
Universidad Carlos III de
Madrid

Algorithms and Data Structures (ADS)
Bachelor in Informatics Engineering

Computer Science Department

Lists, Stacks and Queues.

Authors: Isabel Segura Bedmar

April 2011
Departamento de Informtica,

Laboratorio de Bases de Datos Avanzadas (LaBDA)
http://labda.inf.uc3m.es/



2



Lists, Stacks and Queues.

Most of the information has been sourced from the books [1, 2].

Lists

A list is a collection of n elements stored in a linear order. The most common
way for storing lists is using an array data structure. Each element in a list
can be refered by an index in the range [0, n− 1] indicating the number of ele-
ments that preced e in the list. This representation provides that all operations
performed on a given element take O(1) time. An array stores all elements
of the list contiguously in memory and requires to initially know the maxi-
mum size of the list. This may produce an unnecessary waste of memory and
other cases insufficient memory. A possible solution is to use a dynamic array
(java.util.ArrayList) that is able to be reallocated when the space reserved for
the dynamic array is exceeded. Unfortunately, this reallocating of the elements
of a dynamic array is a very expensive operation. 1

A linked list is a data structure that consists of a sequence of nodes such that
each node contains a reference to the next node in the list. This representation
does not require that elements of the list are stored contiguously in memory.
Also, it just uses the space actually needed to store the elements of the list.
On the other hand, linked lists do not mantain index numbers for the nodes
and allow only sequential access to elements, while arrays allow constant-time
random access. As it will be shown in following sections, the linked list data
structure allows us us to implement some important abstract data structures
such as stacks, queues, deques.

An implementation of a linked list may include the following methods:

• isEmpty(): test whether or not a list is empty.

• size(): return the number of elements of the list.

• first(): return the first element of the list. An error occurs if the list is
empty.

1Most of the information has been sourced from the books [1, 2].

3



4

• last(): return the last element of the list. An error occurs if the list is
empty.

• next(v): return the next node of v in the list.

• prev(v): return the previous node of v in the list.

• remove(v): removes the node v the list.

• addFirst(v): add the node v at the beginning of the list.

• addLast(v): add the node v at the end of the list.

• addBefore(v,new): add the node new just before the v node.

• addAfter(v,new): add the node new just after the v node.

Exercise: Look for more information on the main differences between arrays
(static and dynamic) and linked lists. Write an outline that brings out the main
advantages and disadvantages for each data structure.

Singly Linked Lists

A linked list is a sequence of nodes. Each node is an object that stores a
reference to an element and a reference to the following node in the list. This
link to the next node is called next. The order of the list is represented by the
next links.

The first node of a linked list is the head of the list. The last node of a
linked list is the tail of the list. The next reference of the tail node points to
null. A linked list defined in this way is known as a singly linked list.

Figure 1: Example of a singly linked list containing my favorite series orderby
preference. Each node contains a reference to the name of a TV serie and a
reference to the next node (the following TV serie). The next reference of the
last node (tail) links to null.

How can you implement a singly linked list

Firstly, we implement a Node class as shown in Figure 2. This implementation
uses the generic parameterized type ¡E¿, which allows to store elements of any
specified class (that is, you will use the Node class to create objects containing
String, Integer, Long, etc and any other class that you specified).



5

Figure 2: Implementation of a Node of a singly linked list.

Figure 3 shows the partial implementation for a singly linked lis that only
uses the reference to the head of the list (head), an instance variable to store
the number of elements of the list (size) and a constructor method that sets
the head node to null. For example, you may modify this class adding a new
constructor method that has a node as input parameter and links the head of
the list to this parameter.

How can you insert a new element in a singly linked list

The easiest case is when the new element is inserted at the head of the list. For
example, I would like to add the TV serie ’Heidi’ at the head of the above list.
This TV series is my all time favorite serie, so it must be the first of the list (see
4). The following steps describe the process of insertion at the head of the list:

1. Create a new node. The name of the new serie and a reference to the same
object as head (that is, next links to node that contains the serie Losts)
must be passed to the constructor method.

2. Once you have created the node, you must set head (property of SinglyLinkedList)
to point to new node.



6

Figure 3: We define the head of the list as a Node. The constructor sets this
node to null.

Figure 4: Insertion of an element at the head of a singly linked list.

Now, it is your turn. Please, write a new method called insertHead in
the SinglyLinkedList class that inserts a new element at the head of the list.
Figure ?? shows the implementation of this method.

