

Universidad Carlos III de
Madrid

Algorithms and Data Structures (ADS)

Bachelor in Informatics Engineering
Computer Science Department

YEAR: 1º / SEMESTER: 2º

Final practice

Authors:
Juan Perea

Isabel Segura-Bedmar

Julian Moreno Schneider

Harith Aljumaily

Junio 2011

Introduction

As the purpose of this practice, you will have to develop an application to manage the computing
rooms of the University.
The application will control how much time computers are taken, so that it can throw out students
that have been connected for more than a given time when there are other students waiting for
their turn.

Classes
The application will be formed by some object classes for the students, rooms and computers, the
master and operative data structures to hold them, a management class, and a testing class.

Object classes

Student
The student class contains the field "id ", that will be assigned in an automatic and consecutive
way, as well as "lastName " and "firstName ".

public class Student {
 int id;
 String lastName;
 String firstName;
 public String toString () {
 return id + "\t" + lastName + ", " + firstName;
 }
}

Room
The room class contains the field "name", with a format like "1.1.B10 ", as well as a flag indicating if
the room is closed, and the list of computers in the room.

public class Room {
 String name;
 boolean closed;
 ComputerList computerList;
 public String toString () {
 return name;
 }
}

Computer
The computer class contains its complete identifier, formed by the room name and a consecutive
number. If the computer is taken, it also holds the student that takes it, and the time when it was
taken (the minutes passed).

public class Computer {
 String roomName;
 int number;
 Student student; // null if not taken
 int minutesPassed; // since it was taken
 public String toString () {
 return roomName + "-" + new DecimalFormat("00").f ormat(number);
 }
}

Master data structures
The following data structures will be created to hold master data:

Students by name (StudentTreeByName).

Students will be stored in an unbalanced binary search tree, ordered by name (lastName,
firstName).

Students by ID (StudentTreeById).

In parallel, students will also be stored in an AVL tree, ordered by their ID.

Computer rooms (RoomList).

Rooms will be stored in a list. Use of Java collections is allowed.

Computers in each room (ComputerList).

Computers in each room will be stored in a list. Use of Java collections is allowed. There will not be
a structure to store all the computers in the campus.

Operative data structures

Student queue (StudentQueue)

For the correct operation of the application, a class that implements the student queue will also be
created. There will be a student queue for the whole application.

Computer taking
There is no need to create any extra structure to deal with computer taking, all the information
needed will be held in the computer object, as described before.

Management and testing

Manager
The single-instance Manager class will hold the data structures and control the rest of the classes.

It will also be responsible of time passing management, by simulating the minutes passed since
the application was started..

public class Manager {
 private StudentTreeByName studentTreeByName = new StudentTreeByName();
 private StudentTreeById studentTreeById = new Stud entTreeById();
 private RoomList roomList = new RoomList();
 private StudentQueue studentQueue = new StudentQue ue();
 private int minutesPassed;
}

Please be aware that the data structures are private; this shouldn't change.

Tester
The static Tester class will test the functionalities by calling the methods in the other classes. It will
be responsible of the population of the master data structures. It will also contain the main method.

Operations on data structures
QUESTIONS – Every method described in this section MUST include a comment stating its
complexity (1, log N, N, N log N, N², etc.), with a brief justification and an indication about what N
stands for.

The basic operations of each data structure will include:

Room list
This class can be based on ArrayList , and will add an extra method (remaining necessary
functionalities should be available through ArrayList):

public class RoomList extends ArrayList<Room> {
 public Room getByName(String name) { ... }
}

Computer list
This class can be based on ArrayList , and will add no extra methods (methods in ArrayList should
be enough):

public class ComputerList extends ArrayList<Compute r> {
}

Student tree by name
This class will not be based on Java data structures. It will have the following methods:

public class StudentTreeByName {
 public void add(Student student) { ... }
 public Student getStudent(String lastName, String firstName) { ... }
 public ArrayList<Student> getStudentListByLastNam e(String lastName) { ... }
}

Student tree by ID
This class will not be based on Java data structures. It will have the following methods:

public class StudentTreeById {
 public void add(Student student) { ... }
 public Student getStudent(int id) { ... }
}

Remember this tree should be an AVL tree.
QUESTION – Why have we chosen to implement the tree by ID as an AVL tree, instead of the tree by
name?

