Representation of Information in Digital Systems

© Luis Entrena, Celia López, Mario García, Enrique San Millán

Universidad Carlos III de Madrid

Introduction to computers

- Computer: Machine that processes information

Analog and Digital Systems

- Analog Systems: Systems where variables have continuous values
- Physical magnitudes are usually analog
- Digital systems: Systems where variables have discrete values
- Discrete values are called digits
- Limited precision
- Digital magnitudes are easier to handle
- Analog magnitudes can be converted to digital using sampling

Analog and Digital Systems

- Analog System
- Digital System

Binary Systems

- Binary Systems: Digital systems that use only two possible values
- Binary digits are named bits (BInary Digit)
- They are represented with symbols 0 and 1 , or L and H
- Binary Systems are almost the only digital systems used. By extension, the term digital is used as a synonym of binary
- ¿Why binary?
- More reliability: more inmunity to noise
- Easier to build: only two values to distinguish

Outline

- Number Systems
- Number Systems Conversions
- Binary Codes:
- BCD Codes
- Progressive and cyclic codes
- Alphanumeric codes
- Error detection and error correction codes
- Real and integer numbers representation

Number Systems

- Numbers are represented using digits
- The system we commonly use is decimal:
- $N=a_{n} 10^{n}+a_{n-1} 10^{n-1}+\ldots+a_{1} 10+a_{0}$
- Example: $272_{10}=2 * 10^{2}+7^{*} 10+2$
- The same representation can be used with different bases:

Number Systems

- In a system using base b, possible digits are:
- 0, 1, ... b-1
- Using n digits, b^{n} different possible numbers can be represented, from 0 to $b^{n}-1$
- This representation can be used for not natural numbers as well:
- Example: $727,23_{10}=7^{*} 10^{2}+2^{*} 10+7+2^{*} 10^{-1}+2^{*} 10^{-2}$
- The numeral systems used in digital systems are: binary ($b=2$), octal $(b=8)$ and hexadecimal $(b=16)$

Binary System

- In this system the base is 2 .
- Possible digits are 0 and 1. A digit in binary system is named "bit".
- 2^{n} different numbers can be represented using n bits.
- The bit with highest weight is called MSB ("Most Significant Bit"), and the lowest weighted bit is called LSB ("Least Significant Bit"s)ally the most significant bitis witten to the MSB LSB right
- Example: $1001010_{2}=1^{*} 2^{6}+1^{*} 2^{3}+1^{*} 2^{1}=74_{10}$

Octal Number System

- In this system the base is 8
- Digits are 0,1,2,3,4,5,6,7
- 8^{n} different numbers can be represented with n digits
- It is related to the binary system (8 is a power of 2 ,
$2^{3}=8$)
- This relationship allows to convert easily from octal to binary and from binary to octal.
- Example:

$$
137_{8}=1^{*} 8^{2}+3^{*} 8^{1}+7^{*} 8^{0}=95_{10}
$$

Hexadecimal Number System

- In this system de base is 16 .
- Digits are $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$.
- It is related to binary system as well $\left(2^{4}=16\right)$
- A hexadecimal digit allows to represent the same as 4 bits (because $2^{4}=16$). An hexadecimal digit can be named as "nibble".
- Two hexadecimal digits are equivalent to 8 bits. A set of 8 bits, or equivalently 2 hexadecimal digits, are called "byte".
- Notations: $23 \mathrm{AF}_{16}=23 \mathrm{AF}_{\text {hex }}=23 \mathrm{AFh}=0 \times 23 \mathrm{AF}=0 \times 230 \times A F$.
- Example: 23AFh $=2^{*} 16^{3}+3^{*} 16^{2}+10^{*} 16+15=9135_{10}$

Number Systems Conversions

- Conversion from any system to decimal:
- $N=a_{n} b^{n}+a_{n-1} b^{n-1}+\ldots+a_{1} b+a_{0}$
- Examples:
- $1001010_{2}=1^{*} 2^{6}+1^{*} 2^{3}+1^{*} 2^{1}=74_{10}$
- $137_{8}=1^{*} 8^{2}+3^{*} 8^{1}+7^{*} 8^{0}=95_{10}$
- 23 AFh $=2^{*} 16^{3}+3^{*} 16^{2}+10 * 16+15=9135_{10}$
- Conversion from decimal to any other system:
- Weight decomposition
- Repeated division

Weight Decomposition

- The number is decomposed in powers of the base.
- The nearest power of the base (lower) is searched.
- Iteratively, powers of the base are been searched so that the sum of all of them is the decimal number to convert
- Finally, the weights are used to represent the number in the desired base.
- This method is only useful for systems with well known powers. For example, for binary system: 1, 2, 8, 16, 32, 64, 128, 256, ...
- Example:
- $25_{10}=16+8+1=2^{4}+2^{3}+2^{0}=11001_{2}$

Repeated Division

- The number and the quotients in previous divisions are divided repeatedly by the destination base
- The last quotient obtained is the MSB
- The remainders are the other bits, the first one corresponding to the LSB.
- Example:

- This method is more general than the previous one. It can be used for any base conversion

Real numbers conversion

- Conversion from binary to decimal can be obtained using the same method as for integer numbers (just using negative weights for the decimal part) :

$$
\begin{aligned}
101,011_{2}= & 1^{*} 2^{2}+0^{*} 2^{1}+1^{*} 2^{1}+0^{*} 2^{-1}+1^{*} 2^{-2}+1^{*} 2^{-3}= \\
& =4+1+0,25+0,125=5,375_{10}
\end{aligned}
$$

- Conversion from decimal to binary is obtained in two steps:
- Convert first the integer part, using repeated division or weight decomposition.
- Then convert the decimal part, using an analogous method: repeated multiplication by the base.

