
1

Designing digital circuits using VHDL

LANGUAGE VHDL
FUNDAMENTALS

Introduction
Entities and architectures
Sentences and processes

Objects
Data types and operands

Authors: Luis Entrena Arrontes, Celia López, Mario García,
Enrique San Millán, Marta Portela, Almudena Lindoso

2

Designing digital circuits using VHDL

History of VHDL

 1980: The USA Department of Defense funded a project under
the program VHSIC (Very High Speed Integrated Circuit) to
create a standard hardware description language.

 1983: The development of VHDL began.

 1987: IEEE 1076-1987 standard

 1994: The standard is revised: IEEE 1076-1993

 1996: First automatic tools that support the new version of the
standard
We will focus on the 1987 version since it is the most widely

accepted standard.

 2002: New version with few modifications

3

Designing digital circuits using VHDL

VHDL language

 IEEE standard

Widely used, mainly in Europe (Verilog in USA)

Capabilities
VHDL is a very powerfu language. It can be used to design digital

circuits at different abstract levels, from logic level to system level.
Model and simulate digital circuits at different abstract levels.
Logic synthesis, Register Transfer (RT) (automatic tools)

4

Designing digital circuits using VHDL

General features

Design hierarchy

Allows the use of design libraries. Useful for managing large
and multiple designs.

Generic design.

Execution in parallel (concurrence)

Description style
Structural
Behavioral

Simulation and synthesis
VHDL for synthesing hardware is just a subset of the VHDL for

simulation.

5

Designing digital circuits using VHDL

Notation used

Capital letters for VHDL keywords (reserved words), although
VHDL is case insensitive.

Brackets [] point out optional clauses in VHDL constructs.

Vertical bar | point out alternative elements.

Comments are pointed out with two dashes --, like in VHDL.

VHDL code examples are in a rectangle

6

Designing digital circuits using VHDL

LANGUAGE VHDL
FUNDAMENTALS

Introduction
Entities and architectures
Sentences and processes

Objects
Data types and operands

7

Designing digital circuits using VHDL

Entities and architectures

Entity 1
Entity 2

Entity 3

Top level entity

Architecture 1

Architecture 2

8

Designing digital circuits using VHDL

Entities

 The entity is the basic design unit

 The entity declaration consists of
Generic parameters declaration
 Interface declaration

ENTITY not_cell IS
 GENERIC (delay_not: TIME := 5 NS);
 PORT (i1: IN BIT; o1: OUT BIT);
END not_cell;

9

Designing digital circuits using VHDL

Architectures

 The architecture is a secondary desing unit and it provides the
functional description of a design.

One entity can be matched with multiple architerctures that
describe different versions for the same design.

A VHDL architecture can instantatiate lower-level entities in
which case they are known as component. This feature provides
a hierarchical structure.

ARCHITECTURE example OF not_cell IS
 -- Declarations
BEGIN
 -- Sentences
 o1 <= NOT i1 AFTER delay_not;
END example;

10

Designing digital circuits using VHDL

Example: a half-adder

HalfAdder
a

b c

s

Half-adder equations
s = a xor b
c = a and b

11

Designing digital circuits using VHDL

The half-adder in VHDL

ARCHITECTURE simple OF HalfAdder IS
BEGIN
 s <= a XOR b;
 c <= a AND b;
END simple;

ENTITY HalfAdder IS
 PORT (a: IN BIT; b: IN BIT; s: OUT BIT; c: OUT BIT);
END HalfAdder;

12

Designing digital circuits using VHDL

Full-adder

FullAdder

x

y
cout

s

cin

HalfAdder
a

b

s

c
HalfAdder

a

b

s

c

x

y

cin

s

cout

s_partial

c_partial1

c_partial2

13

Designing digital circuits using VHDL

Full-adder in VHDL
ENTITY FullAdder IS
 PORT (x: IN BIT; y: IN BIT; cin: IN BIT;
 s: OUT BIT; cout: OUT BIT);
END FullAdder ;

ARCHITECTURE structural OF FullAdder IS
 COMPONENT HalfAdder
 PORT (a: IN BIT; b: IN BIT; s: OUT BIT; c: OUT BIT);
 END COMPONENT;
 SIGNAL s_partial: BIT;
 SIGNAL c_partial1, c_partial2: BIT;
BEGIN
 SS0: HalfAdder PORT MAP (x, y, s_partial, c_partial1);
 SS1: HalfAdder PORT MAP (s_partial, cin, s, c_partial2);
 cout <= c_partial1 OR c_partial2;
END structural;

