Universidad Carlos III de Madrid

SELF ASSESSMENT TEST TOPIC 06

1. Given the following data:

Enthalpy of formation of propane: ΔH_{f}^{o} (C₃H₈) = -103kJ/mol

Enthalpy of formation of carbon dioxide: $\Delta H_f^0 CO_2(g) = -393.5 \text{ kJ/mol}$;

Enthalpy of formation of water: $\Delta H_f^0 H_2O(I) = -285.5 \text{ kJ/mol}$.

Calculate the standard enthalpy of combustion of propane

- A) -141.5 kJ/mol
- B) -64.5 kJ / mol
- C) -2425.5 kJ/mol
- D) -2219.5 kJ/mol
- 2. Calculate the heat needed to raise the temperature of 1000 litres of water in a reservoir from 25 °C to 50 °C to be used as part of the heating system of a factory.

Data: Specific heat capacity of water is 4.187 kJ·kg $^{-1}$ ·K $^{-1}$; Density (H2O, 25 $^{\circ}$ C) = 997.1 kg·m $^{-3}$.

- A) -141.5 kJ/mol
- B) -64.5 kJ / mol
- C) -2425.5 kJ/mol
- D) -2219.5 kJ/mol
- 3. For which of the substances below is the enthalpy of formation equal to cero, $\Delta H_{\rm f}^0$ = $\,$ 0 ?
 - A) $N_2(I)$
 - B) $He_2(g)$
 - C) Ar(g)
 - D) C (diamond)
- 4. To which of the following reactions occurring a 25 $^{\circ}$ C does the symbol $\Delta H_{\rm f}^0$ [CH₃OH(I)] apply?
 - A) C(graphite) + 2H (g) + O (g) \rightarrow CH₃OH (I)
 - B) C(graphite) + $2H_2(g) + \frac{1}{2}O_2(g) \rightarrow CH_3OH(I)$
 - C) C(diamond) + $2H_2(g) + \frac{1}{2}O_2(g) \rightarrow CH_3OH(I)$
 - D) 2C(graphite) + $4H_2(g) + O_2(g) \rightarrow 2 CH_3OH(l)$
- 5. Which of the following compounds has the lowest entropy at 25 °C?
 - A) $CH_3CH_2OH(I)$
 - B) $O_2(g)$
 - C) $KCIO_3(s)$
 - D) Ar (g)
- 6. Among the following substances choose the one with the greatest entropy per mole
 - A) Ar (g)
 - B) CO(g)
 - C) $SO_3(g)$
 - D) CH₄ (g)

- 7. Without using data from tables, predict the sign of ΔS for the following reaction: CaCO₃(s) \leftrightarrow CO₂(g) + CaO(s).
 - A) $\Delta S = 0$
 - B) $\Delta S < 0$
 - C) $\Delta S > 0$
 - D) More information is needed to make a reasonable prediction.
- 8. The temperature of vaporization of rubidium is 960.15 K and its entropy of vaporization 71.9J/K·mol. Calculate the heat of vaporization of rubidium:
 - A) 687 kJ/mol
 - B) 28.8 J/mol·K
 - C) 32 kJ/mol·K
 - D) 69 kJ/mol