

INTRODUCTION TO INTEGRATED CIRCUITS

Authors: Luis Entrena Arrontes, Celia López, Mario García, Enrique San Millán, Marta Portela, Almudena Lindoso

Outline

Integrated Circuits implementation (I)

- Discrete components (standard)
 - **□** 74xx, 54xx
- Integrated Circuits
 - ☐ ASIC: Application Specific Integrated circuit
- Programmable circuits
 - □ PLD, SPLD: (Simple) Programmable Logic Devices
 - □ CPLD: Complex Programmable Logic Devices
 - ☐ FPGA: Field Programmable Gate Array
- Microprocessors

Integrated Circuits implementation (II)

Microprocessor systems

- ☐ Microprocessor and additional components (standard components)
- ☐ SoC: System on Chip (ASIC)
- □ SoPC: System on Programmable Chip (FPGA)

Advantages of Integrated Circuits

- Size: small
- Speed: very high
 - **☐** Board: f < 100 MHz
 - ☐ FPGA: 500 MHz
 - ☐ ASIC: f < 3 GHz
- Cost: depends on the number of manufactured units
 - ☐ Initial cost: design and prototyping (100.000€)
 - ☐ Cost per unit: 1-200€
 - □ Worthwhile for large numbers of production units (>10.000 units/year)
- Reliability: high; better noise inmunity
- Power consumption: low

Moore's Law (Intel co-founder)

The maximum number of transistors that can be integrated in a I.C. will double about every 2 years (20 months)

CPU Transistor Counts 1971-2008 & Moore's Law

Moore's Law graph, 1965

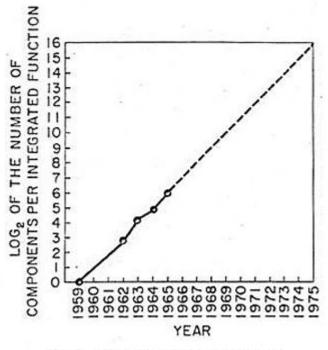
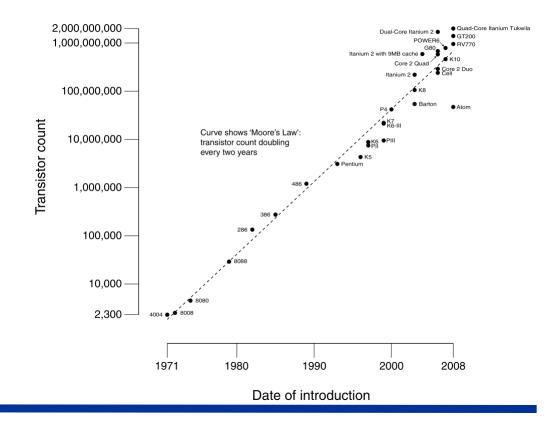
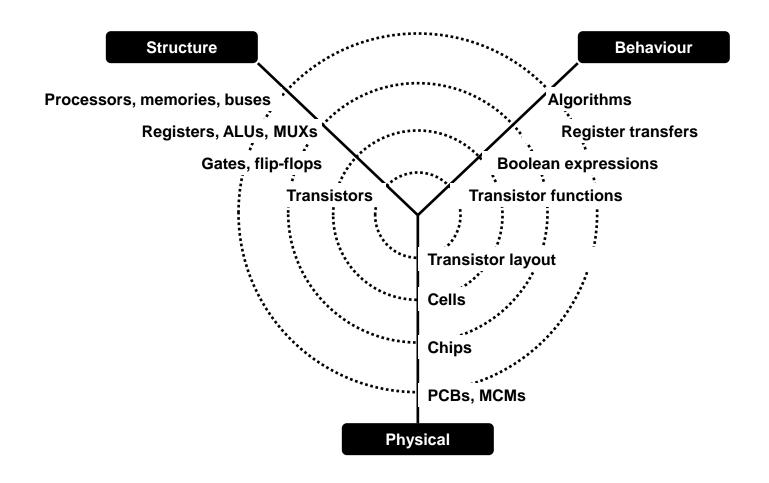



Fig. 2 Number of components per Integrated function for minimum cost per component extrapolated vs time.



Abstraction Levels

© Levels:	Domains:
□System	□Behavioral
□Algorithm	□Structural
□Register Transfer Level (RTL)	□Physical
□Logic (gates)	
□Physical (transistors)	

Abstraction Levels: Gajski-Kuhn Y-chart

Design Process

- Bottom-up Methodology
 - Specification
 - □ Block partition
 - □ Logic gates design (schematic)
 - □ Block assembly
 - □ Physical design

- **Top-down Methodology**
 - Specification
 - ☐ Architectural design
 - □ Detailed design
 - □ Physical design
 - ☐ Use of Hardware Description Languages (HDL)
 - □ Intensive use of simulation and automatic synthesis

Operation

Design process of integrated circuits

Functional specification ☐ System description, chronograms Architectural design ☐ RT design (registers, buses, state machines...) Detailed design **□** Automatic Synthesis □ Logic Design (gates, flip-flops, ...) Physical design **Automatic Tools** ☐ Transistors, place & route Manufacturing and test, or programming

Design tools

	Simulation
	☐ Functional description
	□ RTL description (synthesizable)
	☐ List of gates
	□ with delays
	Synthesis
	☐ Transform RTL descriptions into logic gates
	☐ Optimize logic for area and/or speed
	☐ Provides with logic delays
F	Place & Route
	☐ Places and interconnects logic gates
	☐ Extracts delays for interconnections

Hardware Description Languages Usefulness

F HDLs allow to:
☐ Design in a higher abstraction level
☐ Simulate designs for operation validation
✓ Simulation is more efficient when performed at a higher abstraction level
☐ Sinthesize designs to obtain an optimal implementation, depending on the target:
✓ Area ✓ Speed
Essential for modern designs with:
□ Very large scale integration (>10K gates)
□ Design on ASIC or CPLD/FPGA