

Universidad Carlos III de Madrid www.uc3m.es

Materials Science and Engineering

TOPIC 3. Phase Diagrams I

- Basic concepts:
 - Component, phase, micro constituent.
- Unary or one component phase diagrams.
- Binary isomorphous phase diagrams.
- Gibbs Phase Rule.
- Tie line and lever rule.
- Binary eutectic systems.
- Precipitation in solid state.
- Invariant reactions.
- Intermetallic components.
- Congruent and incongruent melting.

UC3M

BASIC CONCEPTS

Component

Chemical substance or compound with fixed composition that can form part of a phase or alloy. Examples: Aluminium (Al), Alumina (Al_2O_3) .

Phase

Chemically and structurally homogeneous area that forms part of the microstructure. Could be formed by one or various components. Examples: Ferrite (solid solution Fe-C with BCC structure) austenite (solid solution Fe-C with FCC structure), calcium carbonate ($CaCO_3$)

Microconstituent

Each one of different structures that can be observed on a polished surface of the material. Can be formed by one or various phases

1: Ferrite 2 and 3: pearlite (ferrite + cementite)

Secondary electron image of a polished and etched section of a steel helical gear. Microstructure consists of pearlite in a ferrite matrix. Etched in 3% nital. 2000X

DEFINITION OF EQUILIBRIUM PHASE DIAGRAM

Equilibrium diagram :

Map of the phases in thermodynamic equilibrium that are present in a system of materials at different pressures, temperatures and compositions.

Phase diagram of CO₂

- There is no liquid CO_2 at T_{room} and ambient pressure.
- Gradient of P/T > 0, as it is in almost all substances.
- Triple-point: gas, liquid and solid are at equilibrium.
- At T below the triple point CO₂ can sublime: gas → solid (dry ice)
- Above $T_c = 32$ °C and $P_c = 73$ atm \rightarrow supercritical CO₂ fluid (used to extract caffeine from coffee)

Dry ice or card ice: solid CO₂ http://commons.wikimedia.org/wiki/File:Dry_Ice_Sublimation_1.jpg

UNARY OR ONE COMPONENT PHASE DIAGRAM : P-T

The unary phase diagram shows the P and T conditions at which thermodynamically distinct pahses can occur in equilibrium

BINARY ISOMORPHOUS PHASE DIAGRAMS

SYSTEMS OF 2 COMPONENTS WITH COMPLETE SOLID SOLUBILITY

Design of a phase diagram from the cooling curves

UC3M

GIBBS PHASE RULE

F = C - P + N

BINARY ISOMORPHOUS PHASE DIAGRAMS

Complete Solid Solubility

TIE LINE AND LEVER RULE

- Determination of Phase composition: Tie line
- Determination of Phase Amounts: Lever rule

Phase composition (Tie Line):

- Intersections of the tie line with phase boundaries
- Composition of the respective phases is given by the composition axis

LEVER RULE

Determination of Phase Amounts

 The fraction of each phase is computed by taking the length of the tie line from the overall alloy composition to the phase boundary of the <u>other</u> phase, and diving by the total line length

$$W_L = \frac{S}{R+S} = \frac{C_{\alpha} - C_0}{C_{\alpha} - C_L}$$
$$W_{\alpha} = \frac{R}{R+S} = \frac{C_0 - C_L}{C_{\alpha} - C_L}$$

BINARY ISOMORPHOUS PHASE DIAGRAMS

UC3M

UC3M

11

BINARY EUTECTIC SYSTEMS

INVARIANT REACTIONS: They are produced at a fixed composition and temperature for a given system, and the result also remains fixed

In a system of two partially soluble components a solidification reaction is produced at a fixed composition and temperature with a profile of temperature gradient similar to pure solids.

- Sn-50%In. globules of tin-rich intermetallic phase (light) in a matrix of dark indium-rich intermetallic phase.
- Al-13%Si, Acicular structure consisting of short, angular particles of silicon (dark) in a matrix of aluminum.
- Al-33%Cu. Lamellar structure consisting of dark platelets of CuAl₂ and light platelets of aluminum solid solution
- Mg-37%Sn. Lamellar structure consisting of Mg₂Sn "Chinese script" (dark) in a matrix of magnesium solid solution.

Metallography and Microstructures, Vol 9, ASM Handbook, ASM International,

SOLID STATE PRECIPITATION

 θ phase precipitates at grain boundaries (typical)

Uniform dispersion of θ phase precipitates can be achieved with a precipitation hardening heat treatment

 θ phase precipitates uniformly (ideal)

LEVER RULE IN BINARY EUTECTIC PHASE DIAGRAMS

INVARIANT REACTIONS

Topic 3. Phase diagrams

INVARIANT REACTIONS

INTERMETALLICS

• Intermetallic compound (or intermediate solid solution) : made up of two or more components, producing a new phase with its own composition, crystal structure and properties

CONGRUENT AND INCONGRUENT MELTING

- A component is said to *melt congruently* when the liquid formed upon melting has the same composition as the solid from which it was formed
 - e.g. pure metals
- A component is said to *melt incongruently* when the liquid formed upon melting has a composition other than the one of the solid from which it was formed

– e.g. peritectic reaction: $\alpha + L \rightarrow \beta$...

UC3M

22

INTERMETALLICS. CONGRUENT AND INCONGRUENT MELTING

