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Binary Trees

Most of the information has been sourced from the books [I1 2]

Definition.

The order of a binary tree is always 2, that is, every node has at most two
children (usually called left child and right child). Given an internal node v, the
subtree rooted by its left child is called left subtree and the one rooted by its
right child is called right subtree. For example, Figure [[] shows a simple binary
tree rooted with a node whose value is 2. The left child of the root node is the
subtree rooted by the node whose value is 7, while the right child is the subtree
rootd by the node with value 5.

Besides, a binary tree can be defined in a recursive fashion. A binary tree is
either empty, or is made of a single node, whose the left and right children are
binary trees too.

Figure 1: Example of a simply binary tree.

A binary tree is ordered if for every node v, the values in its left subtree
are less than the value in v, and all values in its right subtree. The binary tree
shown in Figure [l is not ordered, but Figure 2l shows an ordered binary tree
because all their nodes fulfill alphabetical order.

A full binary tree (also called proper) is a tree in which every internal node
has two children (see FigureBl). The trees shown in Figures [l and 2] are not full
binary trees, because both have internal nodes with only one child.
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Figure 2: Example of an ordered binary tree.
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Figure 3: Example of a full (proper) binary tree.

The full binary trees are often used to represent decision trees. These are
models to assist the decision maker in finding the

Full binary trees are often used to represent decision trees. A decision tree is
a model of decision to assist the decision maker in finding the option depending
on whether the answer is 'Yes’ or 'No’. Figure [ illustrates a decision tree
that allows to order three elements A, B and C. The internal nodes represent
comparison operations and the leaves represent the possible outcomes.

Besides, binary trees can be useful to represent arithmetic expressions. The
internal nodes are operators, while the external nodes represent variables or
constants. The value of an internal node can be calculated by applying its
operation to the values of its children. Figures Bl and [6 show two binary trees
representing arithmetic expresion. The former three has variables and constants
in its leaves, but the second one only has constants. The value associated with
each internal node is shown next to each node. For example, the root has the
value 4 (the final outcome of the arithmetic expression).



Figure 5: Example of a binary tree to represent the arithmetic expression: 2 x
(a-1) + 3 x b.

Figure 6: Example of a binary tree to represent the arithmetic expression: (1+2)
x2-4/(53).



The binary tree ADT

A binary tree is a specialization of a tree. Also, the definition of a binary tree
requires at least the following methods:

e hasLeft(v): returns true if the node v has left child.
e hasRight(v): returns true if the node v has right child.

e left(v): returns the left child of the node v. If v does not have left child,
an error occurs.

e right(v): returns the right child of the node v. If v does not have left
child, an error occurs.

You may want to have an additional field to store its parent

Figure [1 shows an interface for the binary tree ADT. This interface extends
the interface Tree(see code fragment in Figure ??). If the tree is ordered, then
the method children(v) returns first the left child followed by the right one.

package trees;
#/**This interface is a specialization of a tree.
* Every node can have 0, 1 or 2 children*/
public interface BinaryTree<E> extends Tree<E> {
/*¥*Given a node n, this method returns the left child of n*/
public Position<E> left(Position<E> n) throws InvalidTreePositionException,
BoundaryViolationException;
/*¥*Given a node n, this method returns the right child of n*/
public Position<E> right(Position<E> n) throws InvalidTreePositionException,
BoundaryViolationException;
/**Given a node n, this method checks if node v has left child*/
public Position<E> hasLeft(Position<E> n) throws InvalidTreePositionException;
/**Given a node n, this method checks if node v has right child*/
public Position<E> hasRight(Position<E> n) throws InvalidTreePositionException;

Figure 7: An interface for the binary tree ADT.

Properties of a binary tree

Firstly, we must define two concepts: level (or depth) of a node and height a
tree.
Given a node v, we can define its level in a recursive fashion, as follows:

e If v is the root of the tree, its level is 0.
e otherwise, its level (or level) is 1 + the level of its parent node.

Figure R represents an ordered binary tree and shows the level for each node.



Figure 8: Level (or depth) of a node.

The height of a tree can be defined as 0 if the tree is empty, and otherwise,
as 1 + plus the maximum value between the height of the left subtree of its root
and the height of the right subtree of its root. Figure [0 shows the methods to
calculate these properties of a tree.

/**Given a node v, calculates its level or depth#/
public int level(NodeTree<E> n) {

if (n==root} return 8;

else return 1 + level(n.getParent()};

h

/*¥*Returns the height of a tree, that is, the maximum level + 1*/
public int height() {
if (isEmpty()) return ©;
else {
CBinaryTree<E> leftChild=new CBinaryTree<E>(left(root));
CBinaryTree<E> rightChild=new CBinaryTree<E=(left(root));
return (1 + Math.max(leftChild.height()}, rightChild.height()});

Figure 9: Implementation of the methods to obtain the height of a tree and the
level of a node.

