
1

Description of Digital Circuits using VHDL

DESCRIPTION OF DIGITAL CIRCUITS
USING VHDL

Combinatinal circuits

Sequential circuits

Design organization. Generic design

Iterative operations

 Authors: Luis Entrena Arrontes, Celia López, Mario García,
Enrique San Millán, Marta Portela, Almudena Lindoso

2

Description of Digital Circuits using VHDL

Outline

Condicional sentences

Rules for design of combinational circuits

Examples and exercises

3

Description of Digital Circuits using VHDL

Conditional sentences

Sequential sentences

 IF...THEN...ELSE

CASE...IS...WHEN

Concurrent sequences

 ... WHEN ...
(conditional assignment)

WITH ... SELECT
(selection assingment)

4

Description of Digital Circuits using VHDL

Multiplexer 2:1

-- Sequential description

PROCESS (a, b, s)

BEGIN

 IF s = '0' THEN

 z <= a;

 ELSE

 z <= b;

 END IF;

END PROCESS;

-- Concurrent description

z <= a WHEN s = '0'

 ELSE b;

a

b

z

s

MUX

5

Description of Digital Circuits using VHDL

Multiplexer 4:1

-- Sequential description

PROCESS (a, b, c, d, s)

BEGIN

 CASE s IS

 WHEN "00" => z <= a;

 WHEN "01" => z <= b;

 WHEN "10" => z <= c;

 WHEN OTHERS => z <= d;

 END CASE;

END PROCESS;

-- Concurrent description

WITH s SELECT

z <= a WHEN "00",

 b WHEN "01",

 c WHEN "10",

 d WHEN OTHERS;

a

z

s

MUX
b

d

c

6

Description of Digital Circuits using VHDL

Diferences between IF and CASE

 IF...THEN...ELSE imposes priority in the selection inputs

IF s0 = '0' THEN

 z <= a;

ELSIF s1 = '0' THEN

 z <= b;

ELSE

 z <= c;

END IF;

a

s0

s1

c

b

z

1

0

0

1

7

Description of Digital Circuits using VHDL

Diferences between IF and CASE

CASE does not impose priority in the selection inputs

a

z

s

MUX
b

d

PROCESS (a, b, c, d, s)

BEGIN

 CASE s IS

 WHEN "00" | "10" => z <= a;

 WHEN "01" => z <= b;

 WHEN OTHERS => z <= d;

 END CASE;

END PROCESS;

8

Description of Digital Circuits using VHDL

Truth tables

PROCESS (a, b, c)
 VARIABLE inputs: STD_LOGIC_VECTOR (2 DOWNTO 0);
BEGIN
 inputs := a & b & c;
 CASE inputs IS
 WHEN "000" => f <= '1';
 WHEN "001" => f <= 'X';
 WHEN "010" => f <= '0';
 WHEN "011" => f <= '1';
 WHEN "100" => f <= '0';
 WHEN "101" => f <= '1';
 WHEN OTHERS => f <= 'X';
 END CASE;
END PROCESS;

9

Description of Digital Circuits using VHDL

Rules for design of combinational circuits

Condicions that are necessary for a process to infere a correct
combinational circuit:
 If a signal is assigned in a conditional process o conditional

concurrent sentence, then it needs to have assigned a value for all the
possible branches or conditions.

The sensitivity list of a process must contain all the signal that are
read in the process, i.e. all the signal which value is used in the
process, and therefore are inputs in the synthesized circuit.

Variables used in processes have to be used as intermediate values,
i.e. they have to be written before being read.

10

Description of Digital Circuits using VHDL

Rules for design of combinational circuits

Some consequences of the previous rules:
To cover all the possible cases, it is convenient that every IF

sentence or conditional assignment is followed by an ELSE clause,
and every CASE or selection assignment is followed by an WHEN
OTHERS clause.

Loop references should not be created, i.e. outputs that depend on
themselves, because those loops are asynchronous.

Use of signals is recommended over variables whenever it is
possible.

