

Tema 1: Historia de los ordenadores

Informática

Departamento de Informática Israel González Carrasco (israel.gonzalez@uc3m.es) María Belén Ruiz Mezcua (mbelen.ruiz@uc3m.es)

Contenido

- Introducción.
- Conceptos.
- Historia de la informática.
- Ordenadores Electrónicos.
- Generaciones de Ordenadores Electrónicos.
- Clasificación de Ordenadores Electrónicos.
- Aplicaciones de los Ordenadores.
- Codificación de la información.

Introducción

- Definición de Informática
 - Informática es el conjunto de conocimientos científicos y técnicas que hacen posible el tratamiento automático de la información por medio de computadoras electrónicas.
 - (Según la RAE) Ciencia del tratamiento automático y racional de la información considerada como soporte de los conocimientos y las comunicaciones.

Conceptos

- Datos.
 - Representación formalizada de hechos o conceptos, capaz de ser comunicada, interpretada o procesada por un ser humano o por medios automáticos.
- Informática.
 - Es la ciencia que se ocupa del tratamiento automático de la información.

Conceptos (II)

- Información
 - La información son datos procesados en forma significativa para el receptor, con valor real y perceptible para decisiones presentes y futuras.
 - ✓ Los datos se transforman en Información cuando se les procesa a fin de obtener un producto significativo cargado de conocimientos, ideas o conclusiones.

Conceptos (III)

- Computador, computadora u ordenador:
 - Máquina capaz de aceptar unos datos de entrada, efectuar con ellos operaciones lógicas y aritméticas, y proporcionar la información resultante a través de un medio de salida.
 - ✓ Todo ello sin intervención de un operador humano y bajo control de un programa de instrucciones previamente almacenado en la propia computadora.

Calculadora:

- Máquina capaz de efectuar operaciones aritméticas bajo el control directo del usuario.
 - ✓ Los datos son conjuntos de símbolos utilizados para expresar o representar un valor numérico, un hecho, un objeto o una idea.

Conceptos (IV)

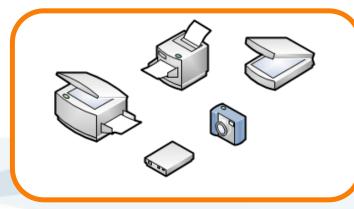
Telecomunicaciones

 Tecnología que estudia los sistemas y medios de emitir, transmitir y recibir información a distancia, a través de medios físicos electromagnéticos y ópticos.

Telemática

- Telecomunicación + Informática.
- Tecnologías de la información (TI)
 - Telemática + otras ramas científicas y técnicas.
 - Nuevas estructuras y relaciones comerciales, administrativas y laborales:
 - Comercio electrónico.
 - ✓ Teleadministración.
 - ✓ Teletrabajo.
 - ✓ Teleformación.

Conceptos (V)


- Comercio Electrónico.
 - Entre empresas: Business to Business (B2B)
 - Consumidor y empresa: Consumer to Business (C2B)
- Teleadministración.
 - Reemplazo de las relaciones de los administrados con las administraciones públicas: Declaración de la renta por internet
- Teletrabajo:
 - Trabajar desde casa
 - Cuando no tenemos que desplazarnos de la oficina al trabajo.
- Teleformación:
 - Una nueva modalidad de enseñanza
 - Centro de Formación: Universidades

Conceptos (VI)

- Hardware: Parte física del ordenador.
 - Componentes eléctricos, electrónicos, electromecánicos y mecánicos; cables, periféricos, etc.
- Software: Parte lógica del ordenador.
 - Componentes lógicos necesarios que hacen posible la realización de tareas específicas.