The level 0 of a nonempty binary tree only has one node (root) (=2°), the
first level has at most two nodes (=2!), the second level has at most four nodes
(=22), the third level hast at most eight nodes (=2%), and so on. You can see
that the maximum number of nodes on levels grows exponentially. In general,



a binary tree in its leven n has at most 2" nodes.
Now, you must try to demostrate the following properties:

1. A full binary tree of height h has (2(h + 1) — 1) nodes.

Let #T denotes the number of nodes of T and #Level; the number of nodes in
the level 4. Then,

HT = #Levelg+#Level, +#Levely+. . .44 Level, = 20421422+ 42" (1)

You can find a tip in the Appendix A: Useful Mathematical Facts [I] to solve
this equation. In particular, you should use the proposition A.14:
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2. In an full binary tree, the numer of external nodes (leaves) is 1
more than the number of internal nodes.

Let e, i denotes the number of leaves and the number of internal nodes in
the tree T, respectively. So, we must demostrate that:

e=1+1 (4)

To justify this property, we are applying the induction principle (please, you
must study and look up Section 4.3.3 Induction and Loop Inva riants in the
book [I]). Concisely, given a statement P(n), the induction principle proves its
correctness for n=1 (2,3). Then, this principle assumes that the statement is
held for an arbitrary n, and tries to prove for n+1.

You can easily check (by drawing trees) the following statements.

e If the tree has 1 nodes, the property 2 is satisfied.
e If the tree has 3 nodes, the property 2 is satisfied.
e If the tree has 5 nodes, the property 2 is satisfied.

Note tha the tree neve has a pair number of nodes because it is a full binary
tree. Now, we assume true for a tree with n nodes ((a) e, = i, + 1). What
does it happen if we add new external nodes?. We cannot add only one leave
becuase this violate the property of full binary tree. So, we must add two nodes.
It is clear that a leave turns into an internal node in the new tree, that is, (b)
ento=en-1 and (¢) ipq2=i,+1:

enya =) (en—1)+2=ep +1=()in+1+1=() ins2+1 (5)



3. The number of leaves satisfies the following equation:

h<e<2h (6)
You can use the induction principle to prove h < e.
e if h =1, it is obvious that 1 < e, becuase n = ¢ = 1.
e Now, we assume that h < e, and we must prove for h + 1 < e,¢, that, it
is the number of leaves in the new tree. If we increase the height of the
tree, we must add at leat two nodes and a leave turns into internal node,

therefore, (a) epew = (€6 —1) + 2
h +1 Shﬁe e+1= (6 — 1) +2 ~(a) Enew (7)
Now, we will demostrate the second part of the equation (e < 2").

n=e-+1i =2ndproperty € + (6 - 1) =2 -1 —lstproperty 2h/+1 -1 (8>

2¢ = Mt = ¢ =20 (9)

For every nonfull tree, it is obvious that e < oh

The following properties can be proved based on the three previous proper-
ties. Please, try yourself!!!:

4. The number of internal nodes satisfies the following equation:

h<i<2'—1 (10)

5. The total number of nodes satisfies the following equation:

2h+1<n<2hl 1 (11)

6. The height (h) of a tree satisfies the following equation:

—1
loga(n+1)—1<h < nT (12)

7. The height (h) of a tree satisfies the following equation:

loga(e) <h<e-—1 (13)
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Linked Structure-based implementation of binary
tree

To implement a binary tree, we can use a linked structured of nodes to represent
each node of the tree. Each node (see Figure [[0) the linked structured has the
following fields:

e the element stored in the node.
e a reference to its parent. If the node is the root, then this filed is null.

e a reference to its left child. If the node does not have left child, this field
is null.

e a reference to its right child. If the node does not have right child, this
field is null.

parent

f
\

/°

left child J right child
element

Figure 10: A node of a linked structure to represent a node of a binary tree.

FigurdITl shows the representation of a binary tree (whose root is A) by
a linked list of nodes. Figure shows an interface for representing binary
tree nodes. It has methods to set and return the parent, the left child, the right
child and the element stored at a node. Figure[[3]shows the clas BTNode which
contains four fields: an element, its parent, its left child and its right child. Also,
this class implements the methods defined in the interface BTPosition.

Now, we are defining the class LinkedBinaryTree that stores a reference to
the root of the tree and also the total number of nodes (size). This class imple-
ments the interface BinaryTree (see Figure[d)). Also, the class has a constructor
without arguments that returns an emtpy tree. Besides, the additional methods
are defined:

e addRoot(e): creates a new node for storing the element e. This new node
is the root of the tree. The method only works when the tree is empty,
otherwise an error will occur [l

Lf we define a constructor with a node as input argument that sets the root as this node,
then we do not need the method addRoot.
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Figure 11: A linked structure for representing a binary tree.

e addLeft(n,e): creates a new node for storing the element e and adds this
new node as the left child of the node n. If the n already has a left child,
an error will occur.

e addRight(n,e): creates a new node for storing the element e and adds this
new node as the right child of the node n. If the n already has a right
child, an error will occur.

e attach(n,Ty,Ty): attaches the binary trees T, T as left and right subtrees
of the leave n, respectively. If n is not an external node, then an error will
oceur.

e height(): returns the height of the tree.