Repeated multiplication method (decimal part)

- The decimal part of the number is multiplied repeatedly by the base:
- The decimal part is multiplied by 2. Then the integer part of the result is the first bit (MSB of the decimal part) of the conversion.
- The obtained decimal part is multiplied by 2 , and again, the integer part is the next digit of the conversion.
- Iterate this procedure several times, depending on the desired precision for the conversion.
- Examples:

$$
\begin{aligned}
& 0,3125{ }_{10}=0,0101_{2} \\
& 0,3125 \times 2=0,625=>0 \\
& 0,625 \times 2=1,25=>1 \\
& 0,25 \times 2=0,5=>0 \\
& 0,5 \times 2=1=>1
\end{aligned}
$$

```
\(0,1_{10}=0,000110011 \ldots 2\)
\(0,1 \times 2=0,2=>0\)
\(0,2 \times 2=0,4=>0\)
\(0,4 \times 2=0,8=>0\)
\(0,8 \times 2=1,6=>1\)
\(0,6 \times 2=1,2=>1\)
\(0,2 \times 2=0,4=>0<-\) the last four digits will repeat periodically
\(0,4 \times 2=0,8=>0\)
\(0,8 \times 2=1,6=>1\)
```


Other conversion methods

- Octal and Hexadecimal number systems are related with binary because their bases are exact powers of the binary base. This makes very easy the conversion between these systems and binary.
- OCTAL to BINARY: Convert each digit into binary (3 bits each digit)
- Example: $735_{8}=\underbrace{111} \underbrace{011} \underbrace{101_{2}}$
- BINARY to OCTAL: Gruop
- Example: $\underbrace{1} \underbrace{011} \underbrace{100} \underbrace{011_{2}}=1343_{8}$
- HEXADECIMAL to BINARY: Convert each digit into binary (4 bits each digit)
- Example: $3 B 2 h=\underbrace{0011} \underbrace{1011} \underbrace{0010_{2}}$
- BINARY to HEXADECIMAL: Agrupar en grupos de 4 bits y convertirlos de forma independiente a octal
- Example: $\underbrace{10} \underbrace{1110} \underbrace{0011_{2}}=2 E 3 h$

Binary Codes

- Binary codes are codes that use only 0s and 1 s to represent information
- Information that can be represented with binary codes can be of several types:
- Natural Numbers
- Integer Numbers
- Real Numbers
- Alphanumeric characters and other symbols
- The same information (a natural number for example) can be represented using different codes
- It is important to especify which encoding is been used when some information is represented with a binary code

Natural Binary Code

- It is a binary code where a natural number is represented using its binary number representation
- It is the simplest binary code
- This can be done because the binary number system for natural numbers needs only 0s and 1s (no extra symbols for decimal point or sign)
- Notation: The "BIN" subindex is used to especify that a binary code corresponds to the natural binary code.
- $1001_{\mathrm{BIN}}=1001_{2}$

BCD Codes ("Binary-Coded Decimal")

- They are an alternative to the natural binary code for representation of natural numbers
- A 4-bit encoding is assigned to each decimal digit. A decimal number is encoded in BCD code digit to digit.
- The most common BCD code is natural BCD (there are other BCD codes).
- Example:

$$
\text { - } 78_{10}=01111_{1000}^{B C D}
$$

- The BCD encoding of a number may be different to the natural binary encoding

$$
\text { - } 78_{10}={1001110_{\text {BIN }}}
$$

- CONS: No all encodings correspond to a binary BCD encoding. For example, 1110_{BCD} does not exist.
- PRO: It is easy to convert natural numbers to BCD.

Decimal digit	BCD code			
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Progressive and Cyclic Codes

- Two binary encodings are adjacent if there is only 1 different bit between them.
- 0000 y 0001 are adjacent, as they differ only in the last bit
- 0001 y 0010 are not, because the last two bits are different
- A code is progressive is all consecutive encodings are adjacent.
- Natural binary code is not progressive, as 0001 y 0010 are not adjacent.
- A code is cyclic if the first and the last encodings are adjacent.
- The most used progressive and cyclic codes are:
- Gray code
- Johnson code

Gray Code

- Gray codes are progressive and cyclic
- Example: 3-bit Gray Code

Decimal		Gra	de		All consecutive encodings are adjacent
0	0	0	0	0	
1	0	0	0	1	
2	0	1	1	1	
3	0	1	1	0	
4		1	1	0	
5		1	1	1	
6		0	0		
7		0	0		

