

General Chemistry

Thermochemistry

General Chemistry

Outline

- 1. Getting Started: Some terminology
- 2. State functions
- 3. Pressure-Volume Work
- 4. The First Law of Thermodynamics: Heat, work and enthalpy
- 5. Heat capacity and specific heat
- 6. Measurement of heat of reaction
- 7. Variation of the heat of reactions ($\Delta H \& \Delta E$) with temperature
- 8. Enthalpies of formation
 - a) Enthalpy and chemical reactions
 - b) The Indirect Determination of ∆H: Hess's Law
- 9. The Second Law of Thermodynamics: Entropy.
- 10.Entropy and the Third law of thermodynamics
- 11. Spontaneous change: Free energy

General Chemistry

6.1. GETTING STARTED: SOME TERMINOLOGY

Thermodynamics is a branch of physics which deals with the energy and work of a system.

Thermochemistry: Thermochemistry is a branch of thermodynamics focused on the study of heat change in chemical reactions.

- **Heat (H)** Heat *flows* from hotter to colder bodies.
- Work (W) Work includes all energies but heat.

Universe = System + Surroundings

SYSTEM: the specific part of the universe that is of interest to us. **SURROUNDINGS:** the rest of the universe outside the system.

General Chemistry

System


- Open system
- Closed system
- **Isolated system**

EXOTHERMIC PROCESS

- Heat is released (Q_f Q_i < 0)
- The reactants have more energy than the products.

ENDOTHERMIC PROCESS

- Heat is absorbed (Q_f Q_i > 0)
 The products have more energy than the reactants.

General Chemistry

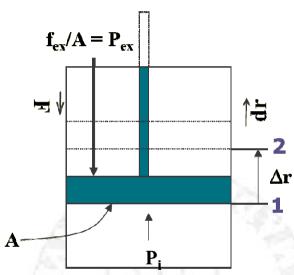
6.2. STATE FUNCTIONS

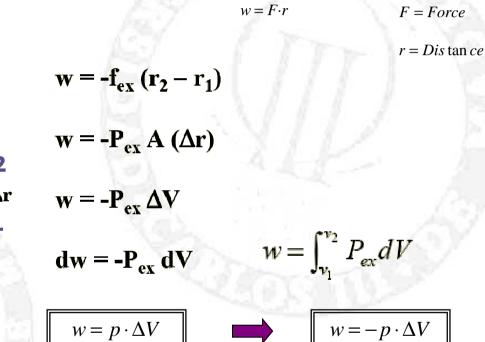
Any property that has a unique value for a specified state of a system is said to be a State Function.

$$\Delta X = X_{\text{final}} - X_{\text{initial}}$$

State function $(P, V, T) \Rightarrow$ State equation

- Thermodynamic State Functions: Thermodynamic properties that are dependent on the state of the system only. (Example: ΔE and ΔH)
- Other variables will be dependent on pathway (Example: Heat (q) and Work (w)). These are NOT state functions. In these cases, the pathway from one state to the other must be defined.




General Chemistry

4.3. PRESSURE-VOLUME WORK

Gas expansion

Work is done by the system.

 $\underline{\mathsf{HEAT}} \Rightarrow \mathsf{Energy}$ is transferred due to the different temperature of the bodies.

(1 cal <> 4,18 J).

General Chemistry

4.4. THE FIRST LAW OF THERMODYNAMICS

- Law of Conservation of Energy: The energy of an isolated system is constant.
 - Internal Energy, U (E)
 - Total energy (potential and kinetic) in a system.

$$\Delta U_{\text{universe}} = 0$$

$$\Delta U_{\text{universe}} = \Delta U_{\text{system}} + \Delta U_{\text{surroundings}} = 0$$

$$\Delta U_{\text{system}} = -\Delta U_{\text{surroundings}}$$

$$\Delta \mathbf{U} = \mathbf{q} + \mathbf{w}$$

General Chemistry

4.4. THE FIRST LAW OF THERMODYNAMICS

V = constant

$$\Delta V = 0 \Rightarrow W = 0$$

$$\Delta U = q + w$$

$$\Delta U = Q_v$$

P = constant

$$\Delta P = 0$$

$$\Delta U = q + w$$

$$\mathbf{Q_p} = \Delta \mathbf{U} - \mathbf{w} = \Delta \mathbf{U} - (-\mathbf{p} \cdot \Delta \mathbf{V})$$
$$\Delta \mathbf{H} = \Delta \mathbf{U} + \Delta (\mathbf{PV})$$