Hardware

Software

Historia (I)

Abaco

- Dispositivo más antiguo de cálculo es el Ábaco. Creado por los egipcios, dos mil años antes de nuestra era.
- El ábaco permite sumar, restar, multiplicar y dividir
 - Formas:
 - ✓ 10 columnas, 2 bolas en la parte superior y 5 en la inferior
 - ✓ 20 columnas, 1 bola en la parte superior y 10 en la inferior
- Fue mejorado por los chinos y japoneses

Fuente Wikipedia

Historia

Calculadoras mecánicas

- 1642 : Se inventó la Primera sumadora
 - Blaise Pascal, filósofo y matemático Francés

Fuente Wikipedia

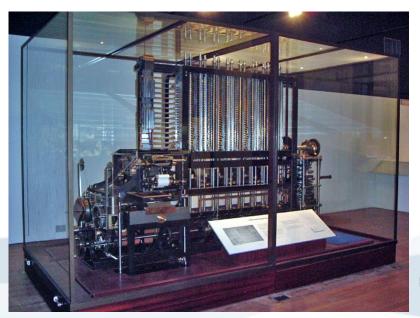
- Dispositivo que utilizaba una serie de rueda de 10 dientes
- Cada uno de los dientes representaba un digito del 0 al 9.
- Finales del siglo XVII: Gottfried Leibniz (1646-1716), mejoró la máquina de Pascal.
- Se desarrolló la calculadora mecánica: Sumar, restar, multiplicar, dividir y obtener raíces mecánicamente.
- Desventajas:
 - Requerían de la continua intervención del operador para efectuar maniobras, anotar resultados intermedios.
 - Propensa a errores

THE RESTRICT

Historia

Calculadoras mecánicas (II)

 Joseph-Marie Jacquard (1705-1765) S. XVIII almacena instrucciones (programas) en cartones perforados, para controlar el estampado de las telas.


Fuente Wikipedia

Historia

Máquina Analítica

- Charles Babbage (1792-1871), matemático británico.
 - Almacenar información en Tarjetas Perforadas.
 - Seguir la ejecución secuencial de las instrucciones de un programa (un principio actual en los ordenadores).

Modelo conceptual no fabricado hasta 100 años después.

Fuente Wikipedia

ARLOS III.

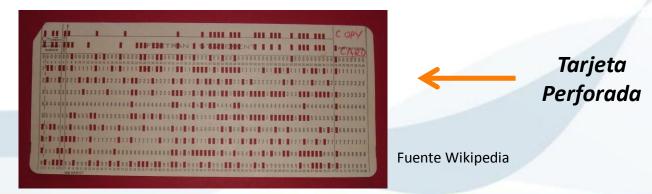
Historia

Máquina Analítica (II)

- Charles Babbage (1792-1871), matemático británico.
 - Dispositivos de entrada: instrucciones para las operaciones y los datos de entrada.
 - Memoria: para almacenar los datos introducidos y los resultados de las operaciones intermedias.
 - ✓ Unidad de control: para supervisar la ejecución de las operaciones según la secuencia adecuada.
 - ✓ Unidad aritmético-lógica: efectuaba las operaciones para las que la máquina está preparada.
 - ✓ Dispositivo de salida: transmitía los resultados de los cálculos.

Historia

Ordenador Eléctrico


- Herman Hollerith
 - Desarrollo el código Hollerith de la secuencia de perforación de tarjetas, así como la máquina eléctrica para leer y almacenar tarjetas.
 - Colaboró en la oficina del censo de los EEUU.
 - ✓ Fundó en 1896 la Tabulating Machine Company que luego se fusionó con otras dos empresas: Computing Scale e International Time Recording, dando lugar a CTR (Computing Tabulating Recording) Company.
 - ✓ Hollerith se retiró en 1921.
 - ✓ En 1924 CTR cambió su nombre por el de International Business Machine Corporation (IBM).

Historia

Ordenador Eléctrico (II)

- Los equipos para el tratamiento de tarjetas constaban de:
 - Perforadora: punzones que efectuaban taladros (como máquinas de escribir).
 - Verificadora: comprobaba la exactitud de los datos.
 - Clasificadora: seleccionaba las tarjetas mediante la lectura de las perforaciones de una determinada columna.
 - Intercaladora: separaba, intercalaba o emparejaba tarjetas.
 - Tabuladora: realizaba operaciones de suma, resta, lectura e impresión.

