

Universidad Carlos III de Madrid www.uc3m.es

MATERIALS SCIENCE AND ENGINEERING

TOPIC 2. STRUCTURE OF MATERIALS III

Topic 2.3:

- Crystalline defects.
- Solid solutions.

PERFECT AND IMPERFECT CRYSTALS

Perfect crystal: All the atoms are in the ideal lattice positions (only true at 0 K).

Real crystal: atoms vibrate

- There positions that are not occupied (vacancies)
- atoms displaced from ideal positions
- There are defects that modify the properties

PERFECT AND IMPERFECT CRYSTALS

 $\begin{array}{l} \mbox{Thermodynamics} \Rightarrow \mbox{Justify } \exists \mbox{ of defects, as } \downarrow \Delta G_{\mbox{crystal}} \\ \mbox{Creation of a defect} \Rightarrow \Delta H > 0 \mbox{ and } \Delta S > 0 \end{array}$

Configuration Entropy \Rightarrow S = k_B ln W

 K_B = Boltzmann constant =1.380622 10⁻²³ JK⁻¹ W=way of distributing n defects in N possible positions arbitrarily In 1 mol of C⁺ there are N_A possibilities to create 1 vacancy W $\propto 10^{23}$

$$W = \frac{N!}{(N-n)!n!}$$

Vacancy or defect: $\Delta H < T\Delta S$ $\Delta G = \Delta H - T\Delta S < 0$

When $\uparrow T \Rightarrow \uparrow$ [defects]

DEFECTS TYPES (according to dimensions)

1. Point :

Vacancies Interstitials Substitutional Schottky Frenkel Order-Disorder

2. Linear: dislocations:

Edge Screw Mixed

3. Complex: "clusters"

4. Planar or Extended

External Surfaces Grain Boundaries Twin Boundaries Stacking Faults

4

5

POINT DEFECTS: VACANCIES AND INTERSTITIALS

Vacancy: When an atom is missing from a position where it should be.
Interstitial: An atom from the crystal occupies the place of an interstitial (self-interstitial or interstitialcy)

POINT DEFECTS: SCHOTTKY AND FRENKEL

DEFECTS IN IONIC CRYSTALS

Schottky Defect: Vacancy in an ionic crystal.

In order to maintain neutrality \Rightarrow Anionic and cationic vacancies appear

Frenkel Defect: migration of an ion from its normal position to an interstitial position (combination vacancy-interstitial)

UC3M

6

POINT DEFECTS: SCHOTTKY AND FRENKEL

N^o of Schottky defects: n_s

$$n_s = N \exp(-\frac{\Delta H_s}{2RT})$$

N^o of Frenkel defects : n_F

$$n_{F} = \sqrt{NN_{i}} \exp(-\frac{\Delta H_{F}}{2RT})$$

 $\Delta H_{S} = E$ for Schottky defect creation $\Delta H_{F} = E$ for Frenkel defect creation $N = n^{o}$ of lattice positions $N_{i} = n^{o}$ of interstitial positions T = Temperature (K)

In a crystal $\Delta H_S \neq \Delta H_F \Rightarrow$ the defect with the lowest ΔH will form

nº defects increases with temperature

POINT DEFECTS: SCHOTTKY AND FRENKEL

		Compound	∆H (eV)	∆H (10 ⁻¹⁹ J)	
	Schottky defects	MgO	10.57	6.60	
		CaO	9.77	6.10	
		LiF	3.75	2.34	
		LiCl	3.40	2.12	
		NaCl	3.69	2.30	
		KCI	3.62	2.26	
	Frenkel defects	ZrO ₂	6.57	4.10	
		CaF ₂	4.49	2.80	
		SrF_2	1.12	0.70	
		AgCl	2.56	1.60	
		AgBr	1.92	1.20	
NaCl (T_f =801 °C) ΔH_s = 3.69x10 ⁻¹⁹ J T=300K n_s = 2.64x10 ⁴ vacancies/mol T=1000K n_s = 9.38x10 ¹⁷ vacancies/mol			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		
$\Delta H_s(MgO) > \Delta H_s(NaCl)$ $\Rightarrow n_s low, more difficult to create vacancies.$					

Dpt. Materials Sci. and Eng. and Chem. Eng.

9

POINT DEFECTS: ORDER-DISORDER IN SOLID SOLUTIONS

Order-disorder phenomena (<u>in substitutional solid solutions</u>):

Atoms of one sub-lattice occupy positions corresponding to the other and vice versa (metallic alloys). *Solids with elements that have similar electronegativity*

LINEAR DEFECTS : DISLOCATIONS

DISLOCATIONS

They are defects that produce distortion in the lattice situated around a line.

Characteristics: they can be displaced in the interior of a crystal by applying relatively low forces and can produce a complete displacement over crystalline planes.

Explain: - E_{theoretical} (Young modulus) > E_{experimental} - Plastic deformation in metals (workability, ductility)

Formation: - during solidification

- through plastic or permanent deformation of crystal
- through concentration of vacancies
- through atomic disarrangements in solid solutions
- **Types:** edge dislocation, or Taylor dislocation

UC3M

- screw dislocation, or Burgers dislocation
- mixed dislocation

EDGE DISLOCATIONS (or TAYLOR)

 \Rightarrow Geometric modification of the lattice: equivalent to an extra plane of atoms \Rightarrow Energetic modification (they store energy)

Direction of motion

http://commons.wikimedia.org/wiki/File:Dislocation_coin_et_deformation_3d.svg

Dislocation line.- \perp point A Slipping plane.- line of points

William D. Callister, Jr., Materials Science and Engineering : An Introduction, John Wiley & Sons, Inc.

