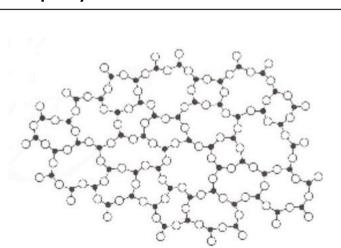
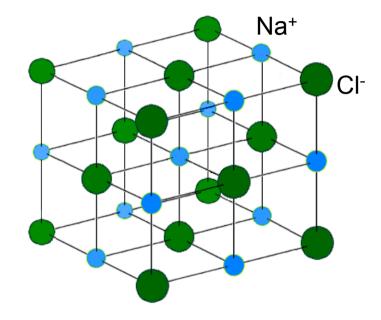


MATERIALS SCIENCE AND ENGINEERING

TOPIC 2: STRUCTURE OF MATERIALS

Topic 2.1:


- Crystalline systems.
- Important metallic and ceramic structures.
- Amorphous materials.

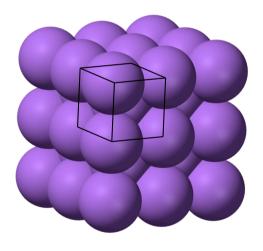

CRYSTALLINE STATES

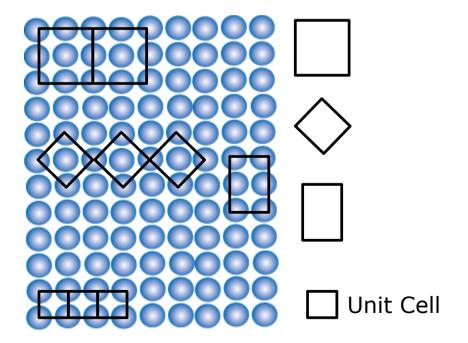
The atoms tend to \Rightarrow minimum energy \Rightarrow position = f (bond, forces attraction...) \Rightarrow REPETITIVE spatial ordering \Rightarrow CRYSTALLINE LATTICE

The majority of solids ⇒ Crystalline State

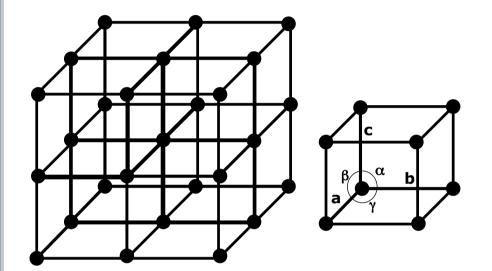
- Metals and alloys.
- Ceramics.
- Some polymers.

Amorphous ≡ Non crystalline


Non crystalline solids: They do no maintain a periodic ordering


UNIT CELL

Spatial lattice: Infinite 3D arrangement of points

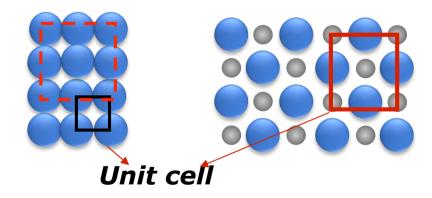

Unit Cell: The smallest lattice unit that contains all the elements of symmetry of the crystal.

Parallelepiped capable of reproducing the crystal-"master model"

UNIT CELL: LATTICE PARAMETERS

- (a) Lattice of a solid in 3D space
- (b) Unit cell showing the lattice parameters

Lattice parameters or constants ■ Vectors and angles of the lattice


- 3 lattice vectors: **a, b, c** with common origin ⇒ Directions of the 3 independent axes
- 3 lattice angles: α_{r} , β_{r} , γ