 $H = State function : \Delta H_r = H(products) - H(reactants)$

- Solids, Liquids: $\Delta H \approx \Delta E$
- Gases (T = constant): $\Delta H = \Delta E + RT\Delta n$

General Chemistry

6.5. SPECIFIC HEAT AND HEAT CAPACITY

Heat Capacity

$$\Delta \mathbf{P} = \mathbf{0}$$
 $C_p = \frac{dQ_p}{dT} = \frac{dH}{dT}$

$$\Delta \mathbf{P} = \mathbf{0} \qquad C_p = \frac{dQ_p}{dT} = \frac{dH}{dT} \qquad Q_p = n \int_{T_1}^{T_2} C_p dT = n C_p \int_{T_1}^{T_2} dT = n C_p \Delta T \qquad \Delta H = n C_p \Delta T$$

$$\Delta H = nC_p \Delta T$$

$$\Delta V = 0$$
 $C_v = \frac{dQ_v}{dT} = \frac{dE}{dT}$

$$\Delta \mathbf{V} = \mathbf{0} \qquad \mathbf{C}_{\mathbf{v}} = \frac{d\mathbf{Q}_{\mathbf{v}}}{d\mathbf{T}} = \frac{d\mathbf{E}}{d\mathbf{T}} \qquad \mathbf{Q}_{\mathbf{v}} = \mathbf{n} \int_{T_{\mathbf{I}}}^{T_{\mathbf{2}}} \mathbf{C}_{\mathbf{v}} d\mathbf{T} = \mathbf{n} \mathbf{C}_{\mathbf{v}} \int_{T_{\mathbf{I}}}^{T_{\mathbf{2}}} d\mathbf{T} = \mathbf{n} \mathbf{C}_{\mathbf{v}} \Delta \mathbf{T} \qquad \underline{\Delta E = nC_{\mathbf{v}} \Delta T}$$

$$\Delta E = nC_{v}\Delta T$$

C_v and C_p (1 mole)

$$H = E + pV \longrightarrow \frac{dH}{dT} = \frac{dE}{dT} + \frac{d(pV)}{dT}$$

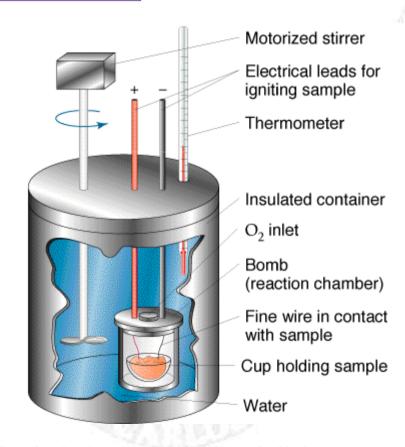
$$Cp = Cv + \frac{d(pV)}{dT}$$

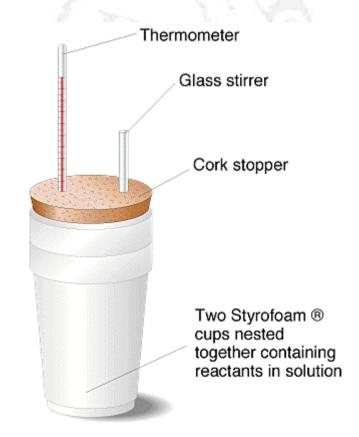
Solids, Liquids:

$$d(PV)/dT \text{ small } \Rightarrow C_p \approx C_v$$

Gases:

$$PV = RT \Rightarrow$$

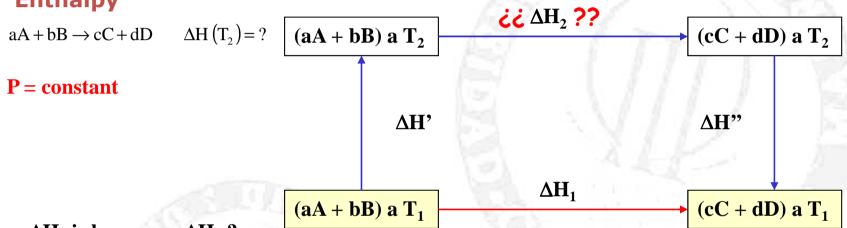

$$PV = RT \implies C_p = C_v + R$$



General Chemistry

6.6. MEASUREMENT OF HEAT OF CHEMICAL REACTIONS

Calorimeter


Images from: http://www.chem.ufl.edu/~itl/2045/lectures/lec_9.html

General Chemistry

6.7. VARIATION OF THE HEAT OF REACTIONS ($\Delta H \& \Delta E$) WITH TEMPERATURE

 ΔH_1 is known ΔH_2 ?