14

Designing digital circuits using VHDL

Port connection

Connecting ports by using positional assotiation

COMPONENT HalfAdder
 PORT (a: IN BIT; b: IN BIT; s: OUT BIT; c: OUT BIT);
END COMPONENT;

SS0: HalfAdder PORT MAP (x, y, s_partial, c_partial1);

15

Designing digital circuits using VHDL

Port connection

Connecting ports by using named association

COMPONENT HalfAdder
 PORT (a: IN BIT; b: IN BIT; s: OUT BIT; c: OUT BIT);
END COMPONENT;

SS0: HalfAdder PORT MAP (a => x, b => y , s => s_partial, c =>c_partial1);

16

Designing digital circuits using VHDL

LANGUAGE VHDL
FUNDAMENTALS

Introduction
Entities and architectures
Sentences and processes

Objects
Data types and operands

17

Designing digital circuits using VHDL

Concurrent statements
 These statements are executed in parallel!

 They operate independently and then they can be written in any
order.

 The simulation tools detect when there is an event in the object
values and it set when objects must be updated.

Every statement in an architecture is concurrent with respect to
the others.

ARCHITECTURE structural OF FullAdder IS
...
BEGIN
 SS0: HalfAdder PORT MAP (x, y, s_partial, c_partial1);
 SS1: HalfAdder PORT MAP (s_partial, cin, s, c_partial2);
 cout <= c_partial1 OR c_patcial2;
END structural;

18

Designing digital circuits using VHDL

Concurrent statements

 Two equivalent examples

ARCHITECTURE a OF circuit IS
BEGIN
 g1 <= a OR b;
 s <= g1 AND c;
END a;

ARCHITECTURE a OF circuit IS
BEGIN
 s <= g1 AND c;
 g1 <= a OR b;
END a;

a
b
c

g1

s

19

Designing digital circuits using VHDL

Simulation of concurrent statements

Simulation:
 If there is a change in a or b -> Calculating the new value of g1
 If there is a change in g1 or c -> Calculation the new value of s
Each statement is executed so many times as it is necessary
The order in which concurrent statements are written is irrelevant!

ARCHITECTURE a OF circuit IS
BEGIN
 g1 <= a OR b;
 s <= g1 AND c;
END a;

ARCHITECTURE a OF circuit IS
BEGIN
 s <= g1 AND c;
 g1 <= a OR b;
END a;

20

Designing digital circuits using VHDL

Sequential statements

Concurrency can be difficult to manage by designers:
VHDL also allows the use of sequential statements to describe

designs

Sequential statements:
They are executed following a procedural flow, like in software

languages.
Sequential statements are always included inside processes or

procedures
Between the execution of two different sequential statements time

does not pass.

21

Designing digital circuits using VHDL

Processes
Processes are used to describe hardware by means of

sequential statements
 They consist of

Declarations
Sequential statements

 The process must have a sensitivity list or at least a WAIT
clause.

A process is activated when
A change (event) occurs in one or more signals contained in the

sensitivity list
The condition in the WAIT statement becomes true

Proceses are executed indefinitely over and over.

22

Designing digital circuits using VHDL

Example of process(I)

 The process is activated when i1 changes the value

 The statements inside the process are executed sequentially

ARCHITECTURE one OF example IS
BEGIN
 PROCESS (i1)
 VARIABLE a: BIT;
 BEGIN
 a := NOT i1; -- Sequential statement
 o1 <= a; -- Sequential statement
 END PROCESS;
END example;

Sensitivity list

23

Designing digital circuits using VHDL

Example of process(II)

Process execution is stopped in the WAIT statement

 The execution is resumed when there is a change in the value of i1

When the end of the process is reached the execution starts again
from the beginning.

