 $E_b \propto 4R^2$

NON Compact Direction

A.R. West. "Solid State Chemistry and its applications". Wiley.Chichester,1992

$$b^2 + b^2 = (4R)^2 \Rightarrow b = 2\sqrt{2} \cdot R$$

 $E_b \propto 8R^2$

PLASTIC DEFORMATION: SLIP SYSTEMS

- Permanent plastic deformation takes place when the atoms slip between them.
- Slip occurs along specific crystallographic planes that depend on the structure

Slipping directions and planes
SLIPPING SYSTEMS

	Crystal Structure	Slip plane	Slip diraction	Number of slip systems	Examples	Unit cell geometry	
	bcc	{110}	<111>	12	α-Fe, Mo, W		
	fcc	{111}	<110>	12	Al, Cu, γ−Fe, Ni		
	hcp	(0001)	<1120>	3	Cd, Mg, α-Ti, Zn		
ot.	ot. Materials Sci. and Eng. and Chem. Eng. UC3M Sophia A. Tsipas / Mónica Campos / Elisa Mª Ruíz-Navas						

PLASTIC DEFORMATION: SLIP SYSTEMS

In a single crystal slip commences on the most favorably oriented slip system when the resolved shear stress reaches some critical value.

Slip occurs at various positions along the specimen length along a number of equivalent and most favorably oriented planes and directions

Slip in a zinc single crystal. (From C. F. Elam, *The Distortion of Metal Crystals,* Oxford University Press, London, 1935.)

STRESS-STRAIN CURVE: CALCULATION OF THE YIELD STRESS

Yield stress (σ_v) or Yield Strength

σ above which permanent deformation is produced

 $\begin{array}{l} \mathsf{F}{\neq}0 \text{ , } \epsilon_t{=}\ \epsilon_e + \ \epsilon_p \\ \mathsf{F}{=}0, \ \ \epsilon_t{=}\ \ \epsilon_p \end{array}$

Design parameter

Criteria for the calculation of the Yield Stress

Depending on the deformation of material we adopt *z* criteria

Conventional Yield Stress: The most frequently used in metals \approx 0,2% of ϵ

STRESS-STRAIN CURVE: CALCULATION OF THE YIELD STRESS

Yield stress (σ_v) or Yield Strength

σ above which permanent deformation is produced

Criteria for the calculation of the Yield Stress

Depending on the deformation of material we adopt *≠* criteria

STRESS-STRAIN CURVE: SECURITY FACTOR

Due to the variability in mechanical properties

Design $\Rightarrow \sigma_{\text{security}} (\sigma_{w})$ working stress

$$\sigma_w = \frac{\sigma_y}{N}$$

UC3M

 σ_v = yield strength

N= 1.2 -4 (+ usually 2)

STRESS-STRAIN CURVE: CALCULATION OF UTS AND σ_{fracture}

Tensile Strength or Ultimate Tensile Strength (UTS)

Maximum nominal stress that supports the specimen under tension

James F. Shackefold, Introduction to materials science for engineers, Prentice Hall

Necking of the material begins at maximum stress

STRESS-STRAIN CURVE: CALCULATION OF UTS AND σ_{fracture}

Fracture stress or Fracture strength

Stress that the material supports at the point of fracture

The more ductile the material, the higher the amount of "necking" or constriction,

The $\sigma_{\rm fracture}$ gives an idea of the presence of defects (porosity, inclusions) in the material if the value is very low

STRESS-STRAIN CURVE: DUCTILITY

It is a measure of the degree of plastic deformation grade that can be supported by a material before fracture, f(T)

% Elongation after failure

Percentage of plastic strain at fracture

$$EL(\%) = \frac{l_f - l_0}{l_0} \times 100$$

STRESS-STRAIN CURVE: DUCTILITY

% Reduction in area (constriction)

$$RA(\%) = \frac{A_0 - A_f}{A_0} \times 100$$

- It is measured when the specimen has fractured. A_{o} is the initial cross sectional area
- A_f is the final cross sectional area

Strain c (mm/mm)

The ductility indicates to the designer up to what point a material can deform before it fractures and how many forming operations can be performed. Eq.: lamination

STRESS-STRAIN CURVE: TOUGHNESS

"Ability of a material to absorb energy up to fracture, by elastic and plastic deformation"

