
1

Representation of
Information in Digital

Systems

© Luis Entrena, Celia López, Mario García,
Enrique San Millán

Universidad Carlos III de Madrid

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 2

Introduction to computers
l  Computer: Machine that processes information

l COMPUTER l Information l Processed Information

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 3

Analog and Digital Systems
l  Analog Systems: Systems where variables have

continuous values
•  Physical magnitudes are usually analog

l  Digital systems: Systems where variables have
discrete values
•  Discrete values are called digits
•  Limited precision
•  Digital magnitudes are easier to handle
•  Analog magnitudes can be converted to digital using

sampling

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 4

Analog and Digital Systems
l  Analog System l  Digital System

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 5

Binary Systems
l  Binary Systems: Digital systems that use only two

possible values
•  Binary digits are named bits (BInary Digit)
•  They are represented with symbols 0 and 1, or L and H
•  Binary Systems are almost the only digital systems used.

By extension, the term digital is used as a synonym of
binary

l  ¿Why binary?
•  More reliability: more inmunity to noise
•  Easier to build: only two values to distinguish

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 6

Outline
l  Number Systems
l  Number Systems Conversions

l  Binary Codes:

•  BCD Codes
•  Progressive and cyclic codes
•  Alphanumeric codes
•  Error detection and error correction codes
•  Real and integer numbers representation

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 7

Number Systems
l  Numbers are represented using digits
l  The system we commonly use is decimal:

•  N = an 10n + an-1 10n-1 + … + a1 10 + a0

•  Example: 27210 = 2*102 + 7*10 + 2

l  The same representation can be used with different
bases:

•  N = an bn + an-1 bn-1 + … + a1 b + a0

Digit Weight

Base

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 8

Number Systems
l  In a system using base b, possible digits are:

•  0, 1, … , b-1

l  Using n digits, bn different possible numbers can be
represented, from 0 to bn-1

l  This representation can be used for not natural
numbers as well:
•  Example: 727,2310 = 7*102 + 2*10 + 7 + 2*10-1 + 2* 10-2

l  The numeral systems used in digital systems are:
binary (b=2), octal (b=8) and hexadecimal (b=16)

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 9

Binary System
l  In this system the base is 2.

•  Possible digits are 0 and 1. A digit in binary system is named
“bit”.

•  2n different numbers can be represented using n bits.

l  The bit with highest weight is called MSB (“Most
Significant Bit”), and the lowest weighted bit is called
LSB (“Least Significant Bit”)

•  Example: 10010102 = 1*26 + 1*23 + 1*21 = 7410

MSB LSB

Usually the most significant bit is written to the
left, and the least significant bit is written at the
right

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 10

Octal Number System

l  In this system the base is 8
•  Digits are 0,1,2,3,4,5,6,7
•  8n different numbers can be represented with n digits

l  It is related to the binary system (8 is a power of 2,
23=8)
•  This relationship allows to convert easily from octal to binary

and from binary to octal.

l  Example:
 1378 = 1*82 + 3*81 + 7*80 = 9510

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 11

Hexadecimal Number System
l  In this system de base is 16.

•  Digits are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
•  It is related to binary system as well (24=16)
•  A hexadecimal digit allows to represent the same as 4 bits

(because 24=16). An hexadecimal digit can be named as
“nibble”.

•  Two hexadecimal digits are equivalent to 8 bits. A set of 8
bits, or equivalently 2 hexadecimal digits, are called “byte”.

l  Notations: 23AF16 = 23AFhex = 23AFh = 0x23AF = 0x23 0xAF.

l  Example: 23AFh = 2*163 + 3*162 + 10*16 +15 = 913510

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 12

Number Systems Conversions
l  Conversion from any system to decimal:

•  N = an bn + an-1 bn-1 + … + a1 b + a0

•  Examples:
•  10010102 = 1*26 + 1*23 + 1*21 = 7410

•  1378 = 1*82 + 3*81 + 7*80 = 9510
•  23AFh = 2*163 + 3*162 + 10*16 +15 = 913510

l  Conversion from decimal to any other system:
•  Weight decomposition
•  Repeated division

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 13

Weight Decomposition
l  The number is decomposed in powers of the base.