$$\Delta \mathbf{H}_1 = \Delta \mathbf{H}' + \Delta \mathbf{H}_2 + \Delta \mathbf{H}''$$

$$C_p(reactants) = aC_p(A) + bC_p(B)$$

$$C_{p}(products) = cC_{p}(C) + dC_{p}(D)$$

$$\Delta H' = \int_{T_1}^{T_2} C_p (reactants) dT$$

$$\Delta H'' = \int_{T_2}^{T_1} C_p(\text{products}) dT$$

$$\Delta H'' = -\int_{T_1}^{T_2} C_p (products) dT$$

General Chemistry

6.7. VARIATION OF THE HEAT OF REACTIONS ($\Delta H \& \Delta E$) WITH TEMPERATURE

Enthalpy

$$\Delta H_2 = \Delta H_1 + \int_{T_1}^{T_2} C_p (products) dT - \int_{T_1}^{T_2} C_p (reactants) dT$$

P = constant

$$\Delta H_2 = \Delta H_1 + \int_{T_1}^{T_2} \Delta C_p dT$$

Usually ΔCp is small $\Rightarrow \Delta H \neq f(T)$

Internal Energy

V = constant

$$\Delta E_2 = \Delta E_1 + \int_{T}^{T_2} \Delta C_v dT$$

Molar heat capacity at constant volumen, $C_{\rm v}$

General Chemistry

6.8. ENTHALPIES OF FORMATION

A) Enthalpy and Chemical Reactions

Standard Enthalpies of Formation

The enthalpy change that occurs in the formation of one mole of a substance in the standard state from the reference forms of the elements in their standard states.

The standard enthalpy of formation of a pure element in its reference state is 0.

Standard Enthalpies of Reaction

For the reaction:

$$aA+bB \rightarrow cC+dD$$

$$\Delta H_{rxn}^{0} = \sum n\Delta H_{f(product)}^{0} - \sum n\Delta H_{f(rea)}^{0}$$

$$\Delta H_{rxn}^{0} = \left[c\Delta H_{f}^{0}(C) + d\Delta H_{f}^{0}(D)\right] - \left[a\Delta H_{f}^{0}(A) + b\Delta H_{f}^{0}(B)\right]$$

General Chemistry

6.8. ENTHALPIES OF FORMATION

B) The Indirect Determination of ΔH : Hess's Law

The direct Method

C (graphite) +
$$O_2$$
 (g) \rightarrow CO_2 (g) $\Delta H_r^0 = -393,5 \text{ kJ}$

$$\Delta H_r^0 = (1mol)\Delta H_f^0(CO_2, g) - \left[(1mol)\Delta H_f^0(C, graphite) + (1mol)\Delta H_f^0(O_2, g) \right]$$

$$\Delta H_r^0 = (1mol)\Delta H_f^0(CO_2, g) - \left[0 + 0 \right] \Rightarrow \Delta H_f^0(CO_2, g) = 0$$

The Indirect Method: Hess's Law

Hess's Law says that enthalpy changes are additive.

For a given reaction, ΔH is the same whether it occurs in one step or in a series of steps.

For example:

If Reaction (1) = Reaction (2) + Reaction (3)

$$\Delta H_1 = \Delta H_2 + \Delta H_3$$

General Chemistry

6.8. ENTHALPIES OF FORMATION

B) The Indirect Determination of ΔH : Hess's Law

Example: enthalpy of formation of acethylene

$$2 C (graphite) + H_2 (g) \rightarrow C_2 H_2 (g)$$
 (non possible rxn)

C (graphite) +
$$O_2$$
 (g) \rightarrow CO_2 (g) $\Delta H_r^0 = -393,5 \text{ kJ}$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$$
 $\Delta H_r^0 = -285.8 \text{ kJ}$

$$2 C_2 H_2 (g) + 5 O_2 (g) \rightarrow 4 CO_2 (g) + 2 H_2 O (l)$$
 $\Delta H_r^0 = -2598,8kJ$

$$\begin{array}{ll} \text{4C (graphite)} + \text{4O}_2 \left(g \right) & \Delta H_r^{\ 0} = \text{-}1574,0 \text{ kJ} \\ \text{2H}_2 \left(g \right) + \text{2/2O}_2 \left(g \right) & \Delta H_2^{\ 0} = \text{-}571,6 \text{ kJ} \\ \text{4 CO}_2 \left(g \right) + 2 \text{ H}_2 \text{O} \left(l \right) & \Delta H_r^{\ 0} = \text{-}571,6 \text{ kJ} \\ \text{4C (graphite)} + 2 \text{H}_2 \left(g \right) & \Delta H_r^{\ 0} = 2598,8 \text{ kJ} \\ \text{4C (graphite)} + 2 \text{H}_2 \left(g \right) & \Delta H_r^{\ 0} = 453,2 \text{ kJ} \end{array}$$

