

Universidad Carlos III de Madrid www.uc3m.es

# **MATERIALS SCIENCE AND ENGINEERING**

# **TOPIC 7. Polymeric materials**

# **1. Introduction**

- Definition
- General characteristics
- Historic introduction
- **Polymers: Examples**
- 2. Classification
- 3. Properties: Structural aspects
- 4. Solid state
  - Crystallinity
  - Thermal transitions
  - Mechanical behaviour

## **1. INTRODUCTION: DEFINITION**

#### POLYMER

"Organic compound, natural or synthetic, with high molecular weight made of repetitive structural units "

Large size chains formed from the covalent union of various monomer units (macromolecule)

### **PLASTIC**

1. Polymer whose fundamental property is plasticity (thermoplastic). It is deformed plastically under the action of pressure andor heat.

2. Mixture (of a polymer with additives) that can be transformed by flowing or moulding in liquid or molten state.

## **1. INTRODUCTION: GENERAL CARACTERISTICS**

|                                | Advantages                  | Applications                            |
|--------------------------------|-----------------------------|-----------------------------------------|
| ↓ T <sub>f</sub>               | Easy processing             | Products of elevated consumption        |
| 3 ↑                            | High ductility              | Neumatics. Plastics for packaging       |
| ↓ ρ                            | Light products              | Automobiles , aeronautics and aerospace |
| ↓ σ <sub>t</sub>               | Thermal insulators          | Construction                            |
| ↓σ <sub>e</sub>                | Electic insulators          | Coatings for wires                      |
| ↑ <b>R</b> <sub>chemic</sub> . | High R <sub>corrosion</sub> | Tubes, bins, boxes, Coatings            |

## **1. INTRODUCTION: HISTORIC INTRODUCTION**

**Polymers: synthetic and natural materials:** 

Cellulose, starch, proteins, leather, wool, cotton, synthetic fibres of polyesters and polyamides, plastics, rubbers, adhesives etc

Production 1995: 110 millions of tons (Spain: 2,6) 2000: 180 millions of tons (Spain : 2,7)

### HISTORIC BACKGROUND

Origins of Humanity  $\Rightarrow$  natural products: leather , wool, cellulose....

1838: Vulcanizing of natural rubber

**1846 Cellulose nitrate** 

1870 Celluloid

1907 Bakelite

**1920** Macromolecular Hypothesis (Staudinger)

1926 Polyvinyl chloride (PVC)

**1933 Poly ethylene (PE)** 

1938-39 Nylon (fibers) y Polystyrene (PS)

**1954** Polypropylene (PP)

**1960 Applications of Epoxy Resins** 

**198-** Polymers of high specifications



Sophia A. Tsipas / Berna Serrano



## **2. CLASSIFICATION**

### According to applications

**Elastomers.** Are materials with very low modulus of elasticity and high extensibility

**Plastics.** Are the polymers in which, when a sufficiently intense force is applied, they irreversibly deform

Fibres Present a high modulus of elasticity and low extensibility

**Coatings.** Are substances, normally liquid, that adhere to the surface of other materials

Adhesives. Are substances that combine a high adhesion and a high cohesion,

### According to their behaviour with temperature

UC3M

Thermoplastic. Flow on heating and they become hard on cooling. Their molecular structure presents few (or none) crosslinks. Thermosetting. They chemically decompose when heated, instead of flowing. This behaviour is due to a crosslinked structure

## **2. CLASSIFICATION**

#### **POLYMERS OF GENERAL USE (Commodity)**

Polymers of high consumption: polyolefins, polyacrylates and methacrylates, polystyrene, PVC, resins ,phenols, urea and melamines, polyesters, polyurethanes, epoxy resins and diverse elastomers

#### **TECHNICAL AND ENGINEERING POLYMERS**

Good properties between 0-100 °C: polyamides, polycarbonates, polyphenylene oxide (PPO), polysulfones, polyphenylene sulpphide (PPS), aliphatic-aromatic polyesters, Polyether ether ketone (PEEK)

#### **SPECIAL POLYMERS**

High price polymers with outstanding characteristics, liquid crystals of high modulus and advanced composite materials

Factors that determine their use : plastic, fibres or as rubber :

Flexibility in the chain, intermolecular interactions and grade of regularity in the polymer

### **3. PROPERTIES**

The properties of polymers depend on multiple factors:

- Molecular Weight & its distribution
- Structural aspects
- Crystallinity

- Monomeric nature (families of polymers)
- Number of monomeric units (molecular weight) and its distribution
- Monomeric functionality (branches and crosslinking)

- Relative positions of the groups (tacticity and changes in shape)
- Ordering of the units (sequences)
- Ordering the positions of the chain branches (crystallinity)



## **3. PROPERTIES: MOLECULAR WEIGHT**

### **MOLECULAR WEIGHT**

Macromolecular molecular weight :  $M_n = M_0 X_n$ 

where:

 $M_n$  = number-average molecular weight

M<sub>o</sub> = monomer molecular weight

 $X_n$  = degree of polymerization (average number of monomer units in a chain)

For a polymer ⇒ distribution of chain longitude or molecular weights : MEAN MOLECULAR WEIGHT ⇒ Definition of the various molecular weights:

 $\mathbf{M}_{n} = \Sigma \mathbf{M}_{i} \mathbf{x}_{i}$  $\mathbf{M}_{w} = \Sigma \mathbf{M}_{i} \mathbf{w}_{i}$ 