THE STATE OF THE S

Historia

Ordenador Electromecánico

- La fácil obtención de energía eléctrica, implica el desarrollo de máquinas electromecánicas en lugar de las exclusivamente mecánicas.
- Los dispositivos electromecánicos utilizan la energía eléctrica para producir un movimiento mecánico.
- En los años cuarenta aparecen los ordenadores electromecánicos:
 - Leen la información previamente perforada de cinta de papel y tarjetas.
 - Tienen como componentes básicos el relé y solenoide.

TO THE PARTY OF TH

Historia

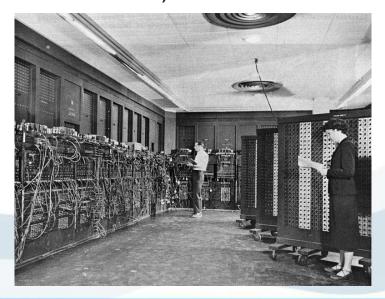
Ordenador Electromecánico (II)

- Mark I (1944). Desarrollado por Howard Aïken e IBM (1900-1973).
 - Primer ordenador electromecánico.
 - Multiplicaban dos números en tres segundos.
 - Recibían las instrucciones mediante cintas de papel.
 - Recibían los datos mediante tarjetas perforadas.
 - Escribían los resultados utilizando un teletipo.
 - Componentes de MARK I:
 - ✓ Tenía 2.5 metros de alto y 17 metros de largo
 - ✓ Constaba de 200.00 piezas conectadas con 800.000 metros de cables.
 - ✓ Unidades de E/S.
 - Memoria
 - Unidad Aritmético-Lógica.
 - ✓ Unidad de Control.
- Mark II (1947)
 - Multiplicaban dos números en 1/4 segundo.

Fuente Wikipedia

Historia

Ordenadores Electrónicos. Índice.


- 1. La era Electrónica. ENIAC.
- 2. Arquitectura de John Von Neumann.
- 3. Evolución de los Ordenadores: Generaciones.
- 4. Clasificación de los Ordenadores.

La era electrónica. ENIAC

- ENIAC (Electronic Numerical Integrator and Computer.)
 - Traducido como Ordenador e Integrador Numérico Electrónico.
 - Desarrollado en 1946 por J. Presper Eckert, John W. Mauchly y otros investigadores en la Moore School of Engineering de la Universidad de Pennsylvania.
 - Primer ordenador electrónico, construido con válvulas de vacio.

Fuente Wikipedia

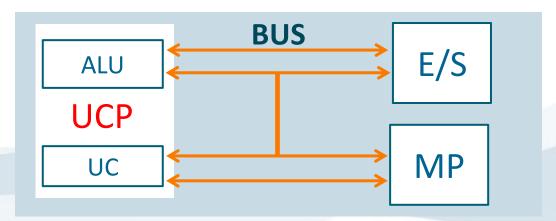
Ordenadores Electrónicos

La era electrónica. ENIAC (II)

- Características del ENIAC
 - Las operaciones de almacenamiento, cálculo y control eran efectuadas por circuitos electrónicos.
 - Se modificaban los circuitos de la máquina para que realizara las operaciones requeridas, con 17.468 tubos de vacío.
 - Pesaba 30 toneladas.
 - Ocupaba una superficie de 160 m2.
 - Tenía 2.40 metros de alto y 30 metros de largo.
 - Capaz de almacenar programas distintos.
 - Resolvía en 1 hora lo que Mark I lo hacía en una semana.