11

Description of Digital Circuits using VHDL

Examples (mistakes and correct solution)
PROCESS(s, a)

BEGIN

 IF s = ‘0’ THEN

 z <= a;

 ELSE

 z <= z;

 END IF;

END PROCESS;

PROCESS(s, a)

BEGIN

 IF s = ‘0’ THEN

 z <= a;

 END IF;

END PROCESS;

PROCESS(s, a)

BEGIN

 IF s = ‘0’ THEN

 z <= a;

 ELSE

 z <= b;

 END IF;

END PROCESS;

PROCESS(s, a, b)

BEGIN

 IF s = ‘0’ THEN

 z <= a;

 ELSE

 z <= b;

 END IF;

END PROCESS;

12

Description of Digital Circuits using VHDL

Effect of the sensitivity list in simulation

 Incorrect sensitivity list (s, a)

Correct sensitivity list (s, a, b)

13

Description of Digital Circuits using VHDL

Exercise

Design a 2:4 decoder
Using sequential sentences
Using concurrent sentences

Declaration of the entity:

ENTITY decodificador IS
 PORT (a: IN STD_LOGIC_VECTOR (1 DOWNTO 0);

 z: OUT STD_LOGIC_VECTOR (3 DOWNTO 0));

END decodificador;

14

Description of Digital Circuits using VHDL

Exercise

Design a 4-bit comparator
Using sequential sentences
Using concurrent sentences

Declaration of the entity:

ENTITY comparator IS
 PORT (a, b: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

 less_than, greater_than, equal: OUT STD_LOGIC);

END comparator;

15

Description of Digital Circuits using VHDL

Exercise

Design a 2-bit encoder with priority
Using sequential sentences
Using concurrent sentences

Declaration of the entity:

ENTITY codificador IS
 PORT (a: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

 z: OUT STD_LOGIC_VECTOR (1 DOWNTO 0);

 gs: OUT STD_LOGIC);

END decodificador;

16

Description of Digital Circuits using VHDL

Solution: decoder

17

Description of Digital Circuits using VHDL

Solution: comparator

18

Description of Digital Circuits using VHDL

Solution: encoder

19

Description of Digital Circuits using VHDL

DESCRIPTION OF DIGITAL CIRCUITS
USING VHDL

Combinatinal circuits

Sequential circuits

Design organization. Generic design

Iterative operations

20

Description of Digital Circuits using VHDL

Outline

Registers and flip-flops

Rules for design of sequential circuits

Counters

 Finite state machines

21

Description of Digital Circuits using VHDL

Bistables
-- D flip-flop
-- rising edge triggered
PROCESS (clk)
BEGIN
 IF clk’EVENT AND clk = ‘1’ THEN
 q <= d;
 END IF;
END PROCESS;

-- D latch
-- level triggered(latch)
PROCESS (enable, d)
BEGIN
 IF enable = ‘1’ THEN
 q <= d;
 END IF;
END PROCESS;

d

clk

q

enable

d q

ONLY SYNCHRONOUS DESIGN

22

Description of Digital Circuits using VHDL

A register

 If q is a vector, then it is created a register with as many flip-
flops as the vector dimension specifies.

-- Registro de 8 bits
SIGNAL q, d: STD_LOGIC_VECTOR (7 DOWNTO 0);
...
PROCESS (clk)
BEGIN
 IF clk’EVENT AND clk = ‘1’ THEN
 q <= d;
 END IF;
END PROCESS;

23

Description of Digital Circuits using VHDL

Flip-flop with asynchronous inputs

Asynchronous inputs must be included in the sensitivity list

Note: Control signals priority is given by the IF ... ELSIF ... ELSIF
... order

PROCESS (preset, clr, clk)
BEGIN
 IF preset = ‘1’ THEN
 q <= ‘1’;
 ELSIF clr = ‘1’ THEN
 q <= ‘0’;
 ELSIF clk’EVENT AND clk = ‘1’ THEN
 q <= d;
 END IF;
END PROCESS;

preset has priority over clr

24

Description of Digital Circuits using VHDL

Flip-flop with synchronous control inputs

Synchronous inputs are not included in the sensitivity list
(changes in these inputs depend on the clock signal)