THE 7 CRYSTALLINE SYSTEMS

Crystal System	Axis	Angles	
Cubic	a=b=c	$\alpha = \beta = \gamma = 90^{\circ}$	a
Hexagonal	a=b≠c	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	
Tetragonal	a=b≠c	$\alpha = \beta = \gamma = 90^{\circ}$	$a \neq c$ $a \neq c$ $a \neq c$
Rhombohedral	a=b=c	$\alpha = \beta = \gamma \neq 90^{\circ}$	$\alpha = \beta = \gamma \neq 90^{\circ}$ $\alpha = \beta = \alpha$ $\alpha = \beta = \alpha$
Orthorombic	a≠b≠c	$\alpha = \beta = \gamma = 90^{\circ}$	$a \neq b \neq c$ $a \neq b$ $\alpha \neq 90^{\circ}$
Monoclinic	a≠b≠c	$\alpha = \gamma = 90^{\circ_0} \neq \beta$	$\beta, \gamma = 90^{\circ}$
Tricilinic org/wiki/Crystal_structure	a≠b≠c	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	$\alpha, \beta, \gamma \neq 90^{\circ}$

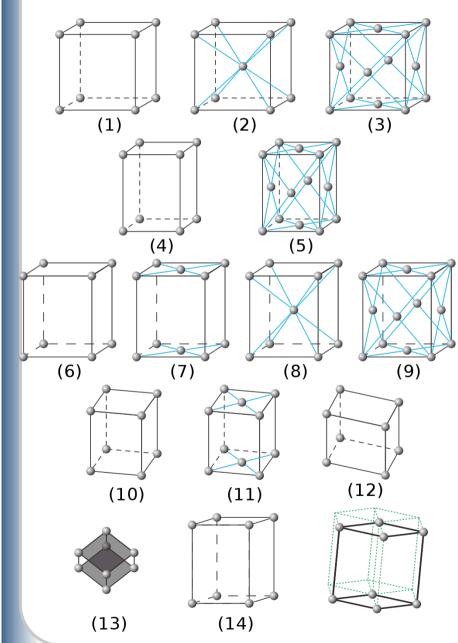
BRAVAIS LATTICES

The 7 crystalline systems define the geometric form of the lattice, but there is also the need to establish the positions occupied by the atoms/ ions/molecules in the solid → BRAVAIS LATTICES

BRAVAIS LATTICES AND CRYSTALLINE STRUCTURES

- The simplest case: one atom per lattice point → P
- Other cases: many atoms around a point in the lattice

Centered cell


- •In all the faces F
- •In 2 opposite faces C
- •In the centre I

The combination of the 7 crystalline systems and the 4 unit cells (P, F, C, I) → gives 14 fundamental lattices:

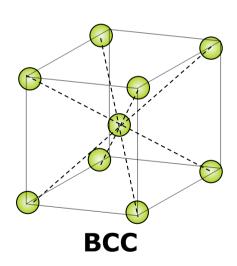
They are called Bravais Lattices

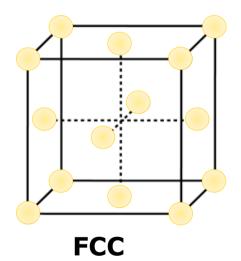
If we consider that each point is an atom, we have crystalline structures

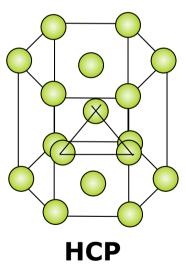
THE 14 BRAVAIS LATTICES

- 1. Simple cubic (Cubic P)
- 2. Body-centered-cubic (bcc) (Cubic I)
- 3. Face-centered-cubic (fcc) (Cubic F)
- 4. Simple tetragonal (Tetragonal P)
- 5. Body-centered tetragonal –(Tetragonal I)
- 6. Simple orthorhombic (Orthorhombic P)
- 7. Body-centered orthorhombic (Orthorhombic C)
- 8. Base-centered orthorhombic (Orthorhombic I)
- 9. Face-centered orthorhombic (Orthorhombic F)
- 10. Simple monoclinic (Monoclinic P)
- 11. Base-centered monoclinic (Monoclinic C)
- 12. Triclinic
- 13. Rhomboedral
- 14. Hexagonal

http://commons.wikimedia.org/wiki/Category:Bravais_lattices

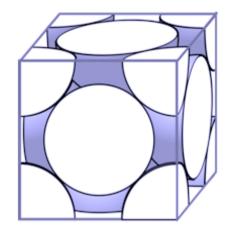

MAIN METALLIC STRUCTURES

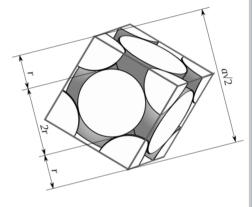

90% of the metals crystallize in 3 densely packed (compact) structures as they:


- Normally they consist of a unique element, and therefore the atomic radius is the same.
- The metallic bond is non directional.
- In order to reduce the lattice energy the distance between the atoms tends to be small.