Ordenadores Electrónicos

Arquitectura John Von Neumann


- La mayoría de computadoras modernas están basadas en esta arquitectura.
- Los principios de Von Neumann hacen referencia a la noción de programa almacenado:
 - Tanto datos e instrucciones se representan en código binario y se almacenan juntos en la memoria del ordenador (en un mismo dispositivo).
 - ✓ El ordenador no hace distinciones entre datos e instrucciones.
- Otros aspectos
 - Transmitir datos en paralelo no en serie.
 - Programa almacenado en memoria, no siendo necesario cambiar sus circuitos internos para cambiar el programa.
 - Métodos de programación más complicados.

Ordenadores Electrónicos

Arquitectura John Von Neumann

- "...Puesto que el dispositivo final ha de ser una máquina computadora de propósito general, deberá contener ciertos órganos fundamentales relacionados con la aritmética, la memoria de almacenamiento, el control y la comunicación con el operador humano..."
 - Unidad Aritmético-Lógica (ALU), la Unidad de Control (UC), la Memoria (MP), un Dispositivo de Entrada/Salida (E/S) y el bus de Datos.

Arquitectura John Von Neumann (II)

- La primera máquina que se adapto a la arquitectura Von Neumann fue EDVAC construida en 1947 en la Universidad de Cambridge.
 - Primera Generación.

Fuente Wikipedia

Arquitectura John Von Neumann (III)

- Univac1 1951 primer ordenador electrónico digital producido en serie
 - Primera Generación.
 - Oficina de Censo de EEUU.

Fuente Wikipedia

Fuente Wikipedia

Evolución de los Ordenadores

- Cambios socioeconómicos y tecnológicos en los años 50 llevan a la necesidad de controlar la administración de las grandes empresas y los programas de investigación en las nuevas tecnologías.
 - Condiciones adecuadas para la aparición del ordenador y su fabricación en serie
 - Mejoras en los circuitos electrónicos.
 - Aparición de los circuitos integrados.
 - Métodos de programación más eficaces.
- Los ordenadores comienzan a ser más rápidos, fiables, compactos, baratos y consumen menos energía.
- Los distintos ordenadores aparecidos desde la década de los cincuenta han sido clasificados en generaciones.

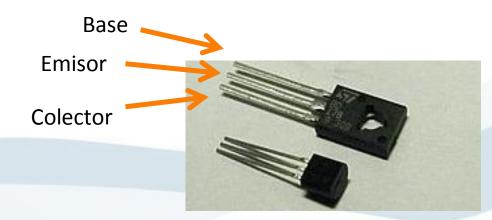
Evolución de los Ordenadores (II)

- Primera Generación.
- Segunda Generación.
- Tercera Generación.
- Cuarta Generación.
- Quinta Generación.

Primera generación (1946-1958)

- Válvulas de vacío.
 - Conmutación de la señal eléctrica.
 - Control movimiento electrones.
 - ✓ Valores 0 y 1.
 - Consumían mucha energía.
 - Generaban mucho calor.
 - Ocupaban gran volumen.
 - Sufrían frecuentes "caídas".
 - Eran muy lentos.
- Modelos.
 - UNIVAC I: UNIVersal Automatic Computer.
 - Series 650 y 700 de IBM.
- Orientadas a aplicaciones científico-militares.

Fuente Wikipedia


Segunda generación (1959-1965)

- Paso de la válvula de vacío al transistor:
 - Conmutador de estado sólido o amplificador de corriente.
 - Pequeño tamaño y bajo consumo de energía.
 - Poca generación de calor, operaba con pequeños voltajes.
 - Más barato y fiable.
 - Efectúa operaciones lógicas más eficientes que las válvulas de vacío.
- Modelos 1620, 1401 y 7094 de IBM.
- Aparecen los primeros lenguajes de programación: Algol, Cobol y Fortran.
- Aplicaciones:
 - Reserva en líneas aéreas, control de tráfico aéreo.

Segunda generación (1959-1965) (II)

- Transistor: Compuesto de tres capas de elementos semiconductores.
 - Emisor (emite portadores de carga), Colector (recibe portadores de carga) y Base (modula el paso).
 - Permite controlar el paso de la corriente a través de sus terminales:
 - Conmutar o Amplificar.