2 C (graphite) +
$$H_2$$
 (g) \rightarrow C_2H_2 (g) $\Delta H_r^0 = 226,6 \text{ kJ}$

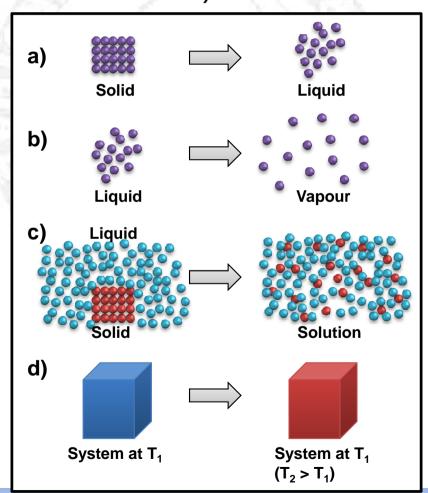
$$\Delta H_f^0 (C_2 H_2) = \Delta H_r^0 (C_2 H_2) / \text{mol} = 226,6 \text{ kJ/mol}$$

General Chemistry

6.9. THE SECOND LAW OF THERMODYNAMICS: ENTROPY.

It is a measure of the randomness of molecules in a system.

Entropy is a state function:


$$\Delta S = S_{final} - S_{initial}$$

Examples:

- a) Melting of a solid
- b) Vaporization of a liquid
- c) Solution formation
- d) Increase of the temperature of a body

In every case

$$\Delta S = S_{final} - S_{initial} > 0$$

General Chemistry

6.9. THE SECOND LAW OF THERMODYNAMICS: ENTROPY.

The Second Law of Thermodynamics

$$\Delta S_{\text{total}} = \Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$$

$$\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}} > 0$$
 Spontaneous Process

$$\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings} = 0$$

Equilibrium

All spontaneous processes produce an increase in the entropy of the universe.

Evaluating entropy changes

$$aA+bB \rightarrow cC+dD$$

Like "H", the entropy is a state function and so the standard entropy of a chemical reaction can be calculated as follows:

$$\Delta S_{\text{system}} = \Delta S_{\text{reaction}}^0 = \left[cS_C^0 + dS_D^0 \right] - \left[aS_A^0 + bS_B^0 \right]$$

$$\Delta S_{reaction}^0 = \sum n S_{products}^0 - \sum m S_{reactants}^0$$

General Chemistry

Evaluating entropy changes

P = constant
$$\Delta S_{surroundings} \propto -\Delta H_{system}$$

Exothermic Process
$$\Delta H_{system} < 0$$
 \Longrightarrow $\Delta S_{surroundings} > 0$

Endothermic Process
$$\Delta H_{system} > 0$$
 \Longrightarrow $\Delta S_{surroundings} < 0$

$$\Delta S_{surroundings} = -\frac{\Delta H_{system}}{T}$$

•Spontaneous processes. Reversibility and Spontaneity.

Reversible Processes ⇒ quasistatic processes

Reversible Expanssion and compression: $(P_{int} = P_{ex} \pm dP)$

Reversible change of temperature: $(T_{ex} = T_{int} \pm dT)$

<u>Irreversible Processes</u> ⇒ the changes in the system are finite

General Chemistry

Reversible and irreversible processes

$$W_{reversible} < W_{irreversible}$$

Reversible Compression $(P_{int} = P_{ex} - dP)$:

$$\mathbf{W}_{\text{rev}} = -\int \mathbf{P}_{\text{ex}} \, d\mathbf{V} = -\int (\mathbf{P}_{\text{int}} + d\mathbf{P}) \, d\mathbf{V} \approx -\int \mathbf{P}_{\text{int}} \, d\mathbf{V}$$

<u>Irreversible Compression</u> (Pex $> P_{int}$):

$$w_{irrev} = -\int_{V_1}^{V_2} P_{ex} dV > -\int_{V_1}^{V_2} P_{int} dV = w_{rev}$$