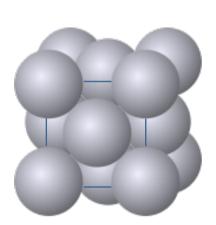
MAIN METALLIC STRUCTURES

- Body- Centered Cubic (BCC)
- Face-Centered Cubic (FCC)
- Hexagonal Close-Packed (HCP)



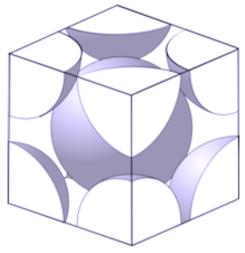


Atomic Arrangement ⇒ E_{minimum}


FACE-CENTERED CUBIC STRUCTURE (FCC)

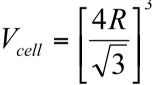
- Coordination Number: 12
- No atoms per cell = $8 \cdot \frac{1}{8} + 6 \cdot \frac{1}{2} = 4$
- $V_{cell} = a^3$ since $4R = a\sqrt{2}$

http://commons.wikimedia.org/wiki/ File:Geometrie_cubique_faces_centree s.svq

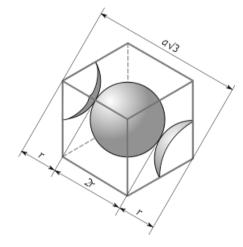


$$V_{cell} = \left[\frac{4R}{\sqrt{2}}\right]^3 \qquad V_{atoms} = \left[\frac{4}{3}\pi \cdot R^3\right] \cdot 4$$

Atomic Packing Factor =
$$\frac{\text{Volumen of atoms in a unit cell}}{\text{Total unit cell volume}} = \frac{4 \cdot (\frac{4\pi R^3}{3})}{(\frac{4}{\sqrt{2}}R)^3} = 0,74$$


74 % of the volume of the cell is occupied

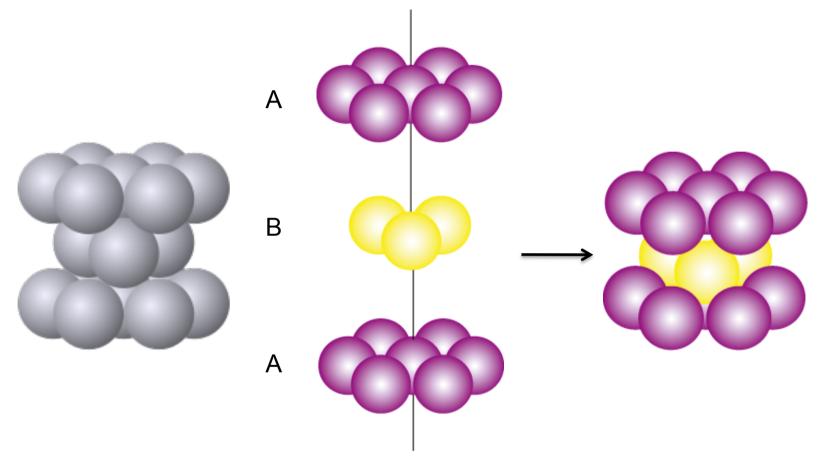
BODY-CENTERED CUBIC STRUCTURE (BCC)


- Coordination Number: 8
- No atoms per cell= 8-1/8+1 = 2

•
$$V_{cell} = a^3$$
 as $4R = a\sqrt{3}$

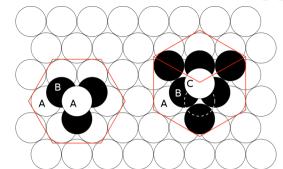
$$V_{cell} = \left[\frac{4R}{\sqrt{3}}\right]^{3}$$

$$V_{atoms} = \left[\frac{4}{3}\pi \cdot R^{3}\right] \cdot 2$$
http://commons.wikimedia.org/wiki/File:Geometrie_cubique_centre.svg