ARCHITECTURE two OF example IS
BEGIN
 PROCESS
 VARIABLE a: BIT;
 BEGIN
 a := NOT i1; -- Sequential statement
 o1 <= a; -- Sequential statement
 WAIT ON i1; -- Sequential statement
 END PROCESS;
END example;

24

Designing digital circuits using VHDL

Recommendations for synthesis

Do not use AFTER clauses in descriptions for synthesis
 Synthesizer ignore the clause AFTER in the assignments, since the

delay is a feature of the technology used to implement the circuit.
This information is fixed at low abstraction levels (physical levels),
while VHDL is used at high abstraction levels (mainly RT)

Do use process with sensitivity list
 WAIT statement is just synthesizable in very few cases
 WAIT statement is not supported by many synthesizers

25

Designing digital circuits using VHDL

LANGUAGE VHDL
FUNDAMENTALS

Introduction
Entities and architectures
Sentences and processes

Objects
Data types and operands

26

Designing digital circuits using VHDL

VHDL Data Objects

Constants

Variables

Signals

Similar to constant and variables in
software languages

Represent hardware signals. Their
values change along the execution

27

Designing digital circuits using VHDL

Data Objects: Constants

Hold one specific value that can not change

A constant can be declared in any part of a design

Examples

CONSTANT name1, name2, ..., namen: type [:= value];

CONSTANT gnd : BIT := ‘0’;
CONSTANT n, m : INTEGER := 3;
CONSTANT delay: TIME := 10 NS;

28

Designing digital circuits using VHDL

Data objects: Variables

 They can change their value

 The update of the value is performed just after the assignment

 They have to be declared in sequential fields, like in processes
or subprograms

 They are local data, that is, variables are only visible in the
process or subprogram where they are declared. There are not
global variables.

VARIABLE name1, name2, ..., namen: type [:= value];

VARIABLE one_variable : BIT := ‘1’;
VARIABLE i, j, k: INTEGER;

29

Designing digital circuits using VHDL

Data objects: Signals

 Their values have always associated a temporal factor

Signal assignments do not cause a change in the signal value
immediately, but after certain specified time. The pair (value,
time) is called transaction

Signals can only be declared in concurrent fields. However they
are global objects and are also visible in sequential
environments, like processes or subprograms

SIGNAL name1, name2, ..., namen: type [:= value];

SIGNAL one_signal : BIT := ‘1’;
SIGNAL i, j, k: INTEGER;

30

Designing digital circuits using VHDL

Signal simulation: Drivers

Each process that contains a signal assignment contains a
driver for that signal

 The driver for a given signal stores a list of transactions to
represent the current and future signal values

 The first transaction in a driver is the current value of that driver

 The simulator is in charge of updating the values in every signal
along the execution time: when the time in a transaction is equal
to the current instant the signal is updated with the driver’s
value.

31

Designing digital circuits using VHDL

Signal assignments

 If a process contain several assignments for the same signal,
there is only one driver and then the final value for the signal
will be the last one assigned

PROCESS (a)
BEGIN
 z <= a;
 z <= ‘1’;
END PROCESS;

z always is ‘1’

32

Designing digital circuits using VHDL

Signal assignments

 If the same signal is assigned in different concurrent statements
there is a driver for each process (multiple drivers for the same
signal). Therefore, the final value must be resolved

 The value of the signal is obtained by means of a resolution
function

PROCESS (a)
BEGIN
 z <= a;
END PROCESS;

PROCESS (b)
BEGIN
 z <= b;
END PROCESS;

z?

Resolution function

Current value of the signal
(resolved)

33

Designing digital circuits using VHDL

Using signals and variables

Variables:
They are locals within the processes and subprograms. They are

used for storing local values or temporary values
They require less memory space and their use provides more

efficiency at simulation, since they are updated immediately.

Signals
They are necessary for implementing concurrency. Using signals is

the only way to communicate two different processes.

Asignments
For variables :=
For signals <=

34

Designing digital circuits using VHDL

LANGUAGE VHDL
FUNDAMENTALS

Introduction
Entities and architectures
Sentences and processes

Objects
Data types and operands

35

Designing digital circuits using VHDL

Outline

Data types

Operators and conversion functions

Attributes

Data types in synthesis

36

Designing digital circuits using VHDL

Data types

VHDL is a language with a wide set of data types

Every data type limits the number of possible values that an
object associated with that type can take.

 Types
Scalars:

- Enumerated - Integer
- Real - Physical

Composite
- Vector/Matrix - Record

File

37

Designing digital circuits using VHDL

Scalars types

Enumerated

Values are identifiers or a character literal
Enumerated data types can be defined by the language of user

defined
 Integer

Real

Physical

A numerical value and a physical unit
The predefined type TIME is the only physical type that we are

going to use.