PROCESS (reset, clk)
BEGIN
 IF reset = ‘1’ THEN
 q <= ‘0’;
 ELSIF clk’EVENT AND clk = ‘1’ THEN
 IF enable = ‘1’ THEN
 q <= d;
 END IF;
 END IF;
END PROCESS;

}
} Synchronous part

Asynchronous part

25

Description of Digital Circuits using VHDL

Rules for desing of synchronous sequential
circuits

Must be described using processes

 There must be a clock edge condition
 IF clk’EVENT AND clk = ‘1’ THEN
 IF clk’EVENT AND clk = ‘0’ THEN

After that condition the ELSE clause cannot be used
 If a signal is assigned, it is not needed to cover all the cases (in

non-covered cases the signal maintains its value)

Sensitivity list: clock + asynchronous inputs (reset)
Data inputs and synchronous inputs do not appear in the sensitivity

list.

26

Description of Digital Circuits using VHDL

Rules for design of synchronous sequential
circuits

 “Template” for design of synchronous sequential circuits

PROCESS(<clock + asynchronous inputs>)
BEGIN
 IF <asynchronous initialization condition> THEN
 < asynchronous initialization >
 ELSIF <active clock edge> THEN
 -- synchronous behavior
 END IF;
END PROCESS;

27

Description of Digital Circuits using VHDL

Examples

PROCESS (reset, clk)

BEGIN

 IF reset = ‘0’ THEN

 q <= “0101”;

 ELSIF clk’EVENT AND clk = ‘1’ AND enable = ‘1’ THEN

 q <= d;

 END IF;

END PROCESS;

28

Description of Digital Circuits using VHDL

Examples

PROCESS (reset, clk)

BEGIN

 IF reset = ‘0’ THEN

 q <= “0101”;

 ELSIF enable = ‘1’ THEN

 IF clk’EVENT AND clk = ‘1’ THEN

 q <= d;

 END IF;

 END IF;

END PROCESS;

29

Description of Digital Circuits using VHDL

Examples

PROCESS (reset, clk)

BEGIN

 IF reset = ‘1’ THEN

 IF clk’EVENT AND clk = ‘1’ THEN

 IF enable = ‘1’ THEN

 q <= d;

 END IF;

 END IF;

 ELSE

 q <= “0101”;

 END IF;

END PROCESS;

30

Description of Digital Circuits using VHDL

Inference of registers and flip-flops

Every signal that is assigned between IF clk’EVENT ... and END
IF infiere a flip-flop/register

Every variable that is read between IF clk’EVENT ... and END IF,
before being written, infere a flip-flop/register

31

Description of Digital Circuits using VHDL

Examples

-- Example 1 (inferes 1 flip-flop)

PROCESS (clk)

 VARIABLE v: STD_LOGIC;

BEGIN

 IF clk’EVENT AND clk = ‘1’ THEN

 v := d;

 q <= v;

 END IF;

END PROCESS;

-- Example 2 (inferes 2 flip-flops)

-- Shift register, but NOT recommended

PROCESS (clk)

 VARIABLE v: STD_LOGIC;

BEGIN

 IF clk’EVENT AND clk = ‘1’ THEN

 q <= v;

 v := d;

 END IF;

END PROCESS;

32

Description of Digital Circuits using VHDL

Examples

-- Example 3 (inferes 2 flip-flops)

-- Shift register (recommended)

SIGNAL v: STD_LOGIC;

…

PROCESS (clk)

 BEGIN

 IF clk’EVENT AND clk = ‘1’ THEN

 v <= d;

 q <= v;

 END IF;

END PROCESS;

33

Description of Digital Circuits using VHDL

Examples

-- Example 4 (inferes 2 flip-flops)

PROCESS (clk)

 VARIABLE a: STD_LOGIC;

BEGIN

 IF clk’EVENT AND clk = ‘1’ THEN

 a := a +1;

 q <= a;

 END IF;

END PROCESS;

-- Example 5 (inferes 1 flip-flop)

PROCESS (clk)

 VARIABLE a: STD_LOGIC;

BEGIN

 IF clk’EVENT AND clk = ‘1’ THEN

 a := a +1;

 END IF;

 q <= a;

END PROCESS;