Fuente Wikipedia

Segunda generación (1959-1965) (III)

Modelo 7094 de IBM.

Fuente Flickr

THE PRINCIPLE OF THE PR

Generaciones de Ordenadores

Tercera generación (1966-1970)

- Circuitos integrados (chips)
 - Placa de Silicio donde están conectados muchos transistores y otros componentes electrónicos. Se distinguen:
 - ✓ Baja escala de integración ~ 10 transistores (comienzos 60).
 - ✓ Media escala de integración ~ con varios cientos de transistores (finales 60).
 - ✓ Alta escala de integración ~ con varios cientos de miles transistores (en los 70).
 - Muy alta escala de integración, millones de transistores.

Modelos

- Modelos 360 y 370 de IBM.
- Spectra 70 de RCA.
- Sperry Rand 1108 y 6600 de CDC.

Generaciones de Ordenadores (VII)

Tercera generación (1966-1970) (III)

- Características:
 - Teleproceso, multiprogramación.
 - Aplicaciones: Empresariales y científicas.
 - Familia de ordenadores.
- Modelos 370 de IBM.

Cuarta generación (1971-1980)

- El Microprocesador.
 - Alto grado de integración (100,000 transistores en un mismo chip).
 - Lenguajes de programación de alto nivel: Basic, PL1 etc.
 - Microcomputadoras PC: Microprocesador Intel 4004, 8008, 8080.

Intel 80286

Fuente Wikipedia

Intel 80486

Fuente Wikipedia

AMD K6

Fuente Wikipedia

Intel Pentium II

Fuente Wikipedia

Quinta generación (1981-)

- Inicio teórico 1981 (Japón I+D).
- Inicio comercial 1991.
- La quinta generación se basa en pequeños ordenadores personales con aplicaciones en todo tipo de tareas.
 - Con capacidad de cómputo cientos de veces superior a la anterior generación.
 - Con software que permite manejar el ordenador sin apenas conocimientos informáticos.

¿Sexta generación?

- Podrían ser los llamados Network Computer u Ordenadores de red:
 - De bajo coste.
 - Con poca memoria.
 - Puede que sin disco duro.
 - Obtienen todas las prestaciones de las redes a las que se hallan conectados.

- Por su propósito
 - Propósito general.
 - Propósito dedicado.
- Por su tamaño y Potencia
 - Grandes ordenadores (mainframes).
 - Miniordenadores.
 - Microordenadores.

Por su propósito

- Propósito General.
 - Puede ejecutar un amplio conjunto de tareas de proceso de información, desde aplicaciones científicas, hasta aplicaciones comerciales.
 - Pueden soportar desde un usuario hasta un gran número de usuarios.
 - La mayoría son de este tipo.
- Propósito Dedicado.
 - Esta diseñado para una tarea específica: robótica, control de procesos, etc.
 - Calculadoras, agendas, etc.

Por su tamaño y potencia

- Grandes Ordenadores (Mainframes).
 - Tienen varias unidades de proceso, soportan varias aplicaciones ejecutándose concurrentemente.
 - ✓ Gran capacidad de almacenamiento de datos.
 - ✓ Trabajan varios usuarios simultáneamente, donde la información es organizada en una o más bases de datos.
 - Se encuentran en grandes salas diseñadas para ellos.
 - Servicios a grandes empresas:
 - Organismos públicos, universidades, por el gran volumen de datos.
 - Uso de terminales: teclado y pantalla, no tiene su propia CPU.

STATE OF THE STATE

Clasificación de Ordenadores Electrónicos

Por su tamaño y potencia (II)

- Grandes Ordenadores (Mainframes)
 - Características:
 - Procesador de Canales, controla el flujo de datos entre el procesador y los periféricos
 - Procesador de Comunicaciones, controla el flujo de datos entre el procesador y los enlaces de comunicaciones
 - Unidad de Control de dispositivos de almacenamiento, regula el flujo de datos entre las distintas unidades de almacenamiento.