Gray Code

- Construction of n-bit Gray codes:
- First the $\mathrm{n}-1$ bit code is copied. Then it is copied again in inverse order
- Then a 0 is added in the first part of the table, and a 1 in the second part
- 1-bit code:

Código Gray

- 3-bits code:

0	0				
0	1				
1	1				
1	0				
1	0				
1	1				
0	1				
0	0	\quad	0	0	0
:---	:---	:---			
0	0	1			
0	1	1			
0	1	0			
1	1	0			
1	1	1			
1	0	1			
1	0	0			

- n-bit Gray codes can be obtained by iteration

Binary-Gray and Gray-Binary conversions

It is possible to convert directly from Gray to Binary and from Binary to Gray, there is no need to build the whole table

BINARY TO GRAY:

$\left(\mathrm{A}_{0} \mathrm{~A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}\right)_{\text {BIN }} \rightarrow\left(\mathrm{B}_{0} \mathrm{~B}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{\mathrm{n}}\right)_{\text {GRAY }}$

- $\mathrm{B}_{0}=\mathrm{A}_{0}$
- $B_{1}=A_{0}+A_{1}$
- $B_{2}=A_{1}+A_{2}$
- ...

Example:

- $B_{n}=A_{n-1}+A_{n-2}$

GRAY TO BINARY:

$$
\left(\mathrm{A}_{0} \mathrm{~A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{\mathrm{n}}\right)_{G R A Y} \rightarrow\left(\mathrm{~B}_{0} \mathrm{~B}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{\mathrm{n}}\right)_{\mathrm{BIN}}
$$

- $\mathrm{B}_{0}=\mathrm{A}_{0}$
- $B_{1}=A_{1}+B_{0}$
- $\mathrm{B}_{2}=\mathrm{A}_{2}+\mathrm{B}_{1}$

Example:

- ...
$1011_{\text {GRAY }} \rightarrow{1101_{\text {BIN }}}$
- $B_{n}=A_{n}+B_{n-1}$

BIN				GRAY			
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

Johnson Codes

- It is another progressive and cyclic code
- In each encoding, zeros are grouped to the left and ones to the right, or vice versa.
- Example: 3 bits Johnson code

Decimal	Johnson		
0	0	0	0
1	0	0	1
2	0	1	1
3	1	1	1
4	1	1	0
5	1	0	0

Alphanumeric Codes

- They can represent different symbols:
- Number Digits
- Uppercase and lowercase letters
- Punctuation marks
- Control characters (espace, carriage return, line feed, etc.)
- Other graphical symbols (mathematical operators, etc.)
- An alphanumeric code to represent at least 10 digits and 52 alphabet letters (26 lowercase and 26 uppercase) needs at least 6 bits.
- The most used alphanumeric codes are:
- ASCII code (7 bits)
- Extended ASCII codes (8 bits)
- Unicode (8-32 bits)

ASCII codes and extended ASCII codes

- ASCII code ("American Standard Code for Information Interchange") was publish for the first time in1963.
- It is a standard 7-bit code (128 encodings) which contains:
- Digits
- Uppercase and lower case letters (international English alphabet)
- Punctuation marks
- Basic control characters
- Extended ASCII codes are used to complement with additional characters:
- Not standard, they change from a regional zone to another
- The first 128 encodings are the same as in ASCII code for compatibility

Standard ASCII Code

	0	1	2	3	4	5	6	7
0	NUL	DLE	space	0	(a)	P		p
1	SOH	$\begin{aligned} & \mathrm{DC1} \\ & \mathrm{OON} \end{aligned}$!	1	A	Q	a	q
2	STX	DC2	"	2	B	R	b	r
3	ETX	$\begin{aligned} & \mathrm{DC3} \\ & \mathrm{XOFF} \end{aligned}$	\#	3	C	S	c	S
4	EOT	DC4	\$	4	D	T	d	t
5	ENQ	NAK	\%	5	E	U	e	u
6	ACK	SYN	\&	6	F	V	f	v
7	BEL	ETB	'	7	G	W	g	W
8	BS	CAN	$($	8	H	X	h	\times
9	HT	EM)	9	1	Y	i	y
A	LF	SUB	*	.	J	Z	J	z
B	VT	ESC	+	,	K	[k	\{
C	FF	FS	,	$<$	L	1	I	1
D	CR	GS	-	=	M]	m	\}
E	so	RS		$>$	N	A	n	\sim
F	SI	us	/	?	0	-	0	del