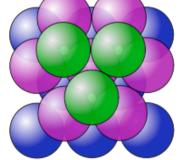
Atomic Packing Factor =
$$\frac{\text{Volumen of atoms in a unit cell}}{\text{Total unit cell volume}} = \frac{2 \cdot (\frac{4\pi R^3}{3})}{(\frac{4}{\sqrt{3}}R)^3} = 0,68$$

68 % of the volume of the cell is occupied

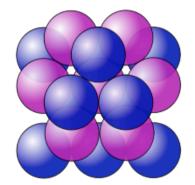

HEXAGONAL CLOSED- PACKED STRUCTURE (HCP)

Atom in third layer lies over atom on first layer

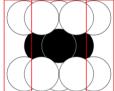
- No of atoms in the cell= $12 \cdot \frac{1}{6} + 2 \cdot \frac{1}{2} + 3 = 6$
- Coordination Number: 12
- Packing factor: **0,74**

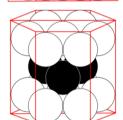

PACKING SYSTEMS

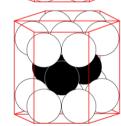


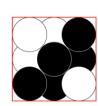


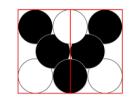
FCC: ABCABC...

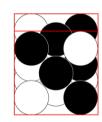


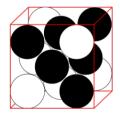


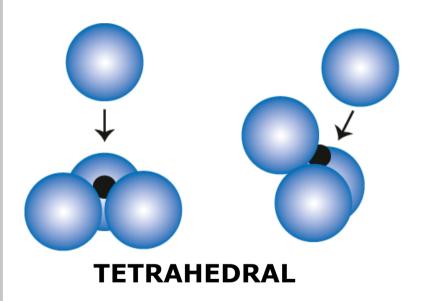



HCP: ABAB...

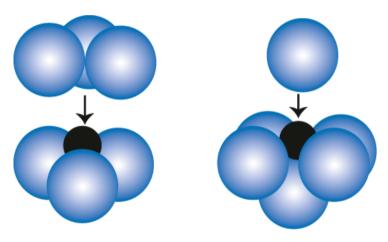






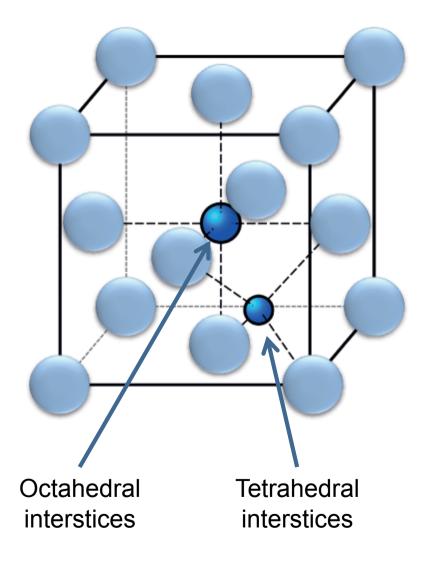


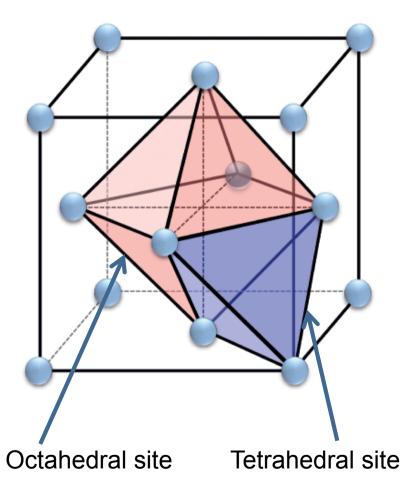
HCP FCC


INTERSTITIAL SITES

There are 2 types of interstitials sites:

- TETRAHEDRAL (Coord. Nº 4)
- OCTAHEDRAL (Coord. Nº 6)