Student queue
This class will not be based on Java data structures. It will have the following methods:

public class StudentQueue {
 public Student peekFirstStudent() { ... }
 public Student dequeueFirstStudent() { ... }
 public void enqueueStudent(Student student) { ... }
 public Student removeStudentByNia(int nia) { ... }
}

QUESTION – Which of these methods is not in the sta ndard queue abstract data type?

Primary management operations
Basic operations on internal data structures
The Manager object will have the following basic methods on its internal data structures, which
mirror some of the basic functionalities described above:

public class Manager {
 public boolean canAddStudent(int id,String lastNam e,String firstName) { ... }
 public void addStudent(int id,String lastName,Stri ng firstName) { ... }
 public void addRoom(String roomName,int numCompute rs) { ... }
 public Student getStudentById(int id) { ... }
 public Student getStudentByName(String lastName,St ring firstName) { ... }
}

These methods should have a short number of lines of code, for example:
public class Manager {
 StudentTreeById studentTreeById = new StudentTreeB yId();
 public Student getStudentById(int id) {
 Student student = this.studentTreeByNia.searchByI d(id);
 return student;
 }
}

More operations on internal data structures
The Manager object will have some not so simple methods on its internal data structures:.

public class Manager {
 public List<Computer> getFreeComputerList() { ... }
 public List<Computer> getTakenComputerList() { ... }
 public Computer getComputerTakenForMostTime() { .. . }
 public ArrayList<Student> getWorkingStudentList() { ... }
}

Computer taking and leaving
The Manager object will have simple operations that will be called when a student takes a free
computer (normally after being in the queue) or frees a computer, either because he or she
voluntarily leaves or forced by the Manager object because time passed:.

public class Manager {
 private void takeComputer(Computer computer, Stude nt student) { ... }
 private Student freeComputer(Computer computer) { ... }
}

Please note these methods are kept private, they are for internal use. There will be another
method to be called when a student leaves a computer.

Advanced management operations
These functions must write to the standard output.in order to follow how the system evolves. A
sample output will be given at the end of this document.

Time management
In order to simulate passing of time, the manager object will have a member variable minutesPassed
to control the number of minutes passed since the application was started, and this variable will be
incremented in a simulated way by a method advanceMinutesPassed .

There will also be a method, manageQueue, that will be called to check if a student in the queue can
be assigned either a free or a freeable computer:

public class Manager {
 int minutesPassed = 0;
 public void advanceMinutesPassed(int minutes) {
 while (minutes > 0) {
 ++this.minutesPassed;
 --minutes;
 manageQueue();
 }
 }

 private void manageQueue() {
 // while there are students in the queue
 // if there are no free computers, look for the computer used for most time
 // if the student has exceeded use time, free t he computer
 // if there is a free computer
 // let the first student in the queue take i t
 // else
 // return
 }
}

Please note manageQueue is kept private, it is for internal use, it must be called at the end of certain
methods (like advanceMinutesPassed).

Student queue
Students can enter the queue, or they can leave the queue (or a computer if they are already
working):

public class Manager {
 public Student putStudentInQueue(int id) { ... }
 public Student removeStudentFromQueueOrComputer(in t id) { ... }
}

Please note that after a student enters the queue or leaves the system, manageQueue must be called
in order to check if there is a free or freeable computer.

Room management
Finally, computer rooms, which are opened by default, can be closed and opened again.

public class Manager {
 public void openRoom(String roomName) { ... }
 public void closeRoom(String roomName) { ... }
}

When closing a room, the computers in it must be freed, and students who leave the room are put
into the queue again.

Testing

Testing data structures
Each data structure should have at least one testing method. For example, to test the StudentQueue :

public class Tester {
 static void testStudentQueue1() {
 StudentQueue studentQueue = new StudentQueue();
 ...
 studentQueue.show();
 }
 public static void main(String[] args) {
 testStudentQueue1();
 }
}

Population of master data structures
Before testing starts, the master data structures need to be populated. This is a responsability of
the Tester class:

public class Tester {
 static void populateRoomsAndComputers (Manager ma nager) { ... }
 static void populateStudents(Manager manager, int id1, int n) { ... }
}

And it will be invoked this way:
public class Tester {
 static void testManager1() {
 Manager manager = new Manager();
 populateStudents(manager, 10001, 100);
 populateRoomsAndComputers(manager);
 ...