Extended ASCII Codes

	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-B	-C	-D	-E	
		2001	002	0_{003}	0008	0005	coos	0007	coos	000	coser	0008	oro	co00	000	${ }^{0}$
	0010	0011	0012	0013	0014	0015	016	0017	0018	0019	0014	0018	0016	0010	007	
-	${ }^{0} 2$	$!$	0022	\#	$\$$	$\%$	$\&$	0027	(0028	${ }_{0} 202$	$0_{02}^{02 A}$	$+$,	-020	Ooxe	Oox
3-	$\mathbf{0}_{0} 0$	$\boldsymbol{1}$	2	3	4	5	$\mathbf{6}_{\text {cove }}$	7	8	9	$\mathbf{O}_{0}^{0} 3$;	$<$	$=$	$>^{0025}$?
4-	$@_{0040}$	\mathbf{A}_{0}	$\underset{\text { oox } 2}{\mathbf{B}}$	\mathbf{C}	\mathbf{D}	\mathbf{E}	$\underset{\text { cose }}{ } \mathbf{F}^{2}$	\mathbf{G}_{0007}	$\mathbf{H}_{\text {coses }}$	\mathbf{p}_{0040}	$\underset{\text { coas }}{\mathbf{J}}$	$\mathbf{K}_{\text {cose }}$	\mathbf{L}	$\underset{\text { coato }}{\mathbf{M}}$	$\underset{\text { Oous }}{\mathbf{N}}$	$\mathrm{O}_{\text {ouf }}$
	$\mathbf{P}_{\text {coso }}$	\mathbf{Q}	$\mathbf{R}_{\text {Dose }}$	S	$\mathbf{T}_{\text {Do5s }}$	\mathbf{U}	$\mathbf{V}_{\text {cose }}$	$\mathbf{W}_{\text {oos }}$	$\mathbf{X}_{\text {ooss }}$	${ }_{\text {cose }}$	\mathbf{Z}	${ }_{\text {cose }}$	008	$\underbrace{}_{0050}$	${ }_{\text {Oose }}$	${ }^{\text {O }}$ S 5
6-	0000	${ }_{\text {a }}^{\text {a } 61}$	\mathbf{b}	\mathbf{c}	$\mathbf{d}_{\text {Dose }}$	\mathbf{e}	\mathbf{f}_{0006}	$\mathrm{g}_{\text {oner }}$	$\underset{\text { coses }}{ }$	0089	doose	$\underset{\text { cose }}{\mathbf{k}}$	0_{0000}	$\underset{\text { mose }}{\mathbf{m}}$	$\underbrace{}_{\text {Oobe }}$	$\mathrm{O}_{\text {Oobe }}$
7-	$\mathbf{p}_{0 \times 7}$	${ }_{\text {q }}$	$\mathbf{r}_{\text {oxr }}$	$\underbrace{S_{0}}_{0073}$	\mathbf{t}_{074}	$\mathbf{c}_{0075}^{\mathbf{u}_{5}}$	$\mathbf{V}_{\text {core }}$	\mathbf{W}_{00077}	$\underset{\text { cor }}{ }$	$\mathrm{y}_{\text {0078 }}$	$\underset{\sim}{2}$	bor8		e0074	\% 00	007
	0080	0081	0082	${ }^{0} 83$	D084	${ }^{0085}$	0088	${ }^{068}$	0088	0080	Oose	${ }^{0088}$	${ }^{008}$	008		608
	000	cos	032	0^{003}	was	0005	(008	0087	coos	\%098	cose	0098	0rac	0000	0098	Oosf
	0000	$i_{\text {boal }}$	C_{cosen}	$£$	${ }^{\square}$	$\mathbf{¥}$	$\mathrm{i}_{\mathrm{Cone}}$	\S_{0007}	00As	© one	\mathfrak{a}	<	$\begin{gathered} \text { coun } \end{gathered}$	-	(®) 000 E	-
B-	00B0	$\pm{ }_{\text {coen }}$	0082	${ }^{2083}$	OOB4	$\boldsymbol{\mu}_{\text {ooos }}$	$\mathbb{T l}_{\text {cose }}$	${ }_{0}^{\circ} \mathrm{oan}$	${ }_{\text {sose }}$	ove	$\begin{aligned} & \underline{\mathbf{o}} \\ & \text { conen } \end{aligned}$	"	$1 / 4$	$1 / 2$	${ }_{\text {3 }} / 1 / 4$	${ }_{\text {OLe日 }}$
-	${ }_{\text {¢о八00 }}$	$\dot{\mathbf{A}}$	${ }_{\text {coca }}$	$\underset{\text { cocs }}{ }$	$\ddot{\mathbf{A}}$	\AA	$\underset{\text { oce }}{\boldsymbol{E}}$	$\underset{\text { cocr }}{\mathbf{C}}$	$\stackrel{\grave{\mathbf{E}}}{\text { occs }}$	$\stackrel{\prime}{\mathbf{E}}$	$\hat{\mathbf{E}}$	$\ddot{\mathbf{E}}$	${ }_{0}$	${ }_{0000}$	moce	i ${ }_{\text {ock }}$
D-	$Ð$	$\underline{\tilde{\mathbf{N}}}$	$\stackrel{\grave{O}}{\mathbf{0} 002}$	$\underset{\text { © }}{\underline{\text { O }}}$	$\hat{\mathbf{O}}_{\text {woos }}$	$\underset{\text { (}}{\underline{\mathbf{0}}}$	$\ddot{O}_{\text {Oove }}$	${ }_{\infty}^{\times}$	$\emptyset_{\text {000 }}$	$\stackrel{\grave{\mathbf{U}}}{\text { cover }}$		$\underset{\text { coos }}{\hat{\mathbf{U}}}$	$\underset{\text { cooc }}{\underline{\mathbf{U}}}$	$\underset{\substack{\mathbf{Y} \\ \hline 0000}}{ }$	$\underset{\text { pooe }}{ }$	${ }_{\text {coof }}$
E-	$\begin{gathered} \text { à } \\ \text { a } 000 \end{gathered}$	$\mathbf{c}_{\substack{\text { á } \\ \hline}}$	$\underset{\text { coe }}{\hat{\mathbf{a}}}$	$\underset{\text { coos }}{\tilde{a}}$	$\underset{\text { Deve }}{\vec{a}}$	$\underset{\substack{\text { ooes } \\ \hline \\ \hline}}{ }$	$\underset{\infty \in e}{ }$	${\underset{\text { coet }}{ } \mid}^{4}$	$\grave{\mathbf{e}}$	$\underset{\text { coce }}{\underline{e}}$	$\underset{\text { coen }}{\hat{\mathbf{e}}}$	ë ${ }_{\text {OoE }}$		$\underset{\text { íneo }}{1}$	Ooek	$\mathrm{i}_{\text {OOEF }}$
	$\mathbf{0}_{\text {offof }}$	$\tilde{\text { nof }}_{\tilde{n}_{1}}$	${\underset{\text { ofor }}{ }}^{2}$	\mathbf{o}^{\prime}	$\hat{\mathbf{o}}$	$\tilde{\mathbf{N}}_{\text {wors }}$	$\underset{\text { ofof }}{\ddot{0}}$	\div	$\boldsymbol{\emptyset}_{\text {oofe }}$	$\underset{\text { wore }}{\mathbf{u}}$	$\underset{\text { Dof }}{\mathbf{u}^{\prime}}$	${\underset{\text { of }}{\text { ofe }}}^{2}$	$\underset{\text { oofo }}{\mathbf{u}}$	$\dot{y}_{\text {Dofo }}$	$\mathbf{b}_{\text {oove }}$	$\ddot{y}_{\text {coff }}$

