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Introduction to computers 
l  Computer: Machine that processes information 

l COMPUTER l Information l Processed Information 
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Analog and Digital Systems 
l  Analog Systems: Systems where variables have 

continuous values 
•  Physical magnitudes are usually analog 

l  Digital systems: Systems where variables have 
discrete values 
•  Discrete values are called digits 
•  Limited precision 
•  Digital magnitudes are easier to handle 
•  Analog magnitudes can be converted to digital using 

sampling 
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Analog and Digital Systems 
l  Analog System l  Digital System 
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Binary Systems 
l  Binary Systems: Digital systems that use only two 

possible values 
•  Binary digits are named bits (BInary Digit) 
•  They are represented with symbols 0 and 1, or L and H 
•  Binary Systems are almost the only digital systems used. 

By extension, the term digital is used as a synonym of 
binary 

l  ¿Why binary? 
•  More reliability: more inmunity to noise 
•  Easier to build: only two values to distinguish 
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Outline 
l  Number Systems 
l  Number Systems Conversions 

l  Binary Codes: 

•  BCD Codes 
•  Progressive and cyclic codes 
•  Alphanumeric codes 
•  Error detection and error correction codes 
•  Real and integer numbers representation 
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Number Systems 
l  Numbers are represented using digits 
l  The system we commonly use is decimal: 

•  N = an 10n + an-1 10n-1 + … + a1 10 + a0 

•  Example:  27210 = 2*102 + 7*10 + 2 

l  The same representation can be used with different 
bases: 

 
•  N = an bn + an-1 bn-1 + … + a1 b + a0 

Digit Weight 

Base 
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Number Systems 
l  In a system using base b, possible digits are: 

•  0, 1, … , b-1 

l  Using n digits, bn different possible numbers can be 
represented, from 0 to bn-1  

l  This representation can be used for not natural 
numbers as well: 
•  Example:  727,2310 = 7*102 + 2*10 + 7 + 2*10-1 + 2* 10-2 

l  The numeral systems used in digital systems are: 
binary (b=2), octal (b=8) and hexadecimal (b=16) 
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Binary System 
l  In this system the base is 2.  

•  Possible digits are 0 and 1. A digit in binary system is named 
“bit”. 

•  2n  different numbers can be represented using n bits. 

l  The bit with highest weight is called MSB (“Most 
Significant Bit”), and the lowest weighted bit is called 
LSB (“Least Significant Bit”) 

•  Example:   10010102 = 1*26 + 1*23 + 1*21 = 7410 

MSB LSB 

Usually the most significant bit is written to the 
left, and the least significant bit is written at the 
right 
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Octal Number System 

l  In this system the base is 8 
•  Digits are 0,1,2,3,4,5,6,7 
•  8n different numbers can be represented with n digits 

l  It is related to the binary system (8 is a power of 2, 
23=8) 
•  This relationship allows to convert easily from octal to binary 

and from binary to octal. 

l  Example: 
 1378 = 1*82 + 3*81 + 7*80 = 9510 
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Hexadecimal Number System 
l  In this system de base is 16. 

•  Digits are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. 
•  It is related to binary system as well (24=16) 
•  A hexadecimal digit allows to represent the same as 4 bits 

(because 24=16). An hexadecimal digit can be named as 
“nibble”. 

•  Two hexadecimal digits are equivalent to 8 bits. A set of 8 
bits, or equivalently 2 hexadecimal digits, are called “byte”. 

l  Notations:  23AF16 = 23AFhex = 23AFh = 0x23AF = 0x23 0xAF. 

l  Example:   23AFh = 2*163 + 3*162 + 10*16 +15 = 913510 
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Number Systems Conversions 
l  Conversion from any system to decimal: 

•  N = an bn + an-1 bn-1 + … + a1 b + a0 

•  Examples: 
•  10010102 = 1*26 + 1*23 + 1*21 = 7410  

•  1378 = 1*82 + 3*81 + 7*80 = 9510 
•  23AFh = 2*163 + 3*162 + 10*16 +15 = 913510 

l  Conversion from decimal to any other system: 
•  Weight decomposition 
•  Repeated division 
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Weight Decomposition 
l  The number is decomposed in powers of the base. 