38

Designing digital circuits using VHDL

Enumerated data types defined by the user

 Type declaration

Use

TYPE set_of_letters IS (‘A’, ‘B’, ‘C’, ‘D’);
TYPE traffic_light IS (green, amber, red);
TYPE states IS (s0, s1, s2, s3, s4, s5);

CONSTANT first_letter: set_of_letters := ‘A’;
SIGNAL traffic_light1: traffic_lights ;
SIGNAL current_state: states ;
...
current_state <= s0;
Traffic_light1<= green;

39

Designing digital circuits using VHDL

Predefined enumerated types

BIT ('0', '1')

BOOLEAN (FALSE, TRUE)

CHARACTER (NUL, SOH, ..., 'A', 'B', ...)

STD_LOGIC (defined in the IEEE 1164 standard)
 ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-')

40

Designing digital circuits using VHDL

Standard logic type

 This type is defined in the IEEE 1164 standard. It is use widely

 It is a enumerated typed for logic object. It provided multiple
values
 ‘U’ - uninitialized. This is the value of an object by default
 ‘X’ - Unknown (strong)
 ‘0’ - Logic Zero (strong). Gnd
 ‘1’ - Logic One (strong). Vdd
 ‘Z’ - High impedance
 ‘W’ - Unknown (weak)
 ‘L’ - Logic Zero (weak). Pull-down resistors
 ‘H’ - Logic One (weak). Pull-up resistors
 ‘-’ - Don’t-care”. Used for synthesis

41

Designing digital circuits using VHDL

Standard logic type

STD_LOGIC is a resolved tipo resuelto
A STD_LOGIC object may have got multiple drivers
The resolution function assign an ‘X’ when there is a collision

between multiple drivers

 In order to use standard logic types we have to added the
following lines before the design entity declaration:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
ENTITY...

42

Designing digital circuits using VHDL

Integer type

Declaration and use

 It is advisable to fix a range

 It limits the number of bits inferred in the synthesis
Simulation sends an error messages when the object has a value

out of range

CONSTANT n: INTEGER := 8;
SIGNAL i, j, k: INTEGER;
...
i <= 3;

SIGNAL BCD_value: INTEGER RANGE 0 TO 9;

43

Designing digital circuits using VHDL

Real type

Declaration and use

 It is not synthesizable
However, there are libraries for operations with real numbers

(simulation)

SIGNAL d: REAL;
...
d <= 3.1416;
d <= 10E5;
d <= 2.01E-3;

44

Designing digital circuits using VHDL

Physical types
Example of declaration and use

 The most important physical type predefined in the VHDL
standard is the type TIME

TYPE weight IS RANGE 0 TO 100.000.000
 UNITS
 gram;
 kilo = 1000 gram;
 ton = 1000 kilo;
 END UNITS;
SIGNAL p: weight;

FS femtosecond = 10-15 sec.
PS picosecond = 10-12 sec.
NS nanosecond = 10-9 sec.
US microsecond = 10-6 sec.
MS millisecond = 10-3 sec.
SEC second
MIN minute = 60 sec.
HR hour = 60 minutes

SIGNAL t: TIME;
...
t <= 10 NS;

45

Designing digital circuits using VHDL

All the elements are of the same type. All the VHDL types can be
used to form arrays

 It is possible to access one element or a subset of them

 The direction of the range can be ascending (to) or descending
(downto):

The accessed subset of elements must have the same order as in
the original vector.

Composite types: ARRAY

TYPE byte IS ARRAY (7 DOWNTO 0) OF STD_LOGIC;
SIGNAL s: byte;

s <= “00000000”;
s(2) <= ‘1’;
s(4 downto 3) <= “00”;

46

Designing digital circuits using VHDL

Unconstrained vectors. The size of the vector is specified in a
later declaration

Vectors of data of types BIT and STD_LOGIC are predefined

Composite types: ARRAY

TYPE bit_vector IS ARRAY (NATURAL RANGE <>) OF BIT;
SIGNAL s: bit_vector (7 DOWNTO 0);

SIGNAL s: BIT_VECTOR (7 DOWNTO 0);
SIGNAL a: STD_LOGIC_VECTOR (7 DOWNTO 0);