•  The nearest power of the base (lower) is searched.
•  Iteratively, powers of the base are been searched so that the sum of all of

them is the decimal number to convert
•  Finally, the weights are used to represent the number in the desired base.

l  This method is only useful for systems with well known powers.
For example, for binary system: 1, 2, 8, 16, 32, 64, 128, 256, …

l  Example:
•  2510 = 16 + 8 + 1 = 24 + 23 + 20 = 110012

l  The number and the quotients in previous divisions are divided
repeatedly by the destination base
•  The last quotient obtained is the MSB
•  The remainders are the other bits, the first one corresponding to the LSB.

l  Example:

l  This method is more general than the previous one. It can be
used for any base conversion

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 14

Repeated Division

25 2
 1 12 2
 0 6 2
 0 3 2
 1 1

MSB

LSB
2510 = 110012

Real numbers conversion
l  Conversion from binary to decimal can be obtained using the

same method as for integer numbers (just using negative
weights for the decimal part) :

101,0112 = 1*22 + 0*21 + 1*21 + 0*2-1 + 1* 2-2 + 1* 2-3 =
= 4 + 1 + 0,25 + 0,125 = 5,37510

l  Conversion from decimal to binary is obtained in two steps:
•  Convert first the integer part, using repeated division or weight

decomposition.
•  Then convert the decimal part, using an analogous method: repeated

multiplication by the base.

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 15

l  The decimal part of the number is multiplied repeatedly by the
base:
•  The decimal part is multiplied by 2. Then the integer part of the result is the

first bit (MSB of the decimal part) of the conversion.
•  The obtained decimal part is multiplied by 2, and again, the integer part is

the next digit of the conversion.
•  Iterate this procedure several times, depending on the desired precision for

the conversion.

l  Examples:

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 16

Repeated multiplication method
(decimal part)

0,3125 10 = 0,01012
0,3125 x 2 = 0,625 => 0
0,625 x 2 = 1,25 => 1
0,25 x 2 = 0,5 => 0
0,5 x 2 = 1 => 1

0,110 = 0,0 0011 0011 ... 2
0,1 x 2 = 0,2 => 0
0,2 x 2 = 0,4 => 0
0,4 x 2 = 0,8 => 0
0,8 x 2 = 1,6 => 1
0,6 x 2 = 1,2 => 1
0,2 x 2 = 0,4 => 0 <- the last four digits will repeat periodically
0,4 x 2 = 0,8 => 0
0,8 x 2 = 1,6 => 1
 ...

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 17

Other conversion methods
l  Octal and Hexadecimal number systems are related with binary

because their bases are exact powers of the binary base. This makes
very easy the conversion between these systems and binary.
•  OCTAL to BINARY: Convert each digit into binary (3 bits each digit)

•  Example: 7358 = 111 011 1012

•  BINARY to OCTAL: Gruop
•  Example: 1 011 100 0112 = 13438

•  HEXADECIMAL to BINARY: Convert each digit into binary (4 bits each digit)
•  Example: 3B2h = 0011 1011 00102

•  BINARY to HEXADECIMAL: Agrupar en grupos de 4 bits y convertirlos de forma
independiente a octal

•  Example: 10 1110 00112 = 2E3h

Binary Codes
l  Binary codes are codes that use only 0s and 1s to represent

information

l  Information that can be represented with binary codes can be of
several types:
•  Natural Numbers
•  Integer Numbers
•  Real Numbers
•  Alphanumeric characters and other symbols

l  The same information (a natural number for example) can be
represented using different codes
•  It is important to especify which encoding is been used when some

information is represented with a binary code

 © Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 18

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 19

Natural Binary Code

l  It is a binary code where a natural number is
represented using its binary number
representation
•  It is the simplest binary code
•  This can be done because the binary number system for

natural numbers needs only 0s and 1s (no extra symbols
for decimal point or sign)

l  Notation: The “BIN” subindex is used to especify
that a binary code corresponds to the natural
binary code.
•  1001BIN = 10012

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 20

BCD Codes (“Binary-Coded
Decimal”)
l  They are an alternative to the natural binary code for

representation of natural numbers

l  A 4-bit encoding is assigned to each decimal digit. A
decimal number is encoded in BCD code digit to digit.

l  The most common BCD code is natural BCD
(there are other BCD codes).

l  Example:
•  7810 = 0111 1000BCD

l  The BCD encoding of a number may be different to the
natural binary encoding
•  7810 = 1001110BIN

l  CONS: No all encodings correspond to a binary BCD
encoding. For example,1110BCD does not exist.

l  PRO: It is easy to convert natural numbers to BCD.