•  The nearest power of the base (lower) is searched. 
•  Iteratively, powers of the base are been searched so that the sum of all of 

them is the decimal number to convert 
•  Finally, the weights are used to represent the number in the desired base. 

l  This method is only useful for systems with well known powers. 
For example, for binary system: 1, 2, 8, 16, 32, 64, 128, 256, … 

l  Example: 
•  2510 = 16 + 8 + 1 = 24 + 23 + 20 = 110012 



l  The number and the quotients in previous divisions are divided 
repeatedly by the destination base 
•  The last quotient obtained is the MSB 
•  The remainders are the other bits, the first one corresponding to the LSB. 

l  Example: 

l  This method is more general than the previous one. It can be 
used for any base conversion 

 

© Luis Entrena, Celia López, Mario García, Enrique San Millán. Universidad Carlos III de Madrid, 2008 14 

Repeated Division 

25 2 
 1 12 2 
    0 6 2 
      0 3  2 
        1  1 

MSB 

LSB 
2510 = 110012 



Real numbers conversion 
l  Conversion from binary to decimal can be obtained using the 

same method as for integer numbers (just using negative 
weights for the decimal part) : 

101,0112 = 1*22 + 0*21 + 1*21 + 0*2-1 + 1* 2-2 + 1* 2-3 =  
= 4 + 1 + 0,25 + 0,125 = 5,37510 

 

l  Conversion from decimal to binary is obtained in two steps: 
•  Convert first the integer part, using repeated division or weight 

decomposition. 
•  Then convert the decimal part, using an analogous method: repeated 

multiplication by the base. 
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l  The decimal part of the number is multiplied repeatedly by the 
base: 
•  The decimal part is multiplied by 2. Then the integer part of the result is the 

first bit (MSB of the decimal part) of the conversion. 
•  The obtained decimal part is multiplied by 2, and again, the integer part is 

the next digit of the conversion. 
•  Iterate this procedure several times, depending on the desired precision for 

the conversion. 

l  Examples: 
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Repeated multiplication method 
(decimal part) 

0,3125 10 = 0,01012 
0,3125 x 2 = 0,625 => 0  
0,625 x 2 = 1,25 => 1  
0,25 x 2 = 0,5 => 0  
0,5 x 2 = 1 => 1 

0,110 = 0,0 0011 0011 ... 2 
0,1 x 2 = 0,2 => 0  
0,2 x 2 = 0,4 => 0 
0,4 x 2 = 0,8 => 0 
0,8 x 2 = 1,6 => 1 
0,6 x 2 = 1,2 => 1 
0,2 x 2 = 0,4 => 0 <- the last four digits will repeat periodically  
0,4 x 2 = 0,8 => 0 
0,8 x 2 = 1,6 => 1  
 ... 
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Other conversion methods 
l  Octal and Hexadecimal number systems are related with binary 

because their bases are exact powers of the binary base. This makes 
very easy the conversion between these systems and binary. 
•  OCTAL to BINARY: Convert each digit into binary (3 bits each digit) 

•  Example: 7358 = 111 011 1012 
 

•  BINARY to OCTAL:  Gruop 
•  Example:           1 011 100 0112 =  13438 

•  HEXADECIMAL to BINARY: Convert each digit into binary (4 bits each digit) 
•  Example: 3B2h = 0011 1011 00102 

•  BINARY to HEXADECIMAL: Agrupar en grupos de 4 bits y convertirlos de forma 
independiente a octal 

•  Example:        10 1110 00112 = 2E3h 



Binary Codes 
l  Binary codes are codes that use only 0s and 1s to represent 

information 

l  Information that can be represented with binary codes can be of 
several types: 
•  Natural Numbers 
•  Integer Numbers 
•  Real Numbers 
•  Alphanumeric characters and other symbols 

l  The same information (a natural number for example) can be 
represented using different codes 
•  It is important to especify which encoding is been used when some 

information is represented with a binary code 
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Natural Binary Code 

l  It is a binary code where a natural number is 
represented using its binary number 
representation 
•  It is the simplest binary code 
•  This can be done because the binary number system for 

natural numbers needs only 0s and 1s (no extra symbols 
for decimal point or sign) 

l  Notation: The “BIN” subindex is used to especify 
that a binary code corresponds to the natural 
binary code. 
•  1001BIN = 10012  
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BCD Codes (“Binary-Coded 
Decimal”) 
l  They are an alternative to the natural binary code for 

representation of natural numbers 

l  A 4-bit encoding is assigned to each decimal digit. A 
decimal number is encoded in BCD code digit to digit. 

l  The most common BCD code is natural BCD 
(there are other BCD codes).  

l  Example: 
•  7810 = 0111 1000BCD  

l  The BCD encoding of a number may be different to the 
natural binary encoding 
•  7810 = 1001110BIN 

l  CONS: No all encodings correspond to a binary BCD 
encoding. For example,1110BCD  does not exist. 

l  PRO: It is easy to convert natural numbers to BCD. 