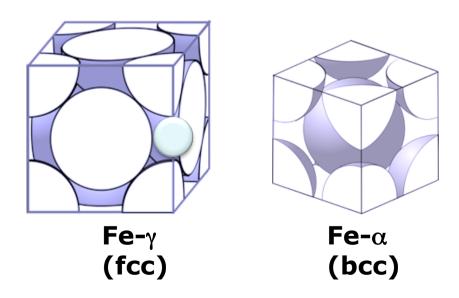

OCTAHEDRAL



In <u>compact</u> structures is certain that:

- No of tetrahedral sites = 2n
- No of octahedral sites = n
- n = No atoms in the cell

INTERSTITIAL SITES: IN FCC STRUCTURE



INTERSTICES: SOLUBILITY OF C IN IRON

- Different packing factors: f_{bcc}=0.68 and f_{fcc}=0.74
 ↓
 V_{interstices}(fcc)
 V_{interstices}(bcc), but No._{interstices}(fcc)>No._{interstice}(bcc)
- This fact allows us to explain the solubility of C in Fe:

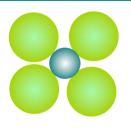
$$T_{room.} \Rightarrow Fe_a(bcc) \ 0.02-0.05\%C \Rightarrow ferrite$$

High T (>910 °C) $\Rightarrow Fe_v(fcc) \ 2\%C \Rightarrow austenite$

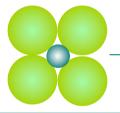
ELECTRONEUTRALITY IN IONIC CERAMICS

Ionic structure: packing of anions with cations in interstitials

Sizes C⁺ A⁻
$$\Rightarrow$$
 (r_{cation} < r_{anion})


The ions tend to pack densely in order to reduce E_{total}

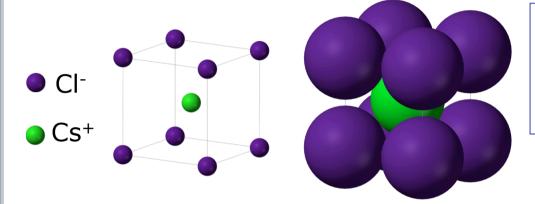
Electroneutrality


Coordination Index (By increasing C.I ⇒ increase stability)

Sharing of polyhedral (sharing vertices instead of edges or faces (increases the distance between cations)

PACKING OF IONS

STABLE


UNSTABLE

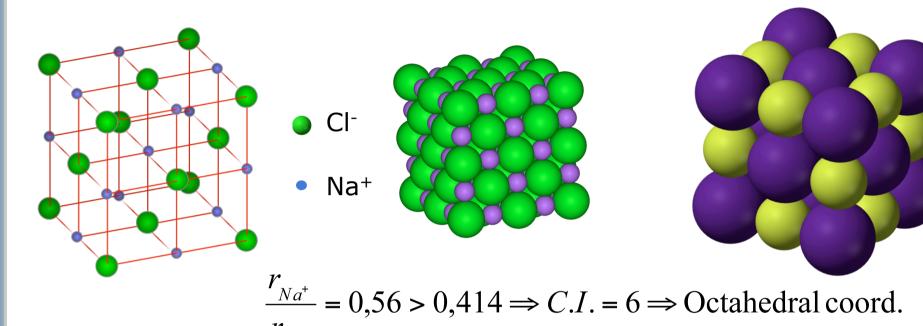
⇒vibrates in its cage of A

The relation between radius when A- and C+ are in contact ⇒ Relation of radius is critical (minimum)

	Arrangement of A- around C+ central and C.I.	Cation/anion Radius ratio $m{\Gamma}_{ m C}/m{\Gamma}_{ m A}$
	C.I. 8 Corners of a cube	0.732-1.0
t	C.I 6 Corners of an octahedron	0.414-0.732
	C.I 4 Corners of a tetrahedron	0.225-0.414
	C.I. 3 Corners of a triangle	0.155-0.225
		`

SIMPLE CUBIC STRUCTURE: CsCl

•Cl-: cubic

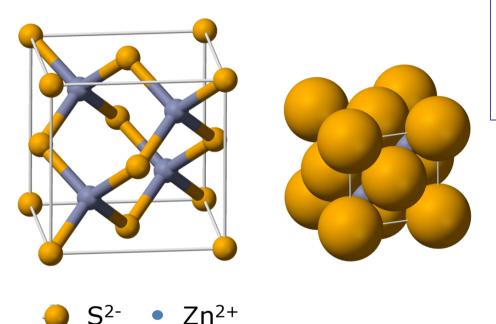

•Cs+: centre of the cube

•C.I.: 8

$$\frac{r_{Cs^+}}{r_{Cl^-}} = 0.94 > 0.732 \Rightarrow C.I. = 8 \Rightarrow \text{Cubic structure}$$

Ceramics that have this type of structure: CsBr, TICI, TIBr.