To insert an element at the end of the list is very easy if you add a reference
to the tail node, that is, an instance variable (with type Node¡E¿) to store
the reference the last node in the list. For example, imagine that I like ’The
Simpson’, but I like it than less ’House’, so I should insert it at the end of the
list. I must follow the following steps:

1. Create a new node with the element ’The Simpson’ and its next reference



7

Figure 5: This method implements the insertion operation of an element at the
beginning of a singly linked list.

sets to null because this node will be the last node.

2. Then, the tail reference itself to this new node.

Figure 6: Insertion of an element at the end of a singly linked list. The class
must have a property to store the tail of the list.

Figure 6 shows the above example. Please, try yourself defining the Node
tail in the SinglyLinkedList class and adding the method addLast. You can find
the solution in this new implementation in Figure r̃effig:addLastSList.

Now, take few minutes and think about how you can insert an element at the
end of the list when you do not keep the tail reference in your implementation of
the singly linked list. You should examine the list until you find node with a next



8

Figure 7: Implementation of the insertion operation of an element at the end of
a singly linked list.

reference to null. Do you dare to do it?. You can find a possible implementation
in Figure 8.

How can you remove an element in a singly linked list

Now, let me show you how to remove at the head of the list. It is very easy!!!.
You only need to set the head reference to its next node. This operation is
illustrated in Figure 9 and its implementation is shown in Figure 10.

In order to remove the last node or an node at a give position of the list, we
must access its previous node. Thus, the only way to find this previous node is
to traverse the list from its beginning until to find it. Traversing the list may
involve a big number of operations, taking a long time when the size of the list



9

Figure 8: Implementation of the insertion operation of an element at the end of
a singly linked list without keeping the tail reference.

Figure 9: Removal of the head of the list.

is big. The following section presents an effective solution for this problem.



10

Figure 10: This method removes the first element of the list.



11

Doubly Linked Lists

The main drawback of singly linked lists is that insering or removing a node at
the middle or the end of a list, it is necessary to visit all nodes from its head
until the node just before the place where you want to insert it or the node
that you want to remove. This operation is time consuming because we do not
have a quick access to the node before the one that you want to remove or the
position where you want to insert.

Let me ask you the following question: How can you implement a linked list
to improve the access to nodes?. Figure 11 gives you the key. This representation
allows to traverse the list in both directions.

Figure 11: A doubly linked list storing my all time favorite TV series.

How can you define a node for a doubly linked list?. We need a mechanism
that allow us to traverse the list from the beginning to the end and from the
end to the beginning. The Node class (see Figure2) used in the implementation
of a singly linked list only allowed us to go from left to right by the its instance
variable next, which references to the following node in the list. Therefore, it
would be very useful to define other instance variable to reference it previous
node in the list. This variable is called prev. This implementation (see Figure 12)
of a node for a doubly linked list makes easier to insert or remove an element
at the end as well as in the middle of the list.

Now, we define the implementation of a doubly linked list. In order to
facilitate the programming tasks, we can use two special nodes (called sentinels):
header and tailer. The sentinel nodes do not store any reference to elements.

The header stores the node just before the head of the list (the header nodes
points to the head of the list by its next reference; the prev reference of the head
of the list must point to the header node). The tailer is the node after the tail
of the list (the last element of the list must point to tailer by its next reference,
while the tailer must poing to this last node by its prev reference) When the
list is empty, the header and tailer nodes must point to each other.

Figure 15 describes the partial implementation of a doubly linked list. You
can see how header and tailer sentinels are defined as objects of the above
DoublyNode class. Also, a size property has been defined to store the number
of elements at the list. We have defined a constructor that creates an empty
list, that is, header and tailer sentinels are instantiated as DoblyNode objects
(although, we do not give any value to their element property) and they point
to each other.

Figures 14 and 13 show examples of removing and adding an element, re-
spectively. As you can see in Figure ?? to insert a new element at the beginning



12

Figure 12: Implementation of a node for a doubly linked list.

Figure 13: Inserting an element at the start of the list.

of the list or removing the last element of the list is very easy. Likewise, it is
very easy to implement the methods addLast() and removeFirst(). Do you dare



13

Figure 14: Removing an element from the end of the list.

Figure 15: Partial Implementation of a doubly linked list including the defini-
tion of the sentinel nodes header and tailer, the constructor method and the
addFirst() and removeLast() methods.

to implement them?. You can find the implementation of these operation in
Figure 16



14

Figure 16: Methods addLast() and removeFirst() of a doubly linked list.

How can you insert an element in the middle of a doubly
linked list?