EDGE DISLOCATIONS (or TAYLOR)

* Dislocation characterization: Burgers Vector (b)

Burgers Vector: magnitude and direction of the lattice distortion associated with the dislocation

Magnitude: distance 1-5 Direction: 1-5 or 5-1 $\mathbf{b} \perp$ to dislocation line $\mathbf{b} \mid \mid$ to the direction movement

SCREW DISLOCATIONS (or BURGER)

➡ Locally curves some atom lines. The effect is as if a shear stress is applied to produce a distortion

Direction of motion

http://commons.wikimedia.org/wiki/File:Dislocation_vis_et_deformation_3d.svg

We can move from the inferior to the superior plane through the dislocation line.

William D. Callister, Jr., Materials Science and Engineering : An Introduction, John Wiley & Sons, Inc.

SCREW DISLOCATIONS (or BURGER)

* Burgers Vectors in screw dislocations:

The magnitude and distance from 1-5 define **b** || to dislocation line SS '

 $\boldsymbol{b} \perp$ to the direction of movement

MIXED DISLOCATIONS

If there are many dislocations \Rightarrow they are mixed (**MIXED dislocations**)

http://commons.wikimedia.org/wiki/Eile:Dislocation_mixte_perspective_iso.svg http://commons.wikimedia.org/wiki/Eile:Dislocation_mixte_et_deformation_3d.svg

UC3M

the second secon

The Burgers vector will be the same at all points along its line even though the dislocation might change direction and nature within a crystal.

William D. Callister, Jr., Materials Science and Engineering : An Introduction, John Wiley & Sons, Inc.

Dpt. Materials Sci. and Eng. and Chem. Eng.

DISLOCATIONS MOVEMENT

Dislocation movement (edge and screw) when a shear stress is applied

slip direction: the direction in which the dislocation moves

slip plane: the plane in which the dislocation moves

The combination of the slip direction and the slip plane is the **slip system**

PLASTIC DEFORMATION : SLIPPING OF DISLOCATIONS

E used to move a dislocation = E $\propto |b|^2$

Compact Direction

$$|b| = 2R$$

$$E_b \propto 4R^2$$

NON Compact Direction

A.R. West. "Solid State Chemistry and its applications". Wiley.Chichester,1992

$$b^2 + b^2 = (4R)^2 \Rightarrow b = 2\sqrt{2} \cdot R$$

PLANAR DEFECTS: GRAIN BOUNDARIES

They separate crystals with different orientation . Formation: during solidification: \neq crystals are formed when \neq nuclei grow simultaneously.

http://commons.wikimedia.org/wiki/File:Joint_de_grain_reseau_coincidence.svg

PLANAR DEFECTS : GRAIN BOUNDARIES

When grain size ↓ ⇒Mechanical resistance↑ Dislocation movement is limited when there are many grain boundaries.

William D. Callister, Jr., Materials Science and Engineering : An Introduction, John Wiley & Sons, Inc.

PLANAR DEFECTS: EXTERNAL SURFACES

EXTERNAL SURFACE

It is the end of the crystal or grain structure Coordination numbers at the surface < at the interior of the crystal \Rightarrow $E_{surface}>$ $E_{interior}$

PLANAR DEFECTS : STACKING FAULTS

STACKING FAULTS

In fcc and hcp structures

hcp fcc perfect lattice : ...ABABAB... ...ABCABCABC... Stacking fault: ...ABAB<u>C</u>AB... ...ABC<u>AB</u>ABC...

PLANAR DEFECTS : TWIN BOUNDARIES

Twin boundary:

Boundary that separates two parts of a crystal with a small difference in the orientation (misorientation) of the planes (crystal twinning). Highly symmetrical interface, often with one crystal the mirror image of the other

Formation: Deformation process or during thermal treatments

*Produce \uparrow mechanical resistance \Rightarrow make difficult dislocation gliding

PLANAR DEFECTS: TWIN BOUNDARIES

Brass (70 Cu / 30 Zn)

SOLID SOLUTION

Formation of a SOLID SOLUTION

Def. "Solid that has 2 or more elements dispersed as atoms in a structure that has only one phase "

"Phase of variable composition"

SUBSTITUTIONAL

 solute or impurity
 atoms replace or substitute the host atoms

INTERSTITIAL,

elements with small radius in octahedral or tetrahedral sites (H, C, N, B y N)

When we add another element to a material in the liquid state

FORMATION of a new PHASE

UC3M

SOLID SOLUTION

A) Substitutional solid solution

T>T_f during cooling 70g Cu (fcc) + 30 g Ni (fcc) in liquid state \rightarrow new structure with a intermediate between Cu and Ni

UC3M

B) Interstitial solid solution

Small atoms located in octahedral sites or tetrahedral sites

SOLID SOLUTION : HUME-ROTHERY RULES

Hume-Rothery rules for the formation of substitutional solid solutions :

- 1) The same crystal structure
- 2) Atoms or ions with **similar radius**
 - •For ceramics difference < 30%
 - •For metals difference < 15%
 - For differences > 15% limited solubility (<1%)
- 5) They must have similar **electronegativities**
- 6) Valance: In ceramics: They must have the same valance.

If all conditions are fulfilled \Rightarrow we do not necessarily have total solubility_

-If one or more conditions are not fulfilled \Rightarrow <u>partial</u> <u>solubility</u>