Extended ASCII Codes

Example:
Cyrillic extended ASCII ISO 8859-5

	-0	-1	-2	-3	-4	-5	-6	-7	-8	-9	-A	-B	-C	-D	-E	-F
0-		0001	oue	\%009	0004	0005	1008	007	coos	000	mod	0008	0000	000	0001	0_{007}
	0010	0011	0012	0013	0014	0015	0016	0017	0018	0018	0014	2018	0016	0010	0016	0015
2-	0220	$\begin{aligned} & \mathbf{0}_{0} \\ & \hline \end{aligned}$	$\xlongequal{\text { orese }}$	$\begin{array}{\|c} \# \\ \text { ocos3 } \end{array}$	$\$$	$\begin{gathered} \boldsymbol{\%} \\ \text { ocas } \end{gathered}$	$\underset{\text { core }}{\boldsymbol{\&}}$	ouer	${ }_{2020}$)	*	$+$	${ }_{\text {orec }}$	$\begin{aligned} & = \\ & 0020 \end{aligned}$	${ }_{\text {O } 2025}$	1
$3-$	0	$\boldsymbol{1}_{0031}$	2	$\mathbf{3}_{0033}$	4	$\mathbf{5}_{00055}$	$\mathbf{6}$	$\begin{array}{l\|} \hline 7 \\ \text { ocar } \end{array}$	8	9	${ }_{\text {cose }}$; 008	$<$	$=$	$>_{\text {O003 }}$	${ }^{\text {? }}$
4-	$\underbrace{}_{\text {Doso }}$	$\mathbf{A}_{\text {coat }}$	$\mathbf{B}_{\text {coat }}$	\mathbf{C}	$\mathbf{D}_{\text {Dos4 }}$	$\underset{\text { coos }}{\mathbf{E}}$	$\begin{array}{\|c\|} \hline \mathbf{F} \\ \text { cos } 6 \end{array}$	$\mathbf{G}_{\text {cox }}$	$\underset{\text { coses }}{\mathbf{H}}$	\mathbf{I}	$\begin{aligned} & \hline \mathbf{J} \\ & \text { oosa4 } \end{aligned}$	$\underset{\text { cose }}{\mathbf{K}}$	$\mathbf{L}_{\text {oost }}$	$\underset{\text { cooot }}{\mathbf{M}}$	$\underset{\text { OOQE }}{\mathbf{N}}$	$\mathrm{O}_{\text {out }}$
5-	$\mathbf{P}_{\text {cose }}$	Q	R	$\underset{\text { Soss }}{\mathbf{S}}$	$\begin{aligned} & \hline \mathbf{T} \\ & \text { wost } \end{aligned}$	$\mathbf{U}_{\text {oos }}$	$\mathbf{V}_{\text {oose }}$	\mathbf{W}_{0057}	$\mathrm{X}_{\text {coss }}$	\mathbf{Y}	$\underset{\text { Zova } A}{\mathbf{Z}}$	$\left[\begin{array}{l} \text { cose } \end{array}\right]$	losc	$]_{050}$	$\hat{\wedge}^{\wedge}$	Oost
6-	0080	$\mathbf{a}_{\infty}^{\mathbf{a}_{061}}$	$\mathbf{b}_{\text {cose }}$	$\mathbf{c}_{00 \times 5}^{c}$	\mathbf{d}_{0}	$\mathbf{e}_{\text {oces }}$	$\begin{aligned} & \hline \mathbf{f} \\ & 0006 \\ & \hline \end{aligned}$	$\mathbf{g}_{0 \times 8}^{\mathbf{g}}$	$\mathbf{h}_{\text {coses }}$	$\mathbf{i}_{0}^{\mathbf{0} 50}$	$\mathbf{j}_{\text {coses }}$	$\underset{\text { onese }}{\mathbf{k}}$	$\begin{aligned} & 1 \\ & 0060 \end{aligned}$	$\mathbf{m}_{\text {cose }}$	$\begin{aligned} & \text { noce } \\ & \hline 10 \end{aligned}$	$\mathrm{O}_{\text {Oose }}$
7-	$\mathbf{p}_{\text {oro }}$	q_{10011}	$\mathrm{r}_{\text {orr2 }}$	\mathbf{S}_{0073}	$\mathbf{t}_{0}^{\mathbf{0} 74}$	$\mathbf{0}_{0075}$	\mathbf{v}_{0078}	$\mathbf{w}_{\substack{ \\\mathbf{w}}}$	$\mathrm{X}_{\text {cors }}$	$\mathbf{y}_{\text {orre }}$	$\mathrm{Z}_{\text {corat }}$	\mathcal{Z}_{0078}	1	$\}_{8070}$	$\sim_{007 E}$	007
8-	0080	0081	0082	${ }^{0} 93$	0084	${ }_{0} 008$	${ }^{\text {cose }}$	${ }_{0} 087$	0088	0080	008	${ }_{0} 088$	mosc	0080	${ }_{0} 085$	Oosf