Doubly linked lists allow an efficient manner to access and modify their elements
since they provide an easier way to insert and remove in the middle of the list
than single linked lists. Figure 17 shows an example of a insertion in the middle
of a doubly linked list. I have just watched the TV serie ’Bones’. I like more
than ’Losts’, but less than ’Allo, Allo”, so I should add it just after the ’Allo,
Allo’ node. Firstly, I must define a new node with the element ’Bones’, its next
node must point to the node ’Losts’ and its prev node to the node ’Allo, Allo’.
Then, the nodes ’Allo, Allo’ and ’Losts’ must point to the node ’Bones’ by their
next and prev nodes respectively (see Figure 17). Now, imagine that I no longer
like the ’Losts’ serie. To remove it, their before node (that is, ’Allo, Allo’) and
after node (’Rome’) must point to each other by their next and prev nodes
respectively. Figure 18 includes the java code of the methods for inserting and
removing elements in the middle of a doubly linked list. A full implementation
of a doubly linked list can be found in the following link.

All methods in the implementation of a list using a doubly linked list take
O(1). For a list of n elements, the space used is O(n).

Stacks

A stack is a collection of objects that are added and removed according to the
the Last-In First-out (LIFO) principle. To understand better this principle,
think about a stack of plates (Figure 19), how do you add and take off plates
from the stack?. Normally, you add plates to the top of the stack and you take



15

Figure 17: To add a new node after the .

Figure 18: Methods addBefore, addAfter, remove for a doubly linked list.

off them from the top of the stack. This is just the LIFO principle.
Formally, a stack is an abstract data structure that is characterized by the

following operations:

• push(e): add the element e to the top of the stack.

• pop(): remove the top element from the stack and return it.

Other additionally operations are:

• size(): return the size of the stack.

• isEmtpy(): return true if the stack is empty; false eoc.

• top(): return the top element in the stack, without removing it.



16

Figure 19: Stack of plates.

Figure 20: Push and pop operations.

Operation Stack Output
push(’h’) (h) -
push(’e’) (h,e) -
top() (h,e) e

push(’l’) (h,e,l) -
push(’l’) (h,e,l,l) -
push(’o’) (h,e,l,l,o) -
top() (h,e,l,l,o) o

push(’ !’) (h,e,l,l,o,!) -
top() (h,e,l,l,o,!) !
size() (h,e,l,l,o,!) 6

isEmpty() (h,e,l,l,o,!) false
pop() (h,e,l,l,o) !

Table 1: This table shows a secuence of operations on a stack of characters

This data structure is very useful for many applications which require to
store the secuence of operations in order to reverse or undo them. For example,
web browsers store the urls recently visited on a stack in order to allow users
to visit the previously urls by pushing the back button. Likewise, stacks can be
used to provide an undo mechanism to the text editors.



17

The java.util package already includes an implementation of the stack data
structure due to its importance. It is recommended to use the java.util.Stack
class, however in this section we design and implement ourselves a stack. First
of all, we define an interface to declare the methods of the data structure
(see Figure 21). You can note that this interface has been defined using the
generic parameterized type E, which allows to store elements of any specified
class. Also, we have defined the EmptyStackException class that will throw an
exception when the methods pop() and top() are called on an empty stack.

Figure 21: Interface Stack. This interface uses the generic parameterized type
E to contain elements of any specified class in the stack.

There are several ways to implement the Stack class. A simple way to
represent a stack is to store its elements into an array. Thus, the stack consists
of an array and an integer variable to indicate the index of the top element.
Figure 23 shows a java class implementing an array-based stack. This class
implements the interface Stack<E>. This implementation is based on the use
of an array (for storing the elements of a stack. The instance variable top stores
the index in which the top of the stack is stored in the array. Also, the maximum
size of the array is defined in a constant MAXCAPACITY. Another instance
variable (capacity) stores the actual capacity of the stack. The main drawback
of this implementation is that it is necessary to initially know the maximum size
of the stack. Thus, we have defined the FullStackException class that will throw
an exception when the push method is called on a full stack (see Figure 22)

Now, you must write the code to build a stack containing the operations
shown in Table 1. Table 2 summarizes the computational complexity for each



18

Figure 22: An exception is thrown when the methods pop and top are performed
on an empty stack.

method of the array-based implementation of a stack. The methods size() and
isEmpty take O(1) time because they only access the instance variable top.
The methods top() and pop() take constant time because they call the method
isEmpty() and access the top element in the array (the method pop() also de-
creases the instance variable top). All of the previous operations take O(1).
Likewise the method push() also takes O(1).

Methods Time

isEmtpy(), size() O(1)
top(), pop() O(1)
push() O(1)

Table 2: Performance of an array-based implementation of a stack

Therefore, the array-based implementation is simple and efficient. However,
the main drawback of this implementation is that it is necessary to know the
maximum size of the stack. In some cases, this may cause an unnecessary waste
of memory or an exception when the stack reaches this maximum size and it is
not possible to add store elements.