FCC STRUCTURE: NaCl


•Cl⁻: FCC packing

•Na: all octahedral interstitials.

•4 Na+ and 4 Cl- per unit cell C.I.=6

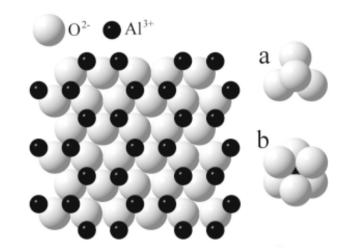
Ceramics that have this type of structure: MgO, CaO, FeO, NiO

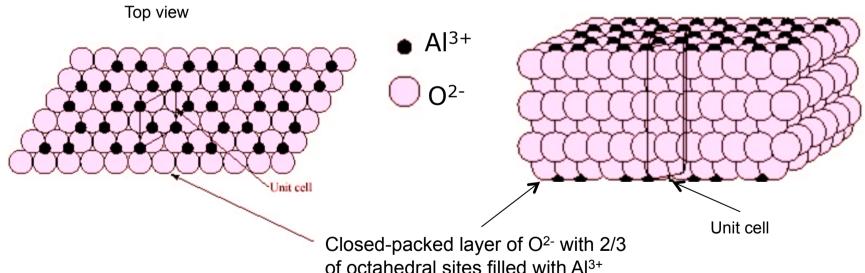
FCC STRUCTURE: Zn Blende-ZnS

- ■S²⁻: FCC packing
- ■Zn²⁺: ½ tetrahedral interstitials
- •4 Zn²⁺ and 4 S²⁻ per unit cell

$$\frac{r_{Zn^{2+}}}{r_{S^{2-}}} = 0.345 \Rightarrow C.I. = 4$$

According to Pauling bond Zn-S ~87% covalent


Ceramics that have this type of structure: Typical semiconductors : CdS, HgTe, NiAs, SiC, GaAs

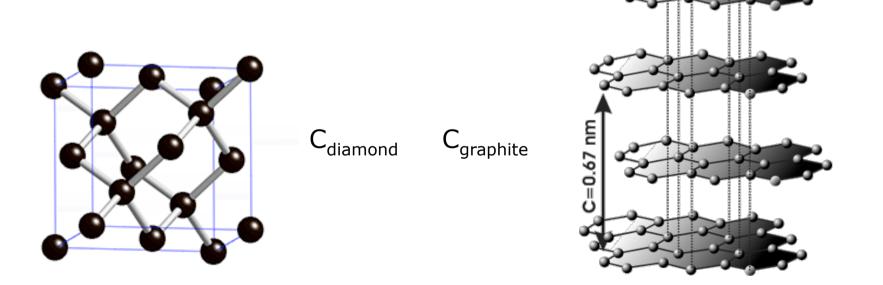

HCP STRUCTURE: CORUNDUM (ALUMINA)

 \bullet O²⁻: HCP packing → 6 ions

•Al³+: 2/3 octahedral interstitials → 4 ions

•I.C.(Al³⁺): 6; I.C.(O²⁻): 6

Ceramics that have this type of structure: Cr_2O_3 , Fe_2O_3 , Al_2O_3 ...


POLYMORPHISM AND ALLOTROPY

The same element or compound can exist in more than one crystalline state under ≠ conditions of P and T.

