

1. Given the following boolean functions:

$$f_1 = \sum_{4} (0,2,3,6,7,8,15) + \bigwedge_{4} (1,5,10)$$
$$f_2 = ac + \bar{b}cd + a\bar{b}cd$$

- a) Implement f_1 with the minimum possible number of NOR logic gates.
- b) Obtain a simplified expression of f_2 as a product of sums.
- c) Implement f_1 with a 4:16 decoder with active-high outputs and with active-low enable.
- d) Implement f_1 with a multiplexer with 8 data inputs and NAND gates.
- 2. Given the following logic function:

$$f(a, b, c, d) = \sum_{4} (0, 4, 6, 7, 8, 10, 12) + \Delta_{4} (2, 13)$$

- a) Obtain the most simplified expression in a 2-level representation (SOP or POS)
- b) Implement the logic function f using only 2-input NOR gates.
- c) Implement f with a 4:16 decoder with active-low outputs.
- d) Implement f using a MUX2 and additional logic
- e) Implement f using only MUX4.
- 3. Given the following logic function:

$$f = \sum_{4} (0,4,5,6,10) + \bigwedge_{4} (2,7,8,13,15)$$

- a) Obtain the most simplified expression as product of sums
- b) Obtain the most simplified expression as sum of products
- c) Implement the Boolean function f using only 2-input NAND gates
- d) Implement f using a 4:16 decoder with active-low outputs and active low enable, and additional logic
- e) Implement f using a MUX8 and additional logic
- 4. Given the following functions:

$$F1(a,b,c,d) = (a+b) \cdot (a+b+\bar{c}+d) \cdot \left(\bar{a}+b+\bar{c}+d\right)$$

$$F2(a,b,c,d) = \sum_{4} (1,7,11,13,14,15) + \bigwedge_{4} (3,5,6,9,10,12)$$

Find:

- a) A simplified logic expression for F1 as sum of products.
- b) A simplified logic expression for F2 as product of sums.
- c) An implementation of F1 using only 2-input NOR gates

- d) An implementation of F2 with <u>only one</u> active-high outputs decoder and additional logic gates if necessary.
- 5. Given the following boolean function:

$$f = \sum_{4} (0,2,3,6,7,8,15) + \bigwedge_{4} (1,5,10)$$

- a) Find a simplified expression for f as a product of sums.
- b) Find a simplified expression for f as a sum of products.
- c) Implement f with a 4:16 decoder with active-low outputs and active-low enable.
- d) Implement f with a multiplexer with 8 data inputs and NAND gates.
- e) Implement f with a 3:8 decoder with active-high outputs.
- 6. Obtain the implementation of a 4-bit adder-subtractor (right figure) using a 4-bit adder (left figure), considering that the operations are performed in 2s-complement:

Cin and Cout are the carry-in and carry-out of the 4-bit adder.

Sel and OV are the selection input (add/subtract) and the overflow output of the 4-bit adder-subtractor.

<u>Hint:</u> Add the additional necessary gates to the circuit on the left to obtain the functionality of the circuit on the right.

7. Given the following boolean function:

$$f(d,c,b,a) = \sum_{4} (0,2,4,7,10,11,15) + \underline{\Lambda}_{4}(5,6,13)$$

a) Find a simplified expression for f as a product of sums.

- b) Find a simplified expression for f as a sum of products.
- c) Find an expression using only NAND operations (it is not required to show the graphical representation of the circuit).
- d) Implement f with a decoder with active-high outputs and active-high enable. Point out first which is the most suitable size for the decoder.
- e) Implement f with a MUX2 (multiplexer with 4 data inputs) and additional logic if needed (only one MUX2).
- 8. Consider two functions F1 and F2. F1 is shown in the figure:

and F2 is expressed as:

 $F2(A,B,C,D) = \Sigma_4(1,5,7,9,11,12) + \Delta_4(13,14,15)$

- a) Obtain the simplified logic function of F1 (schematic shown in the figure), expressed as a sum of products.
- b) Obtain the simplified logic function of F2 expressed as a product of sums.
- c) Implement F1 using a 4:16 decoder with active-high outputs and additional logic.
- d) Implement F2 using an 8:1 multiplexer and the minimum possible number of logic gates.

9.

- a) Convert 1501_{10} to natural binary and octal, and encode it using Gray's code.
- b) Encode $E3_{16}$ using BCD code.
- c) Express $+33_{10}$ in natural binary, and $+33_{10}$ and -33_{10} in both 1's complement and 2's complement systems. Choose the minimum possible number of bits for each representation.
- d) Perform the following operations as sums of 9 bits, with the operands expressed in 2's complement: 33+239, -33+239. Point out when there is carry and/or overflow and justify it. $(239_{10} = 11101111_2)$.

- 10. Hand in your solutions of this problem in this same sheet.
 - a) Represent 16510 y 9710 in natural binary, octal, hexadecimal, natural BCD and Gray code.

	165 ₁₀	97 ₁₀
Natural binary		
Octal		
Hexadecimal		
Natural BCD		
Gray code		

- b) Represent 671_8 in natural BCD:
- c) Represent $+165_{10}$, -165_{10} , $+97_{10}$, -97_{10} using 2s-complement representation. Use the minimum possible number of bits for all of them.

	Representation in 2C with minimum number of bits
+165 ₁₀	
-165 ₁₀	
+97 ₁₀	
-97 ₁₀	

d) Perform the following operations in 2s-complement. Use the minimum number of bits so that there is no overflow in any operation.

165-165	165+97	97-165

11. Let $A = 10011101_2$ and $B = 01111011_2$:

- a) Represent A in Octal, Hexadecimal and natural-BCD code
- b) Suppose that A and B are representing unsigned numbers:
 - 1. Determine the decimal values of A and B
 - 2. Perform the operation A+B in binary.
 - 3. Indicate if there is overflow in the operation. Justify your answer.
- c) Suppose now that A and B are represented in 2's complement
 - 4. Determine the decimal values of A and B
 - 5. Perform the operation A+B in binary.
 - 6. Indicate if there is overflow in the operation. Justify your answer.

12.

- a) Represent number 459₁₀ in Octal, Hexadecimal and natural BCD code.
- b) Represent numbers A=+43 and B=-36 using 8-bit 2s-complemement.
- c) Perform operation A+B in 8-bit 2s-complement. Point out if there is overflow in this operation. Justify your answer.

13.

- a) Convert 1501_{10} to binary, octal and hexadecimal.
- b) Encode $E3_{16}$ using BCD code.
- c) Encode $+33_{10}$ in natural binary, and $+33_{10}$ and -33_{10} in both 1's complement and 2's complement systems. Choose the minimum possible number of bits for each representation.
- d) Perform the following operations as sums of 9 bits, with the operands expressed in 2's complement: 33+239, -33+239. Point out when there is carry and/or overflow and justify your answer. ($239_{10} = 11101111_2$).

14.

- a) Convert into decimal, octal, hexadecimal and BCD the binary number 101110_2 .
- b) Convert into binary the decimal number $25,4375_{10}$.
- c) Using representations of 7-bit 2s complement, compute the operations A+B y A-B being A= -45_{10} and B= -17_{10} . Point out if there is overflow in any of the operations.