

# **TEST OF INTEGRATED CIRCUITS**

Authors:

Enrique San Millán Mario García Celia López Luis Entrena Almudena Lindoso Marta Portela





## **Design for test**

- Goal: increase the controllability and the observability of the circuit internal nodes.
- In general
  - The number of inputs and outputs increases
  - Worse performace (more area and slower)
- Applications:
  - Sequential logic vs. Combinational logic
  - Control logic vs. Data path
  - Asynchronous designs vs. Synchronous designs



### **Design for test**

- DFT techniques
  - Ad-hoc
    - Not general solutions
    - Lower cost
    - More common in PCB designs, but also used in VLSI designs
  - Structured
    - They provide a design methodology for the testability problem
    - ATPG tasks and fault simulation with acceptable costs (sequential circuits)



## **Design for test: soluciones ad-hoc**

### Nodes with low testability (test points)

Increasing controllability





### **Design for test: ad-hoc solutions**

#### Sequential circuits

- Initialization + synchronous logic + avoid redundant logic
- Partitioning counters





### **Design for test: structured techniques**

- Valid for synchronous circuits with only one clock edge
- Translate the problem of testing a sequential circuit into a problem of testing a combinationa circuit
- Affect the performance (area and maximum operating frequency)
- Two operation modes: TEST and NORMAL
- There are CAD tools that automatically insert those test structures, and automatically generate the test vectors
- The most common are:
  - Scan-Path
  - Boundary Scan
  - Built-In Self-Test

## **Design for test: Scan-Path**





### **Design for test: Scan-Path**







### **Design for test: Scan-Path**



Number of cycles without Scan Path?