9-	0300	0091	0092	0038	008	0035	009	0097	cose	0090	cose	0098	0080	000	O00E	Oosf
A-	0000	$\ddot{\mathrm{E}}_{\mathrm{ax0}}$	$\mathbf{T}_{\text {cate }}$	$\bar{\Gamma}_{0 \times 0 \times 0}$	$\epsilon_{\text {cotat }}$	$\mathrm{S}_{0 \times 05}$	$\begin{aligned} & \mathrm{I} \\ & 0006 \\ & \hline \end{aligned}$		$\mathbf{J}_{\text {a40 }}$	$\underset{\text { Љ } 0 \times 09}{ }$	$\underset{\text { ata }}{ }$	$\mathrm{T}_{\mathrm{c}+0,0}$	$\hat{K}_{0 \times 0}$	0000	$\check{\mathrm{Y}}_{\text {OQte }}$	$Џ_{\text {ataf }}$
B-	A_{040}	Б	B_{0012}	Γ_{0413}	$\text { Д }_{0.44}$	$\mathrm{E}_{\mathrm{c}+15}$	$\underset{\text { Wate }}{ }$	3	$\boldsymbol{U}_{\mathrm{octa}}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { Й } \\ \hline \end{array}$	$\mathrm{K}_{\mathrm{os}+1 \times}$	$\boldsymbol{Л}_{\mathrm{octB}}$	$\mathbf{M}_{0 \times 10}$	$\underset{0 \times 10}{ }$	$\mathrm{O}_{0 \times 1 \mathrm{E}}$	$\prod_{\text {Ot1F }}$
C-	$\mathbf{P}_{0 \times 20}$	C_{0+21}	T_{0+222}	$\mathbf{Y}_{0 \times 20}$	Φ	$\mathrm{X}_{\text {ous }}$	$Ц_{0,28}$	$\mathbf{Y}_{0,272}$	\amalg_{a+28}	Щ	$\underset{\text { atest }}{ }$	$\text { bI }_{\text {ore }}$	$\mathbf{b}_{\mathbf{0} 2}$	\ni	$\mathrm{F}_{0,0}$	¢ ${ }_{\text {case }}$
D-	$\mathrm{a}_{0 \times 50}$	$\sigma_{0,31}$	$\begin{aligned} & \mathrm{B}_{0} \\ & { }_{0}^{2} 2 \end{aligned}$	$\Gamma_{0 \times 33}$	д	$\mathrm{e}_{\text {oass }}$	$\boldsymbol{T}_{\text {oasc }}$	$3_{0,337}$	$\operatorname{cosese}^{\prime}$	й	$\underset{\substack{\mathrm{c} 3 \mathrm{a}}}{ }$	$\underset{\text { © } 0 \text { ase }}{ }$	$\underset{\text { oasac }}{\mathbf{M}}$	$\mathrm{H}_{\text {as3 }}$	$\mathrm{O}_{\text {Oase }}$	$\underset{\text { cass }}{10}$
E-	p_{0+40}	$\begin{gathered} c_{0+1} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{0+2} \\ \hline \end{gathered}$	y_{0+43}^{y}	$\phi_{\text {ota4 }}$	x_{045}	$\stackrel{L}{046}^{4}$	\mathbf{c}_{0}	$\underset{\text { ata }}{\boldsymbol{U}_{4}}$	$\underset{\text { O449 }}{\mathrm{M}_{2}}$	$\mathbf{c}_{\text {bata }}$	$\begin{gathered} \mathbf{c}_{048} \\ \hline \end{gathered}$	$\begin{aligned} & \text { bact } \\ & \hline \end{aligned}$	${ }_{0440}$	$\underset{\text { oute }}{\mathrm{F}_{1}}$	${ }_{\text {OA4F }}$
F-	$\begin{gathered} \mathrm{No} \\ \text { 2n16 } \end{gathered}$	ë	$\varlimsup_{\text {ouse }}$	$\begin{aligned} & \dot{\Gamma}_{0,45 s} \\ & \hline \end{aligned}$	$\epsilon_{\text {obsad }}$	$\mathrm{S}_{\text {ouss }}$	$\begin{aligned} & \hline \mathrm{i} \\ & \text { osse } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \ddot{1} \\ & \text { oss } \end{aligned}$	$\mathrm{j}_{\text {oss }}$	$\underset{\text { osse }}{\boldsymbol{J}_{6}}$	$\underset{\text { assa }}{\mathrm{b}_{1}}$		$\underset{\text { Kasc }}{\substack{\text { as }}}$	$\underbrace{}_{\text {coor }}$		$\underset{\text { a asf }}{\square}$