Fuente Wikipedia

Por su tamaño y potencia (III)

- Miniordenadores: Minis
 - Menor potencia que los grandes ordenadores
 - ✓ Se utilizan en aplicaciones que no requieren de gran velocidad de cálculo o de gran capacidad de memoria
 - ✓ Soporta aplicaciones concurrentes pero no tanto como los grandes ordenadores
 - Trabajan varios usuarios con gran versatilidad de programas a menor coste que los mainframes.
 - Se encuentran habitualmente en laboratorios, fábricas y oficinas como servidores de redes departamentales.
 - ✓ No requiere de un entorno tan sofisticado.

RLOS III.S

Clasificación de Ordenadores Electrónicos

Por su tamaño y potencia (IV)

- Miniordenadores: Minis
 - Características:
 - Procesador: para el tratamiento de datos
 - Periféricos: de entrada y salida suministran y extraen información del ordenador.
 - Dispositivos de almacenamiento: para almacenar gran volumen de información.
 - Enlaces de comunicaciones: para enviar y recibir datos desde otros ordenadores
 - Consola del operador: para controlar el sistema.

Fuente Wikipedia

TO WELLOW THE PROPERTY OF THE

Clasificación de Ordenadores Electrónicos

Clasificación de Ordenadores Electrónicos (V)

- Microordenador: Micros
 - Microordenador (PC), aquel que tiene un microprocesador y utilizado por un solo usuario.
 - Características:
 - ✓ Procesador
 - Monitor
 - ✓ Teclado
 - ✓ Unidad de disco
 - Periféricos

Fuente Wikipedia

Aplicaciones de los Ordenadores

- Los ordenadores son útiles para aplicaciones con las siguientes características:
 - Necesidad de guardar gran volumen de datos.
 - Datos comunes a múltiples aplicaciones.
 - Repetitividad: procesamientos de ciclos de instrucciones.
 - Distribución: el origen y el destino de la información no necesita estar ubicado en el computador central.
 - Cálculos complejos.
 - Gran velocidad.
- Otras Aplicaciones informáticas:
 - Inteligencia artificial.
 - Informática gráfica.
 - Aplicaciones multimedia.
 - Internet: correo electrónico, boletines de noticias, charlas interactivas, motores de búsqueda.

Aplicaciones de los Ordenadores (II)

- Campos de Aplicación de la informática:
 - Procesamiento de datos administrativos.
 - Ciencias físicas e ingeniería.
 - Ciencias de la vida y médica.
 - Ciencias sociales y del comportamiento.
 - Arte y humanidades.

Codificación de la Información

Información y Datos

- Se llama dato a cualquier conjunto de caracteres
 - Un carácter es un símbolo.
 - Caracteres numéricos, alfabéticos y especiales
- <u>Información</u> es el conjunto de datos necesarios para resolver cualquier problema técnico o de gestión.
 - Para definir la información se necesitan de datos

Codificación de la Información

Representación de la información

- Diferentes sistemas de numeración para representar la información.
 - Se caracterizan por tener una base que indica el número de símbolos a utilizar.
 - ✓ Sistema Decimal: Base 10.
 - ✓ Sistema Binario: Base 2.
 - ✓ Sistema Hexadecimal: Base 16.
 - ✓ Sistema Octal: Base 8.

Decimal	Binario	Octal	Hexadecimal
3	0011	3	3
10	1010	12	Α
15	1111	17	F

Codificación de la Información

Representación de la información (II)

- Los ordenadores trabajan internamente con dos niveles de voltaje, por lo que su sistema de numeración natural es el sistema binario (encendido 1, apagado 0).
- Tipos de datos:
 - Numéricos.
 - Alfanuméricos.
- Operaciones:
 - Suma, resta, multiplicación, etc.
 - Condicionales <,>,<=,>=.
 - Lógicas and,or,not,xor.