Decimal 
digit BCD code 

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
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Progressive and Cyclic Codes 
l  Two binary encodings are adjacent if there is only 1 different  

bit between them. 
l  0000 y 0001 are adjacent, as they differ only in the last bit 
l  0001 y 0010 are not, because the last two bits are different 

l  A code is progressive is all consecutive encodings are 
adjacent. 
l  Natural binary code is not progressive, as 0001 y 0010 are not adjacent. 

l  A code is cyclic if the first and the last encodings are adjacent. 
l  The most used progressive and cyclic codes are: 

l  Gray code 
l  Johnson code 
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Gray Code 
l  Gray codes are progressive and cyclic 

l  Example: 3-bit Gray Code 

Decimal Gray 
Code 

0 0 0 0 
1 0 0 1 
2 0 1 1 
3 0 1 0 
4 1 1 0 
5 1 1 1 
6 1 0 1 
7 1 0 0 

All consecutive 
encodings are 
adjacent 
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Gray Code 
l  Construction of n-bit Gray codes: 

•  First the n-1 bit code is copied. Then it is copied again in inverse order 
•  Then a 0 is added in the first part of the table, and a 1 in the second part 

l  1-bit code:  

l  2-bits code:  

0 
1 

0 
1 
1 
0 

0 0 
0 1 
1 1 
1 0 
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Código Gray 
l  3-bits code: 

l  n-bit Gray codes can be obtained by iteration 

0 0

0 1

1 1

1 0

1 0

1 1

0 1

0 0

0 0 0 

0 0 1 

0 1 1 

0 1 0 

1 1 0 

1 1 1 

1 0 1 

1 0 0 
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Binary-Gray and Gray-Binary 
conversions 

BINARY TO GRAY: 
 (A0A1A2 … An)BIN  à (B0B1B2 … Bn)GRAY 

•  B0 = A0 
•  B1 = A0 + A1 
•  B2 = A1 + A2 
•  … 
•  Bn = An-1 + An-2 

GRAY TO BINARY: 
 (A0A1A2 … An)GRAY  à (B0B1B2 …Bn)BIN 

•  B0 = A0 
•  B1 = A1 + B0 
•  B2 = A2 + B1 
•  … 
•  Bn = An + Bn-1 

It is possible to convert directly from Gray to Binary and from 
Binary to Gray, there is no need to build the whole table 

Example: 
1011BIN à 1110GRAY 
 
 

Example: 
1011GRAY à 1101BIN 
 
 

BIN GRAY 

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0
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Johnson Codes 
l  It is another progressive and cyclic code 
l  In each encoding, zeros are grouped to the left and ones to the right, 

or vice versa. 

l  Example: 3 bits Johnson code 

Decimal Johnson 
0 0 0 0 
1 0 0 1 
2 0 1 1 
3 1 1 1 
4 1 1 0 
5 1 0 0 
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Alphanumeric Codes 
l  They can represent different symbols: 

•  Number Digits 
•  Uppercase and lowercase letters 
•  Punctuation marks 
•  Control characters (espace, carriage return, line feed, etc.) 
•  Other graphical symbols (mathematical operators, etc.) 

l  An alphanumeric code to represent at least 10 digits and 52 
alphabet letters (26 lowercase and 26 uppercase) needs at 
least 6 bits. 

l  The most used alphanumeric codes are: 
•  ASCII code (7 bits) 
•  Extended ASCII codes (8 bits) 
•  Unicode (8-32 bits) 
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ASCII codes and extended ASCII 
codes 
l  ASCII code (“American Standard Code for Information 

Interchange”) was publish for the first time in1963. 

l  It is a standard 7-bit code (128 encodings) which contains: 
•  Digits 
•  Uppercase and lower case letters (international English alphabet) 
•  Punctuation marks 
•  Basic control characters 

l  Extended ASCII codes are used to complement with additional 
characters: 
•  Not standard, they change from a regional zone to another 
•  The first 128 encodings are the same as in ASCII code for compatibility 
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Standard ASCII Code 
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Extended ASCII Codes 