Decimal
digit BCD code

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 21

Progressive and Cyclic Codes
l  Two binary encodings are adjacent if there is only 1 different

bit between them.
l  0000 y 0001 are adjacent, as they differ only in the last bit
l  0001 y 0010 are not, because the last two bits are different

l  A code is progressive is all consecutive encodings are
adjacent.
l  Natural binary code is not progressive, as 0001 y 0010 are not adjacent.

l  A code is cyclic if the first and the last encodings are adjacent.
l  The most used progressive and cyclic codes are:

l  Gray code
l  Johnson code

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 22

Gray Code
l  Gray codes are progressive and cyclic

l  Example: 3-bit Gray Code

Decimal Gray
Code

0 0 0 0
1 0 0 1
2 0 1 1
3 0 1 0
4 1 1 0
5 1 1 1
6 1 0 1
7 1 0 0

All consecutive
encodings are
adjacent

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 23

Gray Code
l  Construction of n-bit Gray codes:

•  First the n-1 bit code is copied. Then it is copied again in inverse order
•  Then a 0 is added in the first part of the table, and a 1 in the second part

l  1-bit code:

l  2-bits code:

0
1

0
1
1
0

0 0
0 1
1 1
1 0

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 24

Código Gray
l  3-bits code:

l  n-bit Gray codes can be obtained by iteration

0 0

0 1

1 1

1 0

1 0

1 1

0 1

0 0

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 25

Binary-Gray and Gray-Binary
conversions

BINARY TO GRAY:
 (A0A1A2 … An)BIN à (B0B1B2 … Bn)GRAY

•  B0 = A0
•  B1 = A0 + A1
•  B2 = A1 + A2
•  …
•  Bn = An-1 + An-2

GRAY TO BINARY:
 (A0A1A2 … An)GRAY à (B0B1B2 …Bn)BIN

•  B0 = A0
•  B1 = A1 + B0
•  B2 = A2 + B1
•  …
•  Bn = An + Bn-1

It is possible to convert directly from Gray to Binary and from
Binary to Gray, there is no need to build the whole table

Example:
1011BIN à 1110GRAY

Example:
1011GRAY à 1101BIN

BIN GRAY

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 26

Johnson Codes
l  It is another progressive and cyclic code
l  In each encoding, zeros are grouped to the left and ones to the right,

or vice versa.

l  Example: 3 bits Johnson code

Decimal Johnson
0 0 0 0
1 0 0 1
2 0 1 1
3 1 1 1
4 1 1 0
5 1 0 0

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 27

Alphanumeric Codes
l  They can represent different symbols:

•  Number Digits
•  Uppercase and lowercase letters
•  Punctuation marks
•  Control characters (espace, carriage return, line feed, etc.)
•  Other graphical symbols (mathematical operators, etc.)

l  An alphanumeric code to represent at least 10 digits and 52
alphabet letters (26 lowercase and 26 uppercase) needs at
least 6 bits.

l  The most used alphanumeric codes are:
•  ASCII code (7 bits)
•  Extended ASCII codes (8 bits)
•  Unicode (8-32 bits)

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 28

ASCII codes and extended ASCII
codes
l  ASCII code (“American Standard Code for Information

Interchange”) was publish for the first time in1963.

l  It is a standard 7-bit code (128 encodings) which contains:
•  Digits
•  Uppercase and lower case letters (international English alphabet)
•  Punctuation marks
•  Basic control characters

l  Extended ASCII codes are used to complement with additional
characters:
•  Not standard, they change from a regional zone to another
•  The first 128 encodings are the same as in ASCII code for compatibility

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 29

Standard ASCII Code

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 30

Extended ASCII Codes

EXAMPLE:
LATIN-1 extended ACII

(ISO 8859-1)

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 31

Extended ASCII Codes

Example:
Cyrillic extended ASCII

ISO 8859-5

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 32

Unicode

l  Unicode codes (“Universal Codes”) were created in 1991 to introduce an
standard alphanumeric code for all regions
•  The same code for languages like Chinese, Arabic, etc.