Another implementation that does not have the size limitation is to use a
linked list to represent a stack. That is, the elements of a stack are stored into
the nodes of a linked list. Of course, we may use the java.util.ArrayList class or
any API java class implementing lists to represent the stack, however, we provide
ourselves implementation of a linked list in order to improve your knowledge and
practice about linked lists. First of all, we define a java class to implement a
generic node for a singly linked list (see Figure 25). Figure 26 shows the code of
the linked list-based implementation. This class defines the instace variable top
that stores the top element of the stack. We have decided that the top of the



19

Figure 23: An array-based implementation of a stack

stack is stored at the head of the linked list. This fact allows to the operations
pop(), top() and push() take constant time (see Table 3) because they only need
to access the first element (head) of the list. If the top element of the stack was
stored at the end of the list, then it would be necessary to trasverse all elements
of the list, every time you would need to access the top element. Thus, the
previous methods would take O(n) time. We also note that the method push()
does not throw an exception related to the size overflow problem since in this
implementation the size of the stack is not limited.



20

Figure 24: An exception is thrown when the method push is performed on a
full stack.

Figure 25: A java class for implementing a node of a generic singly linked list.

Stacks have many interesting applications. You can find some applications
such as reversing arrays or matching parentheses and HTML tags in in Chapter
5 (Stacks and Queues) (pages 199-203) in the book [1].



21

Figure 26: A Linked-list based implementation of a stack.

Queues

Another important linear data structure is the queue. A queue is a collection
of objects that are managed according to the the First-In First-out (FIFO)
principle (see Figure 27), that is, only element at the front of the queue can
be accessed or deleted and new elements must added at the end (rear) of the
queue. In order to understand better this principle, think about a line of people



22

Methods Time

isEmtpy(), size() O(1)
top(), pop() O(1)
push() O(1)

Table 3: Running times of the array-based implementation of a stack

waiting a bus. Normally, the first person in the line will be the first one on
getting onto the bus. If one arrives last, this should put oneself at the rear
of the line. Queues are a nature option of many applications that requiere to
process their requests according to FIFO principle, such as reservation systems
for airlines, cinemas or many other public services.

Figure 27: Representation of a FIFO Queue.

Formally, a queue is an abstract data structure that is characterized by the
following operations:

• enqueue(): add a element at the rear (end) of the queue.

• dequeue(): return and remove the first element of the queue, that is, the
element at the front of the queue. If this one is empty, then this method
should throw an exception.

• front(): return the element at the front of the queue. If this one is empty,
then this method should throw an exception.

In addition, similar to the Stack ADT, the queue ADT can also include the
size() and isEmpty() methods.

Figure 28 shows a java interface for this ADT. It uses the generic parame-
terized type E, which allows to store elements of any specified class. Also, the



23

Operation Queue Output
enqueue(’h’) (h) -
enqueue(’e’) (h,e) -

front() (h,e) h
dequeue() (e) h
dequeue() () e

enqueue(’h’) (h) -
enqueue(’o’) (h,o) -
enqueue(’l’) (h,o,l) -

front() (h,o,l) h
enqueue(’l’) (h,o,l,l) -

front() (h,o,l,l) h
enqueue(’a’) (h,o,l,l,a) -

size (h,o,l,l,a) 6
enqueue(’ !’) (h,o,l,l,a,!) -

size (h,o,l,l,a,!) 7
front() (h,o,l,l,a,!) h

dequeue() (o,l,l,a,!) h

Table 4: A secuence of operations on a queue of characters

EmptyQueueException class has been defined to throw an exception when the
methods dequeue() and front() are called on an empty queue.

A circular array-based implementation of a queue

Likewise with the Stack ADT, we can use an array to represent a queue. Thus,
elements of a queue are stored in an array. What is the more efficient option
for storing the front of the queue:

1. at the first position of the array (that is, Array[0]) and adding the following
elements from there.

2. as the last element of the array, that is, a new element is always inserted
at the first position of the array and the

The former one is not an efficient solution because each time the method
dequeue() is called, all elements must moved to its previous cell, taking O(n)
time. The second one is also an inefficient solution since each time a new
element will be inserted (enqueue()), elements in the array must be moved to
their following position, taking O(n) time.

In order to achieve constant time for the methods of the Queue interface, we
can use a circular array to store the elements and two instance variables front
and rear to keep the index storing the first element of the queue and the index
to store a new element. Each time we remove the first element of the queue, we
should increase the variable front. Likewise, each time we add a new element,



24

Figure 28: A java interface for the Queue ADT.

