UNIVERSIDAD CARLOS III DE MADRID

Analog integrated circuits design exercises

Integrated Circuits and Microelectronics

Luis Entrena
Celia López
Marta Portela
Almudena Lindoso
Mario García
Enrique San Millán

Exercise 1

The figure shows the physical scheme of an amplifier stage.
a) Draw the transistor scheme and indicate the aspect ratio W/L for each transistor.
b) Calculate the drain current through each transistor
c) Obtain $\mathrm{Vo} / \mathrm{Vi}$ the amplifier gain

Data:
$\mathrm{k}_{\mathrm{n}}=\mu_{\mathrm{n}} \mathrm{Cox}=120 \mu \mathrm{~A} / \mathrm{V}_{2}$
$\mathrm{k}_{\mathrm{p}}=\mu_{\mathrm{p}} \mathrm{Cox}=50 \mu \mathrm{~A} / \mathrm{V}_{2}$
$\lambda_{\mathrm{n}}=\lambda_{\mathrm{p}}=0.1 \mathrm{~V}-1$
$\left|\mathrm{V}_{\mathrm{tt}}\right|=\left|\mathrm{V}_{\mathrm{tp}}\right|=1 \mathrm{~V}$
$V_{d d}=5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$

Exercise 2

The figure shows the physical scheme of an amplifier of two stages.
a) Draw the transistor scheme and indicate the aspect ratio W/L for each transistor.
b) Calculate the drain current through each transistor and the current supplied by the source at a
c) Obtain Vo/Vi the amplifier gain

Data:
$\mathrm{k}_{\mathrm{n}}=\mu_{\mathrm{n}} \mathrm{Cox}=50 \mu \mathrm{~A} / \mathrm{V}_{2}$
$\mathrm{k}_{\mathrm{p}}=\mu_{\mathrm{p}} \mathrm{Cox}=20 \mu \mathrm{~A} / \mathrm{V}_{2}$
$\lambda_{\mathrm{n}}=\lambda_{\mathrm{p}}=1 / 30 \mathrm{~V}-1$
$\left|\mathrm{V}_{\mathrm{tt}}\right|=\left|\mathrm{V}_{\mathrm{tp}}\right|=1 \mathrm{~V}$

Exercise 3

The figure shows the physical scheme of an analog circuit.
a) Draw the transistor scheme and indicate the aspect ratio W / L for each transistor.
b) Which is the purpose of so many contacts around the circuit?
c) Obtain the voltage at A and the current through each transistor

Data:
$\mathrm{k}_{\mathrm{n}}=\mu_{\mathrm{n}} \mathrm{Cox}_{\mathrm{ox}}=120 \mu \mathrm{~A} / \mathrm{V}_{2}$
$\mathrm{k}_{\mathrm{p}}=\mu_{\mathrm{p}} \mathrm{Cox}=50 \mu \mathrm{~A} / \mathrm{V}_{2}$
$\lambda_{\mathrm{n}}=\lambda_{\mathrm{p}}=0.1 \mathrm{~V}-1$
$\left|\mathrm{V}_{\mathrm{tn}}\right|=\left|\mathrm{V}_{\mathrm{tp}}\right|=1 \mathrm{~V}$
Vdd $=5 \mathrm{~V} \quad \mathrm{Vss}=0 \mathrm{~V}$