 }
}

These functions will rely on the basic operations on data structures described above.

Rooms and computers in each room (populateRoomsAndComputers)

The room list will be populated with at least three rooms.

The computer list for each room will be populated with consecutive computer ids. Each room will
have a different but small number of computers (so that they can be easily visualized and quickly
taken).

Students (populateStudents)

There will be a method to populate the student trees with at least 100 student objects with
consecutive IDs (for example, 1000 to 1099). This method will be based on two arrays with first
names and last names, and a random number generator, like:

final static String[] firstNames = new String[] { " Ann", "Helen", "Elizabeth",
 "John", "Charles", "Michael", "Albert", "Joseph", "Sean" };
final static String[] lastNames = new String[] { "R obertson", "Smith", "White",
 "Owens", "Brown", "Edwards", "Connery", "Johnson" , "Green" };
final static Random rnd = new Random();

so that full student names can be obtained this way:
String firstName = firstNames[rnd.nextInt(firstName s.length)];
String lastName = lastNames[rnd.nextInt(lastNames.l ength)];

The population algorithm should avoid duplicate names (before inserting a generated student, it
will check it doesn't exist, and generate new names for the same NIA until they are not duplicated).

Testing the Manager class
The Manager class will have several testing methods covering all the functionalities described.
This doesn't mean a testing method

For example:
public class Tester {
 static void testManager1() {
 Manager manager = new Manager();
 populateStudents(manager, 10001, 100);
 populateRoomsAndComputers(manager);
 //
 manager.putStudentInQueue(10001);
 manager.advanceMinutesPassed(3);
 manager.putStudentInQueue(10002);
 manager.advanceMinutesPassed(3);
 ...
 }

 public static void main(String[] args) {
 // testStudentQueue1();
 testManager1();
 // testManager2();
 // testManager3();
 }
}

When testing the Manager class, remember you can call only methods in the Manager class, all the
internal data structures should be kept private.

Some clarifications
Java arrays will only be used for:

 - Population of the student trees, as indicated in the example given previously.

Java data structures (ArrayList , LinkedList) will only be used for:

− Implementing room and computer lists.

− Methods returning collections.

Both student trees and the student queue will be implemented without using Java data structures
or arrays, but developing linear (for lists) and non-linear (for trees) linked structures.

Sample output
This is a partial sample output for a testing method. The number at the beginning of the line
represents the minutes passed.

0: Student 10001-Johnson, John in queue
0: Student 10001-Johnson, John is taking 1.1.A10-01
3: Student 10002-Green, Ann in queue
3: Student 10002-Green, Ann is taking 1.1.A10-02
6: Student 10003-Connery, Ann in queue
6: Student 10003-Connery, Ann is taking 1.1.A10-03
9: Student 10004-Johnson, Charles in queue
9: Student 10004-Johnson, Charles is taking 1.1.A12 -01
39: Student 10005-Lee, Sean in queue
39: Student 10005-Lee, Sean is taking 1.1.A14-01
49: Student 10006-Smith, Charles in queue
49: Student 10006-Smith, Charles is taking 1.1.A14- 02
79: Student 10007-Connery, Charles in queue
79: Freeing computer 1.1.A10-01; was taken by 10001 -Johnson, John
79: Enqueuing student: 10001-Johnson, John
79: Student 10007-Connery, Charles is taking 1.1.A1 0-01
 …
169: Enqueuing student: 10008-Robertson, Michael
169: Student 10003-Connery, Ann is taking 1.1.A14-0 2
169: The student is not in the queue nor working: 1 0018
172: Student 10019-Edwards, Charles in queue
199: Freeing computer 1.1.A10-01; was taken by 1000 9-Johnson, Rachel
199: Enqueuing student: 10009-Johnson, Rachel
199: Student 10005-Lee, Sean is taking 1.1.A10-01
199: Freeing computer 1.1.A10-02; was taken by 1001 0-Robertson, Joseph
199: Enqueuing student: 10010-Robertson, Joseph
199: Student 10013-Lee, Charles is taking 1.1.A10-0 2
199: Freeing computer 1.1.A10-03; was taken by 1001 1-White, Sean
199: Enqueuing student: 10011-White, Sean
199: Student 10006-Smith, Charles is taking 1.1.A10 -03