47

Designing digital circuits using VHDL

Multidimensional arrays

Multidimensional matrix and vector of vectors

Use

TYPE matrix IS ARRAY(0 TO 479, 0 TO 479) OF STD_LOGIC;
SIGNAL image: matrix;
TYPE memory1 IS ARRAY(0 TO 1023) OF STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL ram1: memory1;
TYPE memory2 IS ARRAY(0 TO 1023) OF INTEGER RANGE 0 TO 255;
SIGNAL ram2: memory2;

image(0,0) <= ‘1’;
ram1(0)(0) <= ‘1’;
ram1(0) <= “00000000”;
image(0, 0 TO 7) <= “00000000”; -- ERROR

48

Designing digital circuits using VHDL

Composite types: RECORD

Collection of elements possibly of different types

TYPE type_opcode IS (sta, lda, add, sub, and, nop, jmp, jsr);
TYPE type_operand IS BIT_VECTOR (15 DOWNTO 0);
TYPE instruction_format IS RECORD
 opcode : type_opcode;
 operand: type_operand;
END RECORD;

SIGNAL ins1: instruction_format := (nop, “0000000000000000”);

ins1.opcode <= lda;
ins1.operand <= “0011111100000000”;

49

Designing digital circuits using VHDL

Literals
Symbols used for representing constant values in VHDL

Characters: always between single quotation marks

Array of characters (string literals) : between double quotation
marks

Bit string literals: A prefix points out the base required

"Esto es un mensaje"
"00110010"

SIGNAL b: BIT_VECTOR (7 DOWNTO 0);
b <= B"11111111"; -- Binary
b <= X"FF"; -- Hexadecimal
b <= O"377"; -- Octal

'0' '1' 'Z'

50

Designing digital circuits using VHDL

Aliases and subtypes

Alias are used to reference an object by a new name

Subtypes define a subset of a type previously defined

SIGNAL status_register: BIT_VECTOR (7 DOWNTO 0);
ALIAS carry_bit: BIT IS status_register(0);
ALIAS zero_bit: BIT IS status_register(1);

SUBTYPE ten_values IS INTEGER RANGE 0 TO 9;

51

Designing digital circuits using VHDL

Predefined operators

Operation Operator Operand type Result type

Logical NOT, AND, OR,
NAND, NOR, XOR

BOOLEAN, BIT,
STD_LOGIC

BOOLEAN, BIT,
STD_LOGIC

Relational =, /=, <, <=, >, >= Any type BOOLEAN

Arithmetic +, -, *, /,
**,
MOD, REM, ABS

INTEGER, REAL,
physical,
STD_LOGIC_VECTOR

INTEGER, REAL,
physical,
STD_LOGIC_VECTOR

Concatenation & ARRAY & ARRAY
ARRAY & element

ARRAY

52

Designing digital circuits using VHDL

MOD and REM

Reminder of an integer division:
Using REM, the sign of the result is equal to the first operand.
Using MOD, the sign of the result is equal to the second operand.

5 rem 3 = 2
5 mod 3 = 2
(–5) rem 3 = –2
(–5) mod 3 = 1
(–5) rem (–3) = –2
(–5) mod (–3) = –2
5 rem (–3) = 2
5 mod (–3) = –1

53

Designing digital circuits using VHDL

Signed and unsigned operands

 The result of some arithmetic operations with bit vectors can
differ depending on the considered binary representation:
signed or unsigned

 There are two possible solutions:
Using two different set of operators:

 STD_LOGIC_UNSIGNED for operations without sign
 STD_LOGIC_SIGNED for operations without sign

Using two different data types:
 UNSIGNED for operations without sign
 SIGNED for operations without sign

"1111" > "0000"
TRUE without sign (15 > 0)

FALSE with sign (-1 < 0)

54

Designing digital circuits using VHDL

Signed and unsigned operands

Example of the first possible solution:

 The packages STD_LOGIC_UNSIGNED and
STD_LOGIC_SIGNED define the same operations but taking into
account different binary representation. Therefore, they cannot
be used together in a same design unit.