But use of signals instead of variables is recommended

34

Description of Digital Circuits using VHDL

Examples

-- Combinational adder

PROCESS (a, b)

BEGIN

 s <= a + b;

END PROCESS;

-- Adder followed by a register

PROCESS (clk)

BEGIN

 IF clk’EVENT AND clk = ‘1’ THEN

 s <= a + b;

 END IF;

END PROCESS;

35

Description of Digital Circuits using VHDL

Examples

-- Adder with registered inputs and outputs

PROCESS (clk)

BEGIN

 IF clk’EVENT AND clk = ‘1’ THEN

 a1 <= a;

 b1 <= b;

 s <= a1 + b1;

 END IF;

END PROCESS;

-- Adder with registered inputs and outputs
-- Input and output registers with reset input

PROCESS (reset, clk)

BEGIN

 IF reset = ‘1’ THEN

 a1 <= (OTHERS => ‘0’);

 b1 <= (OTHERS => ‘0’);

 s <= (OTHERS => ‘0’);

 ELSIF clk’EVENT AND clk = ‘1’ THEN

 a1 <= a;

 b1 <= b;

 s <= a1 + b1;

 END IF;

END PROCESS;

36

Description of Digital Circuits using VHDL

Examples

A register may not have
reset, but a reset signal
needs always an
associated register!

-- Adder followed by register

-- Incorrect initialization!

PROCESS (clk)

BEGIN

 IF reset = ‘1’ THEN

 a <= (OTHERS => ‘0’);

 b <= (OTHERS => ‘0’);

 s <= (OTHERS => ‘0’);

 ELSIF clk’EVENT AND clk = ‘1’ THEN

 s <= a + b;

 END IF;

END PROCESS;

37

Description of Digital Circuits using VHDL

Exercises

Design a JK flip-flop falling-edge triggered

Design a shift register

ENTITY jk_flipflop IS
 PORT (reset: IN STD_LOGIC;
 clk: IN STD_LOGIC;
 j, k: IN STD_LOGIC;
 q: OUT STD_LOGIC);
END k_flipflop;

ENTITY shift_reg IS
 PORT (reset: IN STD_LOGIC;
 clk: IN STD_LOGIC;
 es: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR (0 to 3));
END shift_reg;

38

Description of Digital Circuits using VHDL

Solution: JK flip-flop

39

Description of Digital Circuits using VHDL

Solution: Shift register

40

Description of Digital Circuits using VHDL

Counters

PROCESS (reset, clk)
BEGIN
 IF reset = ‘1’ THEN
 q <= “00000000”;
 ELSIF clk’EVENT AND clk = ‘1’ THEN
 IF enable = ‘1’ THEN
 q <= q + 1;
 END IF;
 END IF;
END PROCESS;

41

Description of Digital Circuits using VHDL

Counters

PROCESS (reset, clk)
 VARIABLE c: INTEGER RANGE 0 TO 255;
BEGIN
 IF reset = ‘1’ THEN
 c := 0;
 ELSIF clk’EVENT AND clk = ‘1’ THEN
 IF enable = ‘1’ THEN
 IF c = 255 THEN
 c := 0;
 ELSE
 c := c + 1;
 END IF;
 END IF;
 END IF;
 q <= c;
END PROCESS;

q declared as integer
If q is std_logic_vector, then
q <= CONV_STD_LOGIC_VECTOR(c, 8);

Necessary to avoid overflow in
simulation

42

Description of Digital Circuits using VHDL

Exercise

Design a 4-bit up-counter with carry output

ENTITY cont4 IS
 PORT (reset: IN STD_LOGIC;
 clk: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 carry_out: OUT STD_LOGIC);
END cont4 ;

43

Description of Digital Circuits using VHDL

Exercise

Design a up/down counter with enable and load inputs

ENTITY cont_up_down IS
 PORT (reset: IN STD_LOGIC;
 clk: IN STD_LOGIC;
 load: IN STD_LOGIC;
 d: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 ud: IN STD_LOGIC;
 enable: IN STD_LOGIC;
 q: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END cont_up_down;