Diamond-Graphite:

Diamond \Rightarrow 3D covalent structure \Rightarrow hard, transparent, insulator Graphite ⇒ Laminar structure⇒ Secondary bonds between layers ⇒

soft, non transparent, conductor

POLYMORPHISM AND ALLOTROPY

Zirconia (ZrO₂):

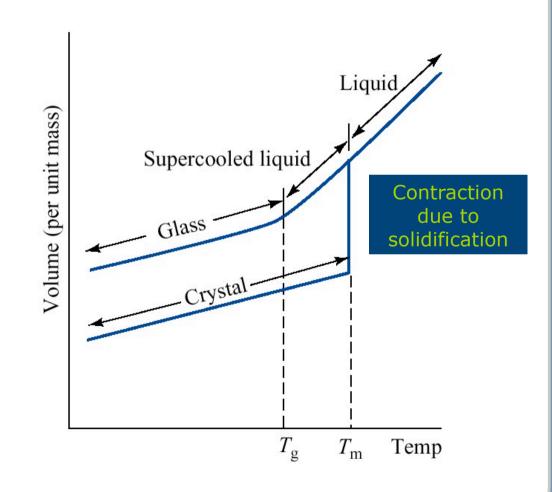
- • ZrO_2 in $Al_2O_3 \Rightarrow$ increases the mechanical properties of alumina
- • $ZrO_2(cubic)$ → $ZrO_2(tetragonal)$ → $ZrO_2(monoclinic)$ \Downarrow structure CaF_2 -fcc dimensional deformation

 that consumes energy $\Rightarrow \uparrow$ toughness

Iron (steels):

BCC at room temperature; FCC from 910 °C ⇒ possibility of thermal treatment

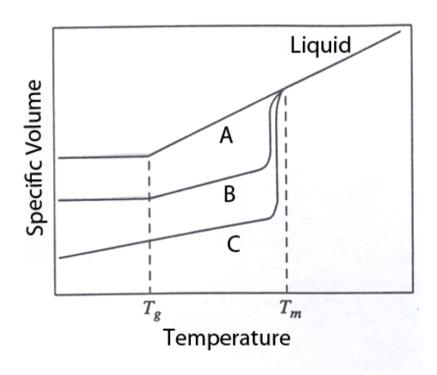
AMORPHOUS MATERIALS AND SOLIDIFICATION


Crystalline Solid

Starting from liquid state, lowering the temperature, solidifies at the melting/ solidification temperature (T_m)

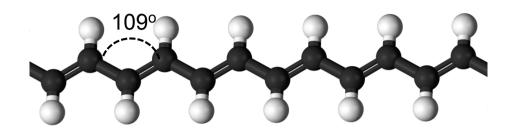
GLASS

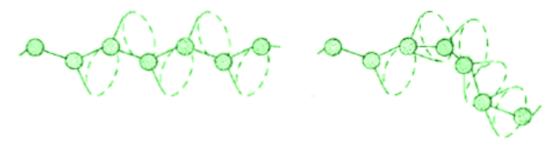
Starting from the liquid state, lowering the temperature, viscosity increases.


Plastic State ⇔ Rigid State

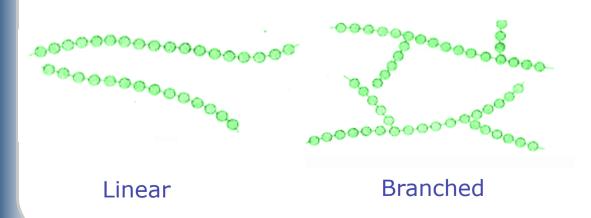
GLASS TRANSITION TEMPERATURE

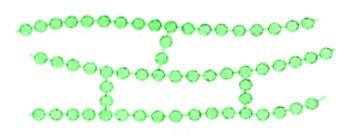
T_m: Melting Temperature. Associated with crystalline zones


T_g: **Glass Transition** Temperature. Associated with amorphous zones


- A. Amorphous
- B. Semicrystalline
- C. 100% crystalline

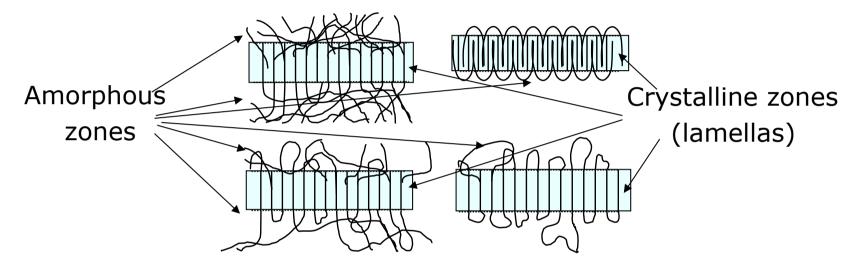
 $T>T_q \Rightarrow$ Rubbery or leathery state