USE IEEE.STD_LOGIC_UNSIGNED.ALL;
...
"1111" > "0000" -- without sign

USE IEEE.STD_LOGIC_SIGNED.ALL;
...
"1111" > "0000" -- with sign

55

Designing digital circuits using VHDL

Signed and unsigned operands

Example of the second possible solution:

USE IEEE.STD_LOGIC_ARITH.ALL;
...
SIGNAL u1, u2: UNSIGNED(3 DOWNTO 0);
SIGNAL s1, s2: SIGNED(3 DOWNTO 0);

-- without sign
 u1 >u2
 UNSIGNED("1111") > UNSIGNED("0000")
-- with sign
 s1 > s2
 SIGNED("1111") > SIGNED("0000")

Nowadays:
USE IEEE.NUMERIC_STD.ALL;

56

Designing digital circuits using VHDL

Conversion functions

Predefined function allows the conversion between data types
CONV_INTEGER
CONV_STD_LOGIC_VECTOR

 These functions are defined in the package STD_LOGIC_ARITH

USE IEEE.STD_LOGIC_ARITH.ALL;
...
SIGNAL s : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL i : INTEGER RANGE 0 TO 255;
...
i <= CONV_INTEGER(s);
s <= CONV_STD_LOGIC_VECTOR(i, 8)

57

Designing digital circuits using VHDL

Concatenation and aggregates

Concatenation is used to form vectors

Aggregates are used to join elemnts in order to form data of a
composite type (ARRAY o RECORD)

SIGNAL s1, s2 : BIT_VECTOR (0 TO 3);
SIGNAL x, z : BIT_VECTOR (0 TO 7);
...
z <= s1 & s2;
z <= x(0 TO 6) & '0';

s1 <= (‘0’, ‘1’, ‘0’, ‘0’); -- Equivalent to s1 <= “0100”;
s1 <= (2 => ‘1’, OTHERS => ‘0’); -- Equivalent to s1 <= “0010”;
s1 <= (0 to 2 => ‘1’, 3 => s2(0));

58

Designing digital circuits using VHDL

Attributes

Pointing out values, functions, ranges or types associated with
VHDL objects and types.

 They may be predefined or user-defined

Predefined attributes
Array related: Are used to determine the range, length or the limits

of an array
Type related: These attributes are used to access to the elements of

a given type
Signal related: These attributes ares used to model some signal

properties

59

Designing digital circuits using VHDL

Array related attributes

Attribute Description Example Result

‘LEFT Left bound d’LEFT 15

‘RIGHT Right bound d’RIGHT 0

‘HIGH Upper bound d’HIGH 15

‘LOW Lower bound d’LOW 0

‘RANGE Range d’RANGE 15 DOWNTO 0

‘REVERSE_RANGE Reverse range d’REVERSE_RANGE 0 TO 15

‘LENGTH Length d’LENGTH 16

SIGNAL d: STD_LOGIC_VECTOR(15 DOWNTO 0)

60

Designing digital circuits using VHDL

Type related attributes

Attribute Description Example Result

‘BASE Base of the type tit’BASE qit
‘LEFT Left bound (subtype) tit’LEFT ‘0’
‘RIGHT Right bound (subtype) tit’RIGHT ‘Z’
‘HIGH Upper bound (subtype) tit’HIGH ‘Z’
‘LOW Lower bound (subtype) tit’LOW ‘0’
‘POS(v) Position of v (base type) tit’POS(‘X’) 3
‘VAL(p) Value in the p index (base type) tit’VAL(3) ‘X’
‘SUCC(v) Next value to v (base type) tit’SUCC(‘Z’) ‘X’
‘PRED(v) Previous value to (base type) tit’PRED(‘1’) ‘0’
‘LEFTOF(v) Value on the left of v (base type) tit’LEFTOF(‘1’) ‘0’
‘RIGHTOF(v) Value on the right of v (base type) tit’RIGHTOF(‘1’) ‘Z’

TYPE qit IS (‘0’, ‘1’, ‘Z’, ‘X’);
SUBTYPE tit IS qit RANGE ‘0’ TO ‘Z’;

61

Designing digital circuits using VHDL

Signal related attributes
Attributes Type Description
‘DELAYED(t) Signal It generates the same signal but delayed
‘STABLE(t) BOOLEAN

Signal
The result is TRUE when the signal has not
change during time t

‘EVENT BOOLEAN
value

The result is TRUE when the signal has
changed

‘LAST_EVENT TIME value Spent time since the last signal event
‘LAST_VALUE Value The value of the signal before the last event
‘QUIET(t) BOOLEAN

Signal
The result is TRUE when the signal has not
received any transaction during time t