44

Description of Digital Circuits using VHDL

Solution: 4-bit up-counter

45

Description of Digital Circuits using VHDL

Solution: up/down counter with enable and
load inputs

46

Description of Digital Circuits using VHDL

 Finite state machines

Combinational
part

Flip-flops

Inputs Outputs

Next state Current
state

clk

47

Description of Digital Circuits using VHDL

Example: Moore’s machine

‘0’

‘1’ ‘1’

‘1’

‘0’

‘0’

ENTITY machine is
 PORT(clk: in std_logic;
 reset: in std_logic;
 a: in std_logic;
 z : out std_logic);
END machine;

s0 / ‘0’ s11 / ‘1’ s1 / ‘0’

48

Description of Digital Circuits using VHDL

Example: Moore’s machine
 PROCESS (current_state, a)
 BEGIN
 CASE current_state IS
 WHEN s0 => z <= '0';
 IF a = '0' THEN
 next_state <= s0;
 ELSE
 next_state <= s1;
 END IF;
 WHEN s1 => z <= '0';
 IF a = '0' THEN
 next_state <= s1;
 ELSE
 next_state <= s11;
 END IF;
 WHEN s11 => ...

 END CASE;
 END PROCESS;
END moore;

ARCHITECTURE moore OF machine IS
 TYPE state IS (s0, s1, s11);
 SIGNAL current_state, next_state: state;
BEGIN
 PROCESS (clk, reset)
 BEGIN
 IF reset = '1' THEN
 current_state <= s0;
 ELSIF clk'EVENT AND clk = '1' THEN
 current_state <= next_state;
 END IF;
 END PROCESS;
....

49

Description of Digital Circuits using VHDL

Example: Mealy’s machine

s0 s1

‘0’ / ‘0’

‘1’ / ‘0’

‘0’ / ‘0’

‘1’ / ’1’

ENTITY machine is
 PORT(clk: in std_logic;
 reset: in std_logic;
 a: in std_logic;
 z : out std_logic);
END machine;

50

Description of Digital Circuits using VHDL

Example: Mealy’s machine
 PROCESS (current_state, a)
 BEGIN
 CASE current_state IS
 WHEN s0 => z <= '0';
 IF a = '0' THEN
 next_state <= s0;
 ELSE
 next_state <= s1;
 END IF;
 WHEN s1 =>
 IF a = '0' THEN
 z <= '0';
 next_state <= s1;
 ELSE
 z <= '1';
 next_state <= s11;
 END IF;
 END CASE;
 END PROCESS;
...

ARCHITECTURE mealy OF machine IS
 TYPE state IS (s0, s1);
 SIGNAL current_state, next_state: state;
BEGIN
 PROCESS (clk, reset)
 BEGIN
 IF reset = '1' THEN
 current_state <= s0;
 ELSIF clk'EVENT AND clk = '1' THEN
 current_state <= next_state;
 END IF;
 END PROCESS;
....

	DESCRIPTION OF DIGITAL CIRCUITS �USING VHDL
	Outline
	Conditional sentences
	Multiplexer 2:1
	Multiplexer 4:1
	Diferences between IF and CASE
	Diferences between IF and CASE
	Truth tables
	Rules for design of combinational circuits
	Rules for design of combinational circuits
	Examples (mistakes and correct solution)
	Effect of the sensitivity list in simulation
	Exercise
	Exercise
	Exercise
	Solution: decoder
	Solution: comparator
	Solution: encoder
	DESCRIPTION OF DIGITAL CIRCUITS �USING VHDL
	Outline
	Bistables
	A register
	Flip-flop with asynchronous inputs
	Flip-flop with synchronous control inputs
	Rules for desing of synchronous sequential circuits
	Rules for design of synchronous sequential circuits
	Examples
	Examples
	Examples
	Inference of registers and flip-flops
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Exercises
	Solution: JK flip-flop
	Solution: Shift register
	Counters
	Counters
	Exercise
	Exercise
	Solution: 4-bit up-counter
	Solution: up/down counter with enable and load inputs
	 Finite state machines
	Example: Moore’s machine
	Example: Moore’s machine
	Example: Mealy’s machine
	Example: Mealy’s machine