POLYMERS: CHAIN STRUCTURES



Chains of polymeric molecules NOT necessarily straight:

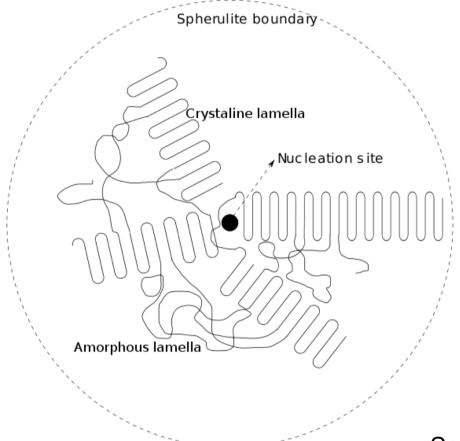
MOLECULAR ARCHITECTURE

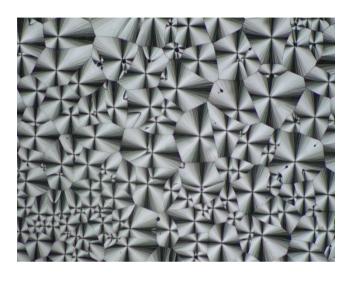


Crosslinked (branched polymer interconnected forming a network)

POLYMERS: AMORPHOUS AND CRYSTALLINE

Chain-folded model

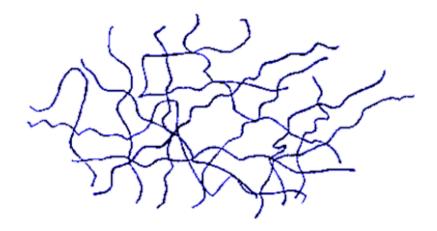



Amorphous polymer: Structure of disordered polymeric chains (as in liquid) but it behaves like a solid

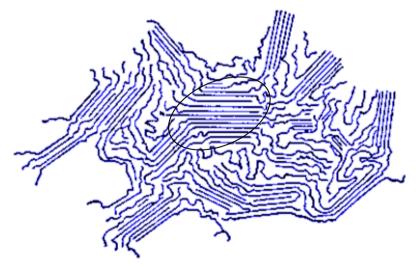
Semicrystalline polymer: Amorphous regions (disordered chains) and crystalline regions (ordered chains)

POLYMERS: AMORPHOUS AND CRYSTALLINE

Shperulites



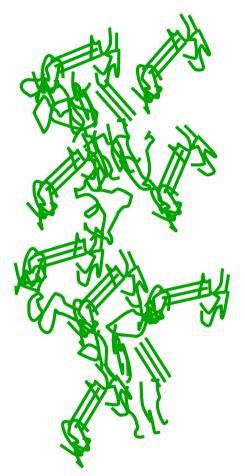
William D. Callister, Jr., Materials Science and Engineering An Introduction: John Wiley & Sons, Inc.


Some polymers that are crystallized from a melt form a **spherulite structure**.

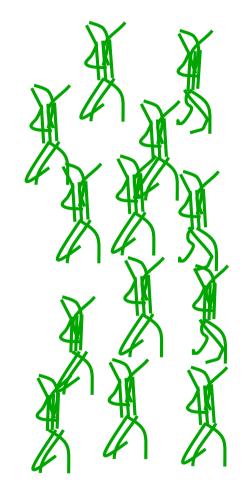
POLYMERS: AMORPHOUS AND CRYSTALLINE

Amorphous polymer

A semicrystalline polymer consists of crystalline regions (**crystallites**), which are interspersed with amorphous regions of randomly oriented molecules


Semicrystalline polymer

Fringed-micelle model of a semicrystalline polymer


POLYMERS: STRUCTURE AND ISOTROPY

Amorphous solid

Semicrystalline solid

Oriented semicrystalline solid

ISOTROPIC

ANISOTROPIC