Unicode

- Unicode codes ("Universal Codes") were created in 1991 to introduce an standard alphanumeric code for all regions
- The same code for languages like Chinese, Arabic, etc.
- Maximum 32 bits
- First 7 bits allow compatibility with ASCII
- Using 1 byte the US-ASCII can be represented
- Using 2 bytes: latin, arabic, greek, cyrillic, armenian, hebrew, syriac and thaana alphabets
- Using 3 bytes: rest of characters in remaining languages
- Using 4 bytes: graphic characters and uncommon symbols
- Different versions of the representation. The most common are:
- UTF-8: 1-byte codes, variable length (4 groups of 1 byte can be used to represent 1 symbol)
- UCS-2: 1-byte codes, fixed lenght
- UTF-16: 2-byte codes, variable length (2 groups of 2 bytes can be used to represent 1 symbol)
- UTF-32: 4-byte codes

Unicode

0400
Cyrillic
04FF

Example：

－Unicode fragment，corresponding to Cyrillic alphabet

A second byte is needed for the representation
－Full tables can be found at：
http：／／www．unicode．org／charts

$0{ }_{0}^{\text {Ex }}$	A	${ }^{\text {A }}$	¢ ${ }_{\text {co }}$	a	p_{w}		e	$\mathrm{w}_{\text {ung }}$	${ }^{ \pm}$	C_{4}	${ }_{4}{ }^{\text {I }}$	1 T	K	Y	I	A	Ă	3	y
Ë	${ }_{\text {cn }}$	5	C	б	c		ë	${ }_{\text {wn }}$	W	C	G 1	「	${ }_{\text {Kı }}$	Y	災		ă	3	$\ddot{\text { y }}$
2 T	B	3 T	T	B	T		，	Ђ	Ө	\pm	I	F H	H	X	※̆	Ä	Ä	$\bar{\square}$	ý
Í	Γ	Γ	${ }_{\text {en }}$	r	y		í	${ }_{\text {cas }}$	$\stackrel{\text { en }}{\text { en }}$	\％	\％	ғ ${ }_{\text {F }}$	H	x	K	5	ä	$\overline{\bar{n}}$	y
E	Д	L ${ }_{\text {are }}$	\pm	${ }_{\text {¢ }}$	中		e	${ }_{\text {ama }}$	V	¢		${ }_{3}{ }_{\text {c }}$	${ }_{\text {am }}$	Ta	K	${ }^{1}$	$\underset{\text { Ea }}{\text { E }}$	Й	¢
$5{ }_{5} \mathrm{~S}$	E	E ${ }_{\text {x }}$	X ${ }_{\text {cos }}$	e	${ }_{\text {xes }}$		S	$\underset{\text { mem }}{\text { E }}$	v	${ }^{\text {S }}$	\％		$\underset{\text { ame }}{\mathrm{H}}$	$\mathrm{TH}_{\text {cem }}$	J_{∞}	1 æ	æ	ӥ	\＃̈
$6{ }_{6}$	坔	K ${ }^{\text {a }}$	${ }_{\text {cot }}$	${ }_{\text {¢ }}^{\text {\％}}$	M		i	${ }_{\text {amm }}^{\text {and }}$	ジ			－${ }_{\text {\％}}$	$\square_{\text {mom }}$	Y	J	${ }_{\text {c }}$	${ }_{\text {E }}^{\text {E }}$	Ö	Γ
7	3	3	¢ ${ }_{\text {ar }}$	3	Y		í	A	ジ	¢	\％	ж I	Ib	Y	${ }_{0}$	－	e	O	Γ
${ }_{8}{ }^{\text {cos }}$	И	И	wos	и	${ }_{\text {ame }}$				Oy	208	3	3 3	Q	Y	${ }_{\text {H }}^{0}$	${ }^{\text {aed }}$	Э	－	¢00
b	Йm	Й	¢	Й	щ		Ј	La	${ }_{\text {Oy }}^{\text {oy }}$	an	\％${ }^{3}$	＠		y	H	H		$\underset{\text { ee }}{\substack{\text {－}}}$	ओ̈
¢	K	\％	－	${ }_{\text {Kan }}^{\text {K }}$	$\xrightarrow{\text { ba }}$		${ }_{\text {¢ }}$	$\underset{\text { mox }}{\substack{\text { man }}}$	O	Й	Й K	K	Ç	ham	H	${ }^{\text {¢ }}$	ว̈	Ö	$\underset{\text { F }}{\text { F }}$
${ }^{8} \mathrm{~K}$	л	I b	Ы	л	ы		¢	$\underset{\text { mos }}{\substack{\text { an }}}$	\bigcirc	¢	K	${ }_{\text {K }}^{\text {K }}$	c	h	4		ä	－	${ }_{\text {F }}$
${ }^{\text {c }}$ K	${ }_{\text {acc }}^{\text {M }}$	M b	bed	M	b		${ }_{\text {kex }}$	mim	（ ${ }_{\text {cux }}$	b	${ }^{\text {c }}$	K ${ }_{\text {m }}$	T	e	Y	－	令	\％	X
－${ }^{\text {Lem }}$	${ }_{\text {mo }}^{\mathrm{H}}$	H	Э	H	\ni		й	${ }_{\text {mim }}^{\text {mim }}$	\sim_{0}	${ }^{\text {b }}$	${ }_{\text {b }}{ }_{\text {K }}^{\text {K }}$	${ }_{\text {K }}$ T	T	¢	M	M	永	O	${ }_{\text {x }}$
E ${ }_{\text {y }}^{\text {y }}$	O	O		${ }_{\text {Ox }}$	юm		y ${ }_{\text {y }}$		\bar{W}	P	P K	${ }_{\text {kex }}$	Y	${ }_{\text {ceiel }}^{\text {e }}$	M		3	y	${ }_{\text {¢ }}^{\text {¢ }}$
Џ				II	я			3	$\underset{\sim}{\omega}$		k	k ${ }_{\text {w }}$		e	I		3	y	＊