These additional methods allow us to build a binary tree by creating the
root using the method addRoot and adding the left and right children using the
methods addLeft and addRight, repeatedly. You can find the implementation
of the class [LinkedBinaryTree.pdfLinkedBinaryTree. Please, add code to the
main method to create a binary tree and test the class. For example, you can
try to build the previous examples presented for this section.

Table [Z7] summarizes the computational complexity for each method in a
linked structure implementation of a binary tree.

The method size() takes O(1) time because it only uses the instance variable
size. The methods isEmpty(),isRoot(),getRoot() take O(1) time since they only
access the instance variable root. The methods hasLeft(), left(), hasRight(),
right() take O(1) because they only access the instance variables left,right,parent
(of the BTNode class), respectively. Likewise, the methods sibling(), isLeave(),


LinkedBinaryTree.pdf
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/*¥*An interface for representing a node of a binary tree*/
public interface BTPosition<E> {

/**Returns the element stored at the node*/
public E getElement();
/**Returns the parent of the node*/
public BTPosition<E> getParent();
/**Returns the left child of the node.

* If the node is root, then returns null*/
public BTPosition<E> getlLeft();
/*¥*Returns the right child of the node.

* If the node does not have left returns null*/
public BTPosition<E> getRight();

/*¥*Sets the element stored at this node*/
public void setElement(E e);

/**Sets the parent of this node*/

public void setParent(BTPosition<E> p);
/**Sets the left node of this node*/
public void setLeft(BTPosition<E> 1);
/*¥*Sets the right node of this node*/
public void setRight(BTPosition<E> r);

}

Figure 12: An interface to represent a node of a binary tree.

isInternal() takes O(1) time becuase they only access instances variables. Since
the method children() just need to access two instance variables (left and right
children of a give node), it only takes O(1) time. The method positions uses an
recursive method preorderPositions that traverses the tree and stores its nodes
in a list. Thus, positions takes O(n) time. Likewise, iterator also takes O(n)
since it uses the method positions. The methods replace and addRoot takes O(1)
time because they access and use one node. The methods insertLeft, insertRight
and remove takes O(1) time because they access and modify a constant number
of nodes.

Array-based implementation of a binary tree

Another alternative to implement a binary tree is to store the nodes of the tree
in an array. The root of the tree is stored in the first position in the array, its
left child in the second position, its right child in the third position, and so on
(see Figure [T4]).

Since we cannot know the maximum size that the tree may reach, the best
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package trees;
=/**This class implements a node of a binary tree. The node stores a reference
* to an element, a reference to its parent, a reference to its left child, and
* a reference to its right child.*/
public class BTNode<E> implements BTPosition<E> {
private E element;
private BTPosition<E> parent;
private BTPosition<E> left;
private BTPosition<E> right;
public BTNode(E e, BTPosition<E> p, BTPosition<E> 1, BTPosition<E> r){
setElement(e);
setParent(p);
setLeft(r);
setRight(r);

/*¥*Returns the element stored at the node*/

public E getElement() { return element; }

/**Returns the parent of the node*/

public BTPosition<E> getParent() { return parent; }
/*¥*Returns the left child of the node.

* If the node is root, then returns null*/
public BTPosition<E> getLeft() { return left; }
/**¥Returns the right child of the node.

* If the node does not have left returns null*/
public BTPosition<E> getRight() { return right; }
/*¥*Sets the element stored at this node*/
public void setElement(E e) {element=e; }

/*¥*Sets the parent of this node*/

public void setParent(BTPosition<E> p) { parent=p; }
/**Sets the right node of this node*/

public void setRight(BTPosition<E> r) { right=r; }
/¥*Sets the left node of this node*/

public void setLeft(BTPosition<E> 1) { left=l; }

Figure 13: A class for implementing binary tree nodes.

option is to use an ArrayList to store its nodes (we do not recommend to use
the zero-positon of the arraylist).

It is possible to know the position of a given node from the position of its
parent. For every node, Figure [[4] clearly demostrates the following claims:

e The position of its left child in the arraylist is: pos(left)=2%pos(node).
e The position of its right child in the arraylist is: pos(right)=2*pos(node)+1

Now, you should give the arraylist-based implementation of a binary tree.
Then, you will have to estimate the running times of its main methods.
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H Methods \ Time H
isEmtpy(), isRoot(), size() O(1)
hasLeft(), getLeft(), hasRight(), getRight, parent(), sibling | O(1)
isLeave(), isInternal() O(1)
positions(), iterator() O(n)

o(1)

o(1)

replace(), addRoot()
insertLeft(), insertRight(), remove()

Table 1: Performance of an linked structure-based implementation of a binary
tree
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H Methods \ Time H
isEmtpy(), isRoot(), size() O(1)
hasLeft(), getLeft(), hasRight(), getRight, parent() | O(1)
isLeave(), isInternal() O(1)
positions(), iterator() O(n)

o(1)

o)

replace(), addRoot()
insertLeft(), insertRight(), remove()

Table 2: Running times for a binary tree implemented with an arraylist
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