EXAMPLE: 
LATIN-1 extended ACII 

(ISO 8859-1) 
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Extended ASCII Codes 

Example: 
Cyrillic  extended ASCII 

ISO 8859-5 
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Unicode 

l  Unicode codes (“Universal Codes”) were created in 1991 to introduce an 
standard alphanumeric code for all regions 
•  The same code for languages like Chinese, Arabic, etc. 

l  Maximum 32 bits 
•  First  7 bits allow compatibility with ASCII 
•  Using 1 byte the US-ASCII can be represented 
•  Using 2 bytes: latin, arabic, greek, cyrillic, armenian, hebrew, syriac and thaana alphabets 
•  Using 3 bytes: rest of characters in remaining languages 
•  Using 4 bytes: graphic characters and uncommon symbols 

l  Different versions of the representation. The most common are: 
•  UTF-8: 1-byte codes, variable length (4 groups of 1 byte can be used to represent 1 symbol) 
•  UCS-2: 1-byte codes, fixed lenght 
•  UTF-16: 2-byte codes, variable length (2 groups of 2 bytes can be used to represent 1 symbol) 
•  UTF-32: 4-byte codes 
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Unicode 

Example: 
l  Unicode fragment, corresponding to 

Cyrillic alphabet 

A second byte is needed for the 
representation 

l  Full tables can be found at: 

http://www.unicode.org/charts 
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Error detector and Error 
corrector codes 

l  Errors may appear in digital systems 
•  Physical errors in the circuits 
•  Electromagnetic interferences (EMI) 
•  Power supply errors 
•  Etc. 

l  Error detector codes: 
•  They can detect an error in an encoding 

l  Error corrector codes: 
•  They can detect an error an even correct it 

l  Error detector and error corrector codes don’t use all 
2n posible n-bit encodings of the n-bit code 
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Error detector codes 
l  Parity codes: 

•  An additional bit is added (parity) which allow to detect simple 
errors in the encoding 

•  The considered parity is the sum of the encoding n-bits 
•  NOTE: parity does not mean if a number is even or odd (a binary 

number is even if the last bit is 0 and odd if it is 1). In our case parity is 
related to the addition of all the bits in the encoding. 

•  Two possible conventions: 
•  Add 0 when parity is even and 1 if it is odd. In this case the parity code 

is named even parity code (as the addition of n bits + parity bit is 
always even) 

•  Add 1 when parity is even and 0 if it is odd. In this case the parity code 
is named odd parity code (as the addition of n bits + parity bit is always 
odd) 



Error detector codes 
l  Parity example: 

 Error detector code (odd-parity code) obtained 
from a 2-bit natural binary code: 

 

0 0 1

0 1 0

1 0 0

1 1 1

l  Application example: 

 

 
 

If we use this code in a communication between 
two digital systems, the receiver may detect if 
there is an error in the transmitted encoding 
(checking the parity bit). 
Example: 001 is transmitted but the receiver 
recieves 000 (there is an error in the last bit)  

 Parity of 001: odd 
 Parity of 000: even 

 
 

Different: 
Error detected 
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Error detector codes 
l  There are more error detector codes: 

•  Number of ones:  
•  The sum of the ones in the encoding is added (not only the parity, but 

de full addition) 

•  Number of transitions: 
•  The number of transitions from 0 to 1 and 1 to 0 is added to the 

encoding 

•  CRC codes (Cyclic Redundancy Checking): 
•  They try to add the least possible number of bits to detect the 

maximum possible number or errors 
•  Some CRC codes may also correct some errors 

l  The most used codes are parity (for simplicity) and 
CRC (for effectiveness) 
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Error corrector codes 
l  These codes allow not only to detect errors, they can correct 

them as well. 

l  The minimum distance (minimum number of different bits 
between two encodings) must be greater than 2 so that a code 
can correct errors. 
•  The encoding can be corrected by looking for the closest encoding 

belonging to the code. 

l  Hamming showed a general method to obtain codes with 
minimum distance equal to 3, which are known as Hammig 
codes. 

l  These codes are important, many of the currently codes used in 
communications are obtained from them (for example Reed-
Solomon codes) 
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Integer and real number codes 

l  There are more codes to represent integer and real 
numbers: 
•  Integer numbers: Sign and magnitude, 1s-complement, 2s-

complement 
•  Real numbers: Fixed point and floating point 

l  We will see these codes in detail in unit 4 (Arithmetic 
combinational circuits) 
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