Error detector and Error corrector codes

- Errors may appear in digital systems
- Physical errors in the circuits
- Electromagnetic interferences (EMI)
- Power supply errors
- Etc.
- Error detector codes:
- They can detect an error in an encoding
- Error corrector codes:
- They can detect an error an even correct it
- Error detector and error corrector codes don' t use all 2^{n} posible n-bit encodings of the n-bit code

Error detector codes

- Parity codes:
- An additional bit is added (parity) which allow to detect simple errors in the encoding
- The considered parity is the sum of the encoding n-bits
- NOTE: parity does not mean if a number is even or odd (a binary number is even if the last bit is 0 and odd if it is 1). In our case parity is related to the addition of all the bits in the encoding.
- Two possible conventions:
- Add 0 when parity is even and 1 if it is odd. In this case the parity code is named even parity code (as the addition of n bits + parity bit is always even)
- Add 1 when parity is even and 0 if it is odd. In this case the parity code is named odd parity code (as the addition of n bits + parity bit is always odd)

Error detector codes

- Parity example:

Error detector code (odd-parity code) obtained

- Application example:

If we use this code in a communication between two digital systems, the receiver may detect if there is an error in the transmitted encoding (checking the parity bit).
Example: 001 is transmitted but the receiver recieves 000 (there is an error in the last bit)

Error detector codes

- There are more error detector codes:
- Number of ones:
- The sum of the ones in the encoding is added (not only the parity, but de full addition)
- Number of transitions:
- The number of transitions from 0 to 1 and 1 to 0 is added to the encoding
- CRC codes (Cyclic Redundancy Checking):
- They try to add the least possible number of bits to detect the maximum possible number or errors
- Some CRC codes may also correct some errors
- The most used codes are parity (for simplicity) and CRC (for effectiveness)

Error corrector codes

- These codes allow not only to detect errors, they can correct them as well.
- The minimum distance (minimum number of different bits between two encodings) must be greater than 2 so that a code can correct errors.
- The encoding can be corrected by looking for the closest encoding belonging to the code.
- Hamming showed a general method to obtain codes with minimum distance equal to 3 , which are known as Hammig codes.
- These codes are important, many of the currently codes used in communications are obtained from them (for example ReedSolomon codes)

Integer and real number codes

- There are more codes to represent integer and real numbers:
- Integer numbers: Sign and magnitude, 1s-complement, 2scomplement
- Real numbers: Fixed point and floating point
- We will see these codes in detail in unit 4 (Arithmetic combinational circuits)

References

- Digital Systems Fundamentals. Thomas L. Floyd. Pearson Prentice Hall
- Introduction to Digital Logic Design. John P. Hayes. Addison-Wesley
- Digital Design. John F. Wakerly. Pearson Prentice Hall