‘ACTIVE BOOLEAN
value

The result is TRUE when the signal have had a
transaction

‘LAST_ACTIVE TIME value Spent time since the last transaction
‘TRANSACTION BIT Signal It changes the value every time the signal

receives a transaction

62

Designing digital circuits using VHDL

Signal related attributes

63

Designing digital circuits using VHDL

User-defined attributes

Attributes of entities, architectures, types and objects can be
defined

 Firstly, we must to declare the attribute type

Secondly, we must to specify its value

Example

ATTRIBUTE <attribute_name> : <type>;

ATTRIBUTE < attribute_name > OF <item> : <class> IS <value> ;

ATTRIBUTE technology: STRING;
ATTRIBUTE technology OF circuit: ENTITY IS “CMOS”;
...
 ... circuit’technology ...

Circuit is an entity

64

Designing digital circuits using VHDL

Interpretation of data types in synthesis

 INTEGER:
 It is synthesized as a number coded in natural binary
 If the range contains negative numbers, it is synthesized as a

number coded in two’s complement
 It is necessary to write the range in the declaration in order to make

an effecient synthesis

Enumerated:
They are synthesized as a number coded in natural binary. A binary

code is assigned to every value in the appearence order

SIGNAL a: INTEGER; -- 32 bits
SIGNAL b: INTEGER RANGE 0 TO 7; -- 3 bits

65

Designing digital circuits using VHDL

Interpretation of data types in synthesis

 The following types are not synthesizable
REAL
Physical
Files

Using attributes
Array related attributes: They are useful and syntesizable
Types related attributes: They may be synthesizable although they

are not ussualy used
Signal related attributes: EVENT is the most used. The rest of these

kind of attributes are not synthesizable, except STABLE

66

Designing digital circuits using VHDL

Initial values

Simulation:
 In order to simulate a signal, all the signal and variables must have

an initial value. The initial value can be assigned in the object’s
declaration

 If the initial value is not specified, the VHDL language assigns a
value by default. In enumerated types this value is the first one at
the left

TYPE state IS (S0, S1, S2, S3);
SIGNAL s: state:= S3; -- Initial value: S3
SIGNAL s: state; -- Initial value : S0
SIGNAL a: BIT; -- Initial value : '0'
SIGNAL b: STD_LOGIC; -- Initial value : 'U'

67

Designing digital circuits using VHDL

Initial values

Synthesis
Synthesizers have not taking into account initial values
The inizialization has to be made in hardware

SIGNAL b: STD_LOGIC;
....
PROCESS (reset,)
BEGIN
 IF reset = '1' THEN
 b <= '0';
...

	LANGUAGE VHDL�FUNDAMENTALS
	History of VHDL
	VHDL language
	General features
	Notation used
	LANGUAGE VHDL�FUNDAMENTALS
	Entities and architectures
	Entities
	Architectures
	Example: a half-adder
	The half-adder in VHDL
	Full-adder
	Full-adder in VHDL
	Port connection
	Port connection
	LANGUAGE VHDL�FUNDAMENTALS
	Concurrent statements
	Concurrent statements
	Simulation of concurrent statements
	Sequential statements
	Processes
	Example of process(I)
	Example of process(II)
	Recommendations for synthesis
	LANGUAGE VHDL�FUNDAMENTALS
	VHDL Data Objects
	Data Objects: Constants
	Data objects: Variables
	Data objects: Signals
	Signal simulation: Drivers
	Signal assignments
	Signal assignments
	Using signals and variables
	LANGUAGE VHDL�FUNDAMENTALS
	Outline
	Data types
	Scalars types
	Enumerated data types defined by the user
	Predefined enumerated types
	Standard logic type
	Standard logic type
	Integer type
	Real type
	Physical types
	Composite types: ARRAY
	Composite types: ARRAY
	Multidimensional arrays
	Composite types: RECORD
	Literals
	Aliases and subtypes
	Predefined operators
	MOD and REM
	Signed and unsigned operands
	Signed and unsigned operands
	Signed and unsigned operands
	Conversion functions
	Concatenation and aggregates
	Attributes
	Array related attributes
	Type related attributes
	Signal related attributes
	Signal related attributes
	User-defined attributes
	Interpretation of data types in synthesis
	Interpretation of data types in synthesis
	Initial values
	Initial values