E _{elastic+plastic deformation} per unit Volume (Pa or J/m³)

Strain ε (mm/mm)

The stress-strain curve gives the ability of the material to absorb energy up to fracture, by elastic and plastic deformation Important in structural applications

Ability to absorb energy

(protection and security systems, automotion)

- Fracture type (ductile, brittle)
- Fracture toughness

STRESS-STRAIN CURVE : RESILIENCE

Modulus of Resilience U_r

600

400

200

0

Stress of (MPa)

Capacity of a material to absorb $E_{elastic}$ when it is deformed elastically.

E_{deformation} per unit Volume (Pa or J/m³) necessary to deform a material up to the yield point

Area under the curve

$$U_r = \int_0^{\varepsilon_y} \sigma \, d\varepsilon$$

Integrating, if the elastic region is linear

$$U_r = \frac{1}{2} \sigma_y \varepsilon_y$$

$$\varepsilon_y = \frac{\sigma_y}{E}$$
 (Hooke's law)

 $\frac{1}{2} \frac{\sigma_y^2}{F}$ Materials with \Uparrow Resilience: $\Uparrow \sigma_y \downarrow E$

Application: alloys to fabricate springs

Strain ε (mm/mm)

0.01

0.002

TRUE STRESS-STRAIN CURVES

Original dimensions change during the test $\Rightarrow \sigma_{real} > \sigma_{eng}$ and $\epsilon_{real} < \epsilon_{eng}$ True Strain: when the strains are large (plastic True zone) the longitudinal base changes during the Stress σ (MPa) test. Engineering $\varepsilon_r = \frac{L_1 - L_0}{L_0} + \frac{L_2 - L_1}{L_1} + \frac{L_3 - L_2}{L_2} + \dots \implies \varepsilon_r = \int_{L_0}^{L} \frac{dL}{L} = \ln \frac{L}{L_0}$ \rightarrow We define L = L₀ (1+ ε_{eng}) Strain ε (mm/mm) Before necking $\varepsilon_r = \ln (1 + \varepsilon_{eng})$ After necking After necking: deformation is not uniform. The volume affected remains the

same $\Delta V = 0 \Rightarrow$ it is true that $AL = A_0L_0$

$$\varepsilon_r = \ln \frac{A_0}{A} = 2 \ln \frac{D_0}{D}$$

A: area at any instant A₀: initial area

TRUE STRESS-STRAIN CURVES

STRENGTHENING MECHANISMS

The plastic deformation \rightarrow dislocations movement

UC3M

A restriction exists towards the movement of dislocations $\rightarrow \uparrow$ Necessary stress to activate the slip system \rightarrow STRENGTHENING

TYPES:

- Strain Hardening
- Solid Solution Strengthening
- Precipitation Hardening
- Grain Size Reduction Strengthening.

STRAIN HARDENING

It is the increase in strength and hardness when a material is plastically deformed

The cold plastic deformation generates dislocations (of 10⁶ m/m³ to 10¹²m/m³) and the increase in dislocation density makes difficult further plastic deformation

 \Rightarrow A material hardened through plastic deformation requires greater forces to be applied in order to obtain the components \Rightarrow Machines of greater capacity

 \Rightarrow If it is considered in the process design \Rightarrow during processing the strength and hardness of the material $\uparrow \Rightarrow$ material cost \downarrow

UC3M

SOLID SOLUTION STRENGTHENING

Interstitials

A vacancy occupied by a solute of **smaller radius**: atoms of the solvent submitted to **tension**

A vacancy occupied by a solute of **greater radius**: atoms of the solvent submitted to **compression**

Lattice Distortion

> The movement of dislocations becomes difficult

Hardening

33

SOLID SOLUTION STRENGTHENING

Alloying elements:

- Improve mechanical properties (yield strength, UTS, hardness)

-Decrease ductility, $\mathsf{R}_{\text{corrosión}},\,\sigma_{\text{electric}}$

GRAIN SIZE REDUCTION STRENGTHENING

The grain boundaries separate crystals with different orientation. The grain boundary width: 2-5 interatomic spaces

UC3M

The grain boundary makes difficult dislocations sliding → Angle between grains