l  Maximum 32 bits
•  First 7 bits allow compatibility with ASCII
•  Using 1 byte the US-ASCII can be represented
•  Using 2 bytes: latin, arabic, greek, cyrillic, armenian, hebrew, syriac and thaana alphabets
•  Using 3 bytes: rest of characters in remaining languages
•  Using 4 bytes: graphic characters and uncommon symbols

l  Different versions of the representation. The most common are:
•  UTF-8: 1-byte codes, variable length (4 groups of 1 byte can be used to represent 1 symbol)
•  UCS-2: 1-byte codes, fixed lenght
•  UTF-16: 2-byte codes, variable length (2 groups of 2 bytes can be used to represent 1 symbol)
•  UTF-32: 4-byte codes

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 33

Unicode

Example:
l  Unicode fragment, corresponding to

Cyrillic alphabet

A second byte is needed for the
representation

l  Full tables can be found at:

http://www.unicode.org/charts

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 34

Error detector and Error
corrector codes

l  Errors may appear in digital systems
•  Physical errors in the circuits
•  Electromagnetic interferences (EMI)
•  Power supply errors
•  Etc.

l  Error detector codes:
•  They can detect an error in an encoding

l  Error corrector codes:
•  They can detect an error an even correct it

l  Error detector and error corrector codes don’t use all
2n posible n-bit encodings of the n-bit code

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 35

Error detector codes
l  Parity codes:

•  An additional bit is added (parity) which allow to detect simple
errors in the encoding

•  The considered parity is the sum of the encoding n-bits
•  NOTE: parity does not mean if a number is even or odd (a binary

number is even if the last bit is 0 and odd if it is 1). In our case parity is
related to the addition of all the bits in the encoding.

•  Two possible conventions:
•  Add 0 when parity is even and 1 if it is odd. In this case the parity code

is named even parity code (as the addition of n bits + parity bit is
always even)

•  Add 1 when parity is even and 0 if it is odd. In this case the parity code
is named odd parity code (as the addition of n bits + parity bit is always
odd)

Error detector codes
l  Parity example:

 Error detector code (odd-parity code) obtained
from a 2-bit natural binary code:

0 0 1

0 1 0

1 0 0

1 1 1

l  Application example:

If we use this code in a communication between
two digital systems, the receiver may detect if
there is an error in the transmitted encoding
(checking the parity bit).
Example: 001 is transmitted but the receiver
recieves 000 (there is an error in the last bit)

 Parity of 001: odd
 Parity of 000: even

Different:
Error detected

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 37

Error detector codes
l  There are more error detector codes:

•  Number of ones:
•  The sum of the ones in the encoding is added (not only the parity, but

de full addition)

•  Number of transitions:
•  The number of transitions from 0 to 1 and 1 to 0 is added to the

encoding

•  CRC codes (Cyclic Redundancy Checking):
•  They try to add the least possible number of bits to detect the

maximum possible number or errors
•  Some CRC codes may also correct some errors

l  The most used codes are parity (for simplicity) and
CRC (for effectiveness)

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 38

Error corrector codes
l  These codes allow not only to detect errors, they can correct

them as well.

l  The minimum distance (minimum number of different bits
between two encodings) must be greater than 2 so that a code
can correct errors.
•  The encoding can be corrected by looking for the closest encoding

belonging to the code.

l  Hamming showed a general method to obtain codes with
minimum distance equal to 3, which are known as Hammig
codes.

l  These codes are important, many of the currently codes used in
communications are obtained from them (for example Reed-
Solomon codes)

39

Integer and real number codes

l  There are more codes to represent integer and real
numbers:
•  Integer numbers: Sign and magnitude, 1s-complement, 2s-

complement
•  Real numbers: Fixed point and floating point

l  We will see these codes in detail in unit 4 (Arithmetic
combinational circuits)

References

l  Digital Systems Fundamentals. Thomas L.
Floyd. Pearson Prentice Hall

l  Introduction to Digital Logic Design. John P.
Hayes. Addison-Wesley

l  Digital Design. John F. Wakerly. Pearson
Prentice Hall

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 40