Figure 29: An exception is thrown when the methods dequeue() and front() are
performed on an empty queue.

we store it into the position rear at the array and increase the value of this
variable.

Figure 30 shows three different configuration of a queue implemented using
a circular array. The first case (front ≤ rear ≤ length(array)) is the normal
configuration. The second and thirds examples illustrate the configuration in
which the rear reaches the lenght of the array and it is necessary to store a new
element at the first position of the array. When rear reaches front, it implies
that the queue is empty. Each time we need to increase the rear or front, we
must estimate their the module value



25

Figure 30: Three different configurations of a queue.

Each method in this implementation takes O(1) since they only involve a
constant number of arithmetic opreations, comparisons and assignments. The
only drawback of this implementation is that the size of the queueu is limited
to the size of the array. However, if we are able to provide a good estimation
of the size of the queue, this implementation is very efficient. Figure 31 shows
a circular array-based implementation of a queue.

A linked list-based implementation of a queue

A linked list also provides an efficient implementation of a queue (see Figure 32).
For efficiency reasons, the front of the queue is stored at the first node of the
list and we also define a variable to store the tail of the list. These two variables
allow all methods take O(1) time because they only need a constant number
of simple statements. The main advantage of this implementation compared to
the array-based implementation is that it is no necessary to specify a maximum
size for the queue.

Please, write a java program to assign the turn to every journalist in the TV
program ’59 seconds’. You can find an interesting problem based on the use of
a queue in in Chapter 5 (Stacks and Queues) (pages 212) in the book [1].

Double-Ended Queues (Dqueues)

Figure 33 compares the three ADT: stack (LIFO: last in, first out), queue (FIFO:
first in, first out) and dqueue. A double-ended queue ADT (dqueue is pronunced
like deck) is power than stack and queue because it supports insertion and
deletion at both its front and its rear. The main methods of the dqueue ADT
are:

• addFirst(e): insert a new element at the head of the queue.



26

Figure 31: A circular array-based implementation of a queue.

• addLast(e): insert a new element at the end of the queue.

• removeFirst(): remove the element at the front of the queue. If the queue
is empty, then an exception is thrown.

• removeLast(): remove the element at the end of the queue. If the queue
is empty, then an exception is thrown.

• getFirst(): return the element at the head of the queue. If the queue is
empty, then an exception is thrown.

• getLast(): return the element at the end of the queue. If the queue is
empty, then an exception is thrown.

• size(): return the size of the queue.

• isEmpth(): return a boolean indicating if the queue is empty.

The java.util.LinkedList¡E¿ class already defines all the methods of a de-
queue. Of course, you can use this class when you need to use a dequeue in
your future applications. But first, you must learn how the dequeue ADT can
be defined and implemented. Figure 34 contains a java interface for the dqueue



27

Figure 32: A Linked List-based implementation of a queue.

Figure 33: The dequeu ADT a queue that allows invertion and deletion at both
its front and its rear (source: http://t3.gstatic.com/.



28

Operation Queue Output
addFirst(’k’) (k) -
addLast(’l’) (k,l) -
removeFirst() (l) -
addLast(’o’) (l,o) -
addFirst(’a’) (a,l,o) -
removeFirst() (l,o) -
removeLast() (o) -
removeLast() empty -
removeFirst() empty exception
isEmpty() empty true
addLast(’s’) (s) -
isEmpty() (s) false

Table 5: Secuence of operations on a dqueue of characters

ADT. A dequeu is a list of elements, hence we may use a linked list to implement
a dqueue. A singly linked list is not an efficient solution because the dqueue
allows insertion and removal at both the head and the tail of the list. While
the insertion or removal of the first element at the dqueue just take O(1), the
insertion or removal of the last element take O(n) because we should trasverse
all nodes until to reach the last node. However, if we implement the dqueue
ADT using a doubly linked list, all insertion and removal operations take O(1)
times.

Figure 36 shows a fragment of the implementation of a deque using a doubly
linked list. This class defines two sentinal nodes to reference the head and tail
of the deque. Figure 35 shows the implementation for a node of a doubly linked
list.



29

Figure 34: An interface for a double-ended queue ADT.



30

Figure 35: This class implements a node of a doubly linked list.



31

Figure 36: A doubly linked list class for implementing a deque.



32



Bibliography

[1] M. Goodrich and R. Tamassia, Data structures and algorithms in Java.
Wiley-India, 2009.

[2] M. Weiss, Data structures and problem solving using Java. Addison Wesley
Publishing Company, 2002.

33