Reversible Compression of an Ideal Gas:

$$W_{rev} = -\int P_{int} dV;$$
 $(P_{int} = nRT/V)$

$$w_{rev} = -\int_{V_1}^{V_2} \frac{nRT}{V} dV = -nRT \int_{V_1}^{V_2} \frac{dV}{V} = -nRT \ln \frac{V_2}{V_1}$$

$$w_{irrev} = -\int_{V_1}^{V_2} P_{ex} dV = -P_2(V_2 - V_1) > 0$$

General Chemistry

Reversible and irreversible processes

$$Q_{rev} > Q_{irrev}$$

$$\mathbf{Q}_{rev} = \Delta \mathbf{E} - \mathbf{w}_{rev}$$

 $\mathbf{Q}_{irrev} = \Delta \mathbf{E} - \mathbf{w}_{irrev}$

$$Q_{rev} - Q_{irrev} = w_{irrev} - w_{rev}$$

 $si \ w_{reversible} < w_{irreversible} \implies Q_{rev} > Q_{irrev}$

Calculating Entropy

$$\Delta S \equiv \int_{1}^{2} \frac{\delta Q_{rev}}{T}$$

$$\Delta S = \int_{1}^{2} \frac{\delta Q_{rev}}{T} = \frac{1}{T} \int_{1}^{2} \delta Q_{rev} = \frac{Q_{rev}}{T}$$

For an Ideal Gas, according to the kinetic theory: $E_c = 3/2RT$ If $T = constant \Rightarrow E = constant \Rightarrow \Delta E = 0 \Rightarrow w + Q = 0 \Rightarrow Q = -w$

$$Q_{rev} = -w_{rev} = nRT \ln V_1/V_2$$

$$\Delta S = Q_{rev}/T = nR ln V_2/V_1$$

For an expanssion: $V_2 > V_1 \Rightarrow \Delta S > 0$

Irreversible isothermal Expanssion:

$$\Delta S_{gas} = nR \ln V_2/V_1$$
 (S state function)

General Chemistry

6.10. ENTROPY AND THE THIRD LAW OF THERMODYNAMICS

The Third Law of Thermodynamics

The entropy of a pure perfect crystal at 0 K is zero.

$$S_i = Initial Entropy$$

$$S_f = Final Entropy$$

$$\Delta S = S_f - S_i$$

$$S_j = \text{entropy at 0 K}$$

$$\Delta S = S_f$$

The entropy of a certain substance increases with temperature

For one mole:

$$\Delta S = \int_{T_1}^{T_2} \frac{C_p}{T} dT \Rightarrow S_T - S_0 = \int_0^T \frac{C_p}{T} dT$$

Since
$$S_0 = 0 \implies$$

Since
$$S_0 = 0 \implies S_T = \int_0^T \frac{C_p}{T} dT$$

 S^0_{298} for a substance that melts at $T_{\rm f}$ < 298 K

$$\Delta S_{298}^{0} = \int_{0}^{T_{f}} \frac{C_{p}}{T} dT + \frac{\Delta H_{f}}{T_{f}} + \int_{T_{f}}^{298} \frac{C_{p}'}{T} dT$$

General Chemistry

6.11. SPONTANEOUS CHANGE: FREE ENERGY

According to the second law of thermodynamics, for an spontaneous process:

 $\Delta S = 0 \Rightarrow$ Reversible Process

 $\Delta S > 0 \Rightarrow$ Irreversible or Spontaneous Process

 $\Delta S_{surroundings}$ is difficult to calculate, therefore:

$$\begin{split} \Delta S_{\text{univ}} &= \Delta S_{\text{syst}} + \Delta S_{\text{surround}} > 0; \\ \Delta S_{\text{univ}} &= \Delta S_{\text{syst}} - \Delta H_{\text{syst}} / T > 0; \\ T \cdot \Delta S_{\text{univ}} &= T \cdot \Delta S_{\text{syst}} - \Delta H_{\text{syst}} > 0; \end{split}$$

Gibbs Free Energy
$$G = H - T \cdot S$$

$$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \cdot \Delta \mathbf{S}$$

Since G is a state function

$$\Delta G_{reaction}^0 = \Delta G_{products}^0 - \Delta G_{reactants}^0$$

 $\Delta G < 0$ Spontaneous Process

 $\Delta G = 0$ Equilibrium is established

Criteria for spontaneous changes

 $\Delta G > 0$ Non-Spontaneous Process

General Chemistry

Bibliography

- ✓ R. Chang. *Chemistry*. McGrawHill, Ninth edition. Chapters 6, 18.
- ✓ R. H. Petrucci, W. S. Harwood, F. G. Herring, J. Madura. *General Chemistry. Principles and Modern Applications*. Prentice Hall, Ninth edition. Chapters 7 and 19.
- ✓ J. McMurry, R.C. Fay. Chemistry. Pearson, Fourth edition. Chapters 8.