
Universidad Carlos III de

Madrid

Algorithms and Data Structures (ADS)
Bachelor in Informatics Engineering

Computer Science Department

General Trees.

Authors: Isabel Segura Bedmar

April 2011
Departamento de Informtica,

Laboratorio de Bases de Datos Avanzadas (LaBDA)
http://labda.inf.uc3m.es/



2



Trees.

Most of the information has been sourced from the books [1, 2].

General Trees

Trees are a natural organization for data and support algorithms much faster
than the linear data structures. They are widely used in computing to represent
file systems, web sites, databases, graphical user interfaces, etc.

A tree is an abstract data type to store elements that have hierarchical
relationships between them. Figure 1 shows the tudor family tree whose root
is the node ’Eduardo III’. This node has three children ’Eduardo’,’Juan’ and
’Edmundo’ (they are siblings because they are children of the same parent).
The parent (direct ancestor) of the node ’Enrique VI’ is the node ’Enrique
V’. The organigram of a company, an arithmetic expression or the rules of a
grammar can be also represented by trees (see Figure 2, 3 and 4).

Properties

A tree is a set of nodes (elements) that maintain a hierarchical (parent-child) re-
lationship between them. The top element of a tree is called root. The following
properties must be satisfied:

• Every node has zero or more children. Nodes without children are called
leaves or externals, while nodes with children are internals.

• Every node, except the root, has an unique parent node.

An empty tree is a tree that does not contain any nodes. We can formally
define ancestor and descendent terms:

• u is ancestor of v (v is descendent of u) ↔ u=v or u is ancestor(parent(v)).

• u is descendent of v if v is ancestor of u.

Figure 1 shows that ’Eduardo IV’ and ’Ricardo III’ are descedent of ’Ed-
mundo’. You can also see that ’Enrique VII’ is ancestor of ’Isabel I’.

A tree is ordered if there is a linear order among siblings. For example,
Figure 5 shows an ordered tree of integers.

3



4

Figure 1: Tudor family tree.

Figure 2: UC3M Computer Science Department’s organigram.

The depth of a node is the number of its ancestors. The depth of the root is
0. For example, in the tree of Figure 5, the node storing the value 12 has depth
3, the node storing 6 has depth 2 and the node storing 4 has depth 1.



5

Figure 3: An arithmetic expression.

Figure 4: A sintax grammar.

Figure 5: An ordered tree of integers.



6

Tree Abstract Data Type

A tree should support the following methods:

• isEmpty() returns true if the tree is empty.

• isRoot(v) returns true if the node v is the root of the tree.

• isLeave(v) returns true if v is a leave.

• isInternal(v) returns true if v is an internal node.

• root() returns the root of the tree. If the tree is empty, an error occurs.

• parent(v) returns the parent of the node v. If v is the root, an error occurs.

• children(v) returns the children of the node v. If the tree is ordered, this
methods stores the children in order.

• size(): returns the number of nodes in the tree.

• iterator(): returns an interator of all the elements stored at nodes of the
tree.

• positions(): returns an iterable collection of all the nodes of the tree.

• replace(v,e): replaces the node v with the node e.

Implementing a Tree

First of all, we must define a java interface to represent the tree ADT (see
Figurer̃effig:interfaceTree). You can see that its methods may throw the excep-
tion InvalidTreePositionException if the node is invalid (null). Also, if the tree
is empty, the method root throws the exception EmptyTreeException, and the
method parent throws the exception BoundaryViolationException if the node
is the root of the tree.

A common way to implement a tree is to use a linked structure in which
each node n has the following properties (see Figure 7):

• The element stored at the node.

• A link to its parent. If n is the root, then this field is null.

• A collection (for example, an array or a list) containing the links to its
children.



7

Figure 6: An interface for a tree.

Tree Traversal Algorithms

This section presents algorithms for traversing a tree. Before we should define
two concepts like depth and height:

• The depth of a node v is the number of ancestors of v. For example, the
depth of the node ’1’ in the tree shown in figure 5 is 0 because this node
is the root of the tree. However, for node ’10’ its depth is 3, because this
node has three ancestors. Its implementation is shown in Figure 9

Its running time is O(dv) where dv is the depth of the node v, because the
algorithm only performs a constant-time recursive step for each ancestor of v.

The height of a node v in a tree can be defined recursively as follows:

• if v is a leave node then its height is 0.

• if v is an internal node then its height is 1 plus the maximum height of a
child of v.

Therefore, the height of a Tree is the height of its root. For example, the
height of the tree shown in Figure 5 is 4 because its root has depth equals to 4.
The height of the node ’6’ is 1 since all its nodes (’9’ and ’10’) are already leave
nodes. Its implementation is shown in Figures 10 and ??.



8

Figure 7: Each node of a tree is represented as a node with the fields: its value,
link to its parent and a collection of its children.

Figure 8: This figure shows the representation using a linked structure of the
general tree shown in Figure 1. It only shows the third first levels of the tree.



9

Methods Time

isEmtpy(), size() O(1)
parent(), root O(1)
isLeave(), isInternal(), isRoot() O(1)
positions(), iterator() O(n)
replace() O(1)
children(n) O(num of children of v)

Table 1: Performance of an linked structure-based implementation of a binary
tree

Figure 9: Implementation of the depth method.

Figure 10: Implementation of the height of a node.

Preorder Traversal

In a preorder traversal, first we must visit the root, then we must visit the
subtrees of its children. If the tree is ordered then this output is also ordered.
Figure 13 shows the implementation of this preorder traversal.



10

Figure 11: Implementation of the height of a tree.

Figure 12: Preorder Traversal.

Figure 13: Implementation of the preorder Traversal.

Postorder Traversal

In a postorder traversal, first we must visit the children of the root (in a pos-
torder way), and finally we must visit the root. Figure 14 shows the implemen-



11

tation of this postorder traversal.

Figure 14: Implementation of the postorder Traversal.



12



Bibliography

[1] M. Goodrich and R. Tamassia, Data structures and algorithms in Java.
Wiley-India, 2009.

[2] M. Weiss, Data structures and problem solving using Java. Addison Wesley
Publishing Company, 2002.

13


