

Chemistry

TOPIC 2

States of Matter (I) - Gases

General Chemistry

Contents

- 1. Introduction
- Pressure measurement
- 3. The Ideal Gas equation
- 4. Efusion and Diffusion
- 5. Kinetic Molecular Theory
- 6. Dalton's Law of Partial Pressure
- 7. Real Gases: van der Waals equation

General Chemistry

1. Introduction

States of Matter

General Chemistry: Principles and Moderns Applications
R.H. Petrucci

	Distances	Interactions	Movement
Solid	Short	Very strong	Highly restricted
Liquids	Short	Strong	Restricted
Gases	Long	Weak	Almost Free

General Chemistry

1. Introduction

Where do we find gases?

http://en.wikipedia.org/wiki/File:Michael_Schumacher_Ferrari_2004.jpg

http://en.wikipedia.org/wiki/File:Automobile _exhaust_gas.jpg

General Chemistry

2. Pressure Measurement

Barometer

 $P = d \cdot g \cdot h$

d = density

g = gravity

h = height

1 atm = 760 mmHg ⇒ atmospheric pressure at sea level

1 Torr = 1 mmHg

 $Pa = N/m^2 <> 1/133.322 Torr$

Standard Atmospheric

Pressure

1.00 atm

760 mm Hg, 760 Torr

101.325 kPa 1.01325 bar

1013.25 mbar

General Chemistry

2. Pressure Measurement

Manometer

General Chemistry

3. Gases Laws

 $P \propto 1/V$ when T & n are constant

$$P \cdot V = k$$

$$P_1 \cdot V_1 = P_2 \cdot V_2 = P_3 \cdot V_3 = \cdot \cdot \cdot$$

http://www.grc.nasa.gov/WWW/K-12/airplane/boyle.html

For a fixed amount of an ideal gas at a constant temperature, pressure and volume are inversely proportional.

General Chemistry

3. Gases Laws

Charles and Gay-Lussac's Law

Image from: http://www.unizar.es/lfnae/luzon/CDR3/charles.jpg

$$V \propto T$$

$$V_1/T_1 = V_2/T_2 = k$$

(P & n constant)

$$V = a(t + 273)$$
 where:

- V=volume
- t=temperature in Celsius
- a= slope of the straight line.

$$T = 273.15 + t$$

T=Absolute temperature (K)

For a fixed amount of an ideal gas at a constant pressure, the volume is directly proportional to the temperature. $V = c \cdot T$

General Chemistry

3. Gases Laws

The Ideal Gas equation

Boyle's law
 Charles's law
 Avogadro's law
 V \propto 1/P
 V \propto T
 V \propto n

PV = nRT

The Gas Constant

At STP (0 $^{\circ}$ C and 1atm) 1 mol gas = 22.4 L gas

$$R = \frac{pV}{nT} = \frac{1atm * 22.4L}{1mol * 273.15K} = 0.082 \frac{atmL}{Kmol}$$

$$R = 8,206 \cdot 10^{-2} \text{ atm} \cdot \text{l·mol}^{-1} \cdot \text{K}^{-1}$$

<> 8.314 J·mol $^{-1} \cdot \text{K}^{-1}$ <> 1,987 cal·mol $^{-1} \cdot \text{K}^{-1}$

General Chemistry

4. Diffusion and Efusion

Graham's Law

Graham's law states that the rate of diffusion of a certain gas is inversely proportional to the square root of its molecular weight.

$$R \propto \sqrt{\frac{1}{\rho}}$$

$$R \propto \sqrt{\frac{1}{M}}$$

General Chemistry

4. Diffusion and Efusion

Efusion

Why do tyres deflate?

$$\frac{\text{rate of effusion of A}}{\text{rate of effusion of B}} = \frac{R_A}{R_B} = \sqrt{\frac{M_B}{M_A}}$$

Graham's Law

General Chemistry

5. Kinetic Molecular Theory

- Particles are point masses (with no volume) in constant, random and straight line motion.
- Particles are separated by great distances, almost infinite.
- Collisions are elastic.
- There are no intermolecular forces between the particles.
- The total energy of the system remains constant.

Why do tyres deflate?

Probability
$$\propto \frac{N}{V}$$

$$p = \frac{Nm \overline{u^2}}{3V}$$

$$Concentration = \frac{N}{V}$$

Energy per collision = $m\overline{u^2}$

Degrees of liberty = 3

General Chemistry

5. Kinetic Molecular Theory

Let's consider 1 mol of gas:

$$PV = \frac{1}{3} N_A m \overline{u}^2$$

If
$$PV = RT$$
 (for $n = 1 \text{ mol}$):

$$3RT = N_A m \overline{u}^2$$

Considering that $N_A \mathbf{m} = \mathbf{M}$:

$$3RT = M\overline{u}^2$$

General Chemistry

6. Dalton's Law of Partial Pressure

The total pressure of a mixture of gases is the sum of the pressures that each gas would exert if it were present alone.

$$p_T = p_A + p_B + p_C + \dots = \sum_{i=1}^N p_i$$

$$p_i = \frac{n_i RT}{V}$$

$$V, T constant$$

$$where:$$

$$\chi_i = \mathbf{mole fraction}$$

$$p_T = \mathbf{total pressure}$$

Example: Calculate the total pressure of a mixture of H_2 and O_2 whose partial pressures are P_{H2} = 2.9 atm and P_{O2} = 7.2 atm respectively

$$P_1 = 3.1 \text{ atm}$$
 $P_2 = 6.4 \text{ atm}$
 $P_{total} = P_1 + P_2 = 9.5 \text{ atm}$

General Chemistry

7. Real Gases

For exactly one mole of an ideal gas:

$$\frac{PV}{RT} = 1.0$$

The factor "Z = PV/NRT" is known as **COMPRESSIBILITY FACTOR** and should be one for an ideal gas.

For exactly one mole of a real gas:

a) Effect of the nature of the gas

b) Effect of the temperature

Topic 2. States of Matter (I) - Gases.

General Chemistry

7. Real Gases

$$P \cdot V = n \cdot R \cdot T$$

The Ideal Gas Equation

$$(P + \frac{an^2}{V^2})(V - nb) = nRT$$
Pressure Volume
Correction Correction

The van der Waals Equation (a real gas equation)

a: Effect of intermolecular forces (i.e. nature of the gas)

b: Effect of molecular volume → Particles are NOT point masses (with no volume as states the kinetic molecular theory).