 $M_n$  = number-average molecular weight  $M_w$  = weight-average molecular weight  $M_i$  = mean molecular weight in size range *i*   $x_i$ = fraction in number of molecules in range *i*  $w_i$ = fraction in weight of molecules in range *i*  **Index of polydispersion :** 

### **CONFIGURATION STATES**

109°

#### **Polymeric molecular chains are NOT strictly straight:**

Schematic representation of a molecular chain of a simple polymer with various fringes produced from bond rotation :



#### **MOLECULAR STRUCTURE**

Linear



#### Branched





Crosslinked





atactic polypropylene is a wax type material, with very bad mechanical properties



### ISOTACTIC



### **SYNDIOTACTIC**

## ATACTIC



## **3. PROPERTIES: CRYSTALLINITY**

#### **CRYSTALLINITY OF POLYMERS**

Packing macromolecular chains in order to produce an atomic arrangement with periodic order .



Morphology of the polymeric crystals

- ✓ Polymeric monocrystals
  - $\Rightarrow$  Different type of bundles :

### **Chain-folded model**



The majority of polymers that crystallize from liquids form:



 $\rho_{\text{a}}$  = density of totally amorphous polymer

# FACTORS THAT AFFECT CRYSTALLINITY

## **1. KINETIC FACTORS**

## **Conditions for Crystallinity:**

The number and size of crystals formed = depend on  $\Delta T = T_{melting} - T_{crystallization}$   $\Rightarrow$  Increasing  $\Delta T$  the size of the crystal decreases and the number of crystals increases

## The FLEXIBILITY of the chains depends on the structure:

- Linear polymers have a greater amount of crystallinity compared to branched polymers
- Complex monomeric structures ⇒ decreases the amount of crystallinity

In order for a polymer to crystallize, its molecules must have sufficient elasticity in order to be able to move and be accurately placed.

## **2. STRUCTURAL FACTORS THAT AFFECT CRYSTALLINITY** *Greater crystallinity* $\Rightarrow$ *greater* $T_m$

- Symmetry
- Tacticity:
  - •Atactic  $\Rightarrow$  amorphous
  - •Isotactic, syndiotactic  $\Rightarrow$  crystalline
- Branched
- Configuration CIS against TRANS
- N<sup>o</sup> of C pairs in between heteroatoms
- Molecular weight
- Copolymerization
- Plasticisers
- Polarity: favours ordering

## **Cooling curves for thermoplastic polymers**



Non crystalline thermoplastics cool throughout the line ABCD

Partially crystalline thermoplastics cool throughout the line ABEF

A= liquid, B=liquid of high viscosity C= undercooled liquid (rubbery) D= glassy solid

E= solid crystalline regions in matrix of supercooled liquid F= solid crystalline regions in glassy matrix

Polvmeric materia

#### **Cooling curves for thermoplastic polymers**



Specific volume versus temperature upon cooling from the liquid melt for polymers with different structure

**Thermal transitions : T<sub>m</sub> and T<sub>g</sub>** 

 $T_m$ : Melting temperature  $\rightarrow$  crystalline regions

 $T_q$ : Glass transition temperature  $\rightarrow$  amorphous regions



Glass transition  $\rightarrow$  changes in the specific heat and the dilatation coefficient

# Factors that influence in the T<sub>g</sub>

## **MOLECULAR WEIGHT**

Increasing the molecular weight we decrease the mobility of the chains  $\Rightarrow \uparrow$  Tg

## **INTERMOLECULAR INTERACTIONS**

Increasing the interactions  $\Rightarrow \uparrow$  Kinetic Energy  $\Rightarrow \uparrow$  Tg

## **CHAIN FLEXIBILITY**

Greater mobility  $\Rightarrow$  Decreases the rotational energy and increases the entropy and decreases Tg

### **SYMMETRY**

Symmetric Molecules present a low dipolar moment and therefore low Tg

| [–CH <sub>2</sub> -CHX-] <sub>n</sub> with X | Т <sub>g</sub> (°С) |
|----------------------------------------------|---------------------|
| -H (PE)                                      | -110                |
| -CH <sub>3</sub> (PP)                        | -20                 |
| -CI (PVC)                                    | 81                  |
| -C≡N (AN)                                    | 97                  |
| -C <sub>6</sub> H <sub>5</sub> (PS)          | 100                 |

## Melting and Glass Transition Temperatures for Some of the More Common Polymeric Materials

| Material                    | Glass transition temperature (°C) | Melting<br>temperature (°C) |
|-----------------------------|-----------------------------------|-----------------------------|
| Polyethelene (low density)  | -110                              | 115                         |
| polytetrafluoroethylene     | -97                               | 327                         |
| Polyethelene (high density) | -90                               | 137                         |
| Polypropylene               | -18                               | 175                         |
| Nylon 6,6                   | 57                                | 265                         |
| Polyester (PET)             | 69                                | 265                         |
| Poly(vinyl chlloride)       | 87                                | 212                         |
| Polystyrene                 | 100                               | 240                         |
| Polycarbonate               | 150                               | 265                         |

## **Influence of Molecular Weight**



## **4. SOLID STATE: MECHANICAL BEHAVIOUR**

### **MECHANICAL BEHAVIOUR : Thermoplastic polymers**



## **4. SOLID STATE: MECHANICAL BEHAVIOUR**

## **MECHANICAL BEHAVIOUR: Thermoplastic polymers**

**Effect of the crystallinity in the modulus of elasticity:** 

