
Lesson 7
Algorithms with arrays

Programming

Grade in Computer Engineering

Outline

1. Search

Linear

Binary

2. Sort

Bubble

Selection

Insertion

jgromero@inf.uc3m.es 2

Outline

1. Search

Linear

Binary

2. Sort

Bubble

Selection

Insertion

jgromero@inf.uc3m.es 3

1. Search

Search algorithms aim at finding a value in a

collection (usually, the first occurrence)

Input: Array of values list, value to find e

Output: Position of e in a; -1 if not found

Find a value in an array of integers

public static int find(int [] list, int e)

list = {5, 6, 3, 1, 8, 9, 0, 2, 4, 1, 7}

e = 1

Output:

3

Definition

4jgromero@inf.uc3m.es

1. Search

Looks for the value e sequentially in list:

Linear search

5

location = -1;

i = 0;

found = false;

while ((!found) && (i < list.length))

if (list[i] == e)

location = i;

found = true;

i++;

return location;

jgromero@inf.uc3m.es

1. Search

At most, list.length tests are needed

Without further assumptions on list, it is the most

efficient (non-parallel) search algorithm

Linear search

6

search.basic.Algorithms

jgromero@inf.uc3m.es

1. Search

If list is ordered, we can narrow the search to one half of the array:

Binary search

7

location = -1;

left = 0;

right = list.length - 1;

middle = list.length / 2;

found = false;

while ((left <= right) and (!found))

if (list[middle] == e)

found = true;

location = middle;

else if (e < list[middle])

right = middle – 1;

else

left = middle + 1;

middle = (left+right) / 2;

return location;

1. Search

At most, log(list.length) comparison are needed

Binary search

8

search.basic.Algorithms

Outline

1. Search

Linear

Binary

2. Sort

Bubble

Selection

Insertion

jgromero@inf.uc3m.es 9

2. Sorting algorithms

Sort algorithms aim at rearranging the values of

a collection to position them in order (usually, in

increasing order)

Input: Array of values list

Output: Array of values list* ordered

Sort array
public static void sort(int [] list)

list = {5, 6, 3, 1, 8, 9, 0, 2, 4, 1, 7}

Output:
list = {0, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Definition

10jgromero@inf.uc3m.es

2. Sorting algorithms

Direct sorting algorithms

Most popular

Direct Swapping (Bubble sort)

Direct Insertion (Insertion sort)

Direct Selection (Selection sort)

Features

Simple algorithms

Not very efficient: complexity is O(n2)

Can be used with small arrays

Algorithms (direct)

11jgromero@inf.uc3m.es

2. Sorting algorithms

Advanced sorting algorithms

Most popular

Shell

Quicksort

Heapsort

Features

Sophisticated algorithms

Efficient: complexity is O(n * log n)

Are used with large arrays

Algorithms (advanced)

12

Just for fun! Bogosort: Random reordering of the array
H. Gruber, M. Holzer and O. Ruepp: Sorting the Slow Way: An Analysis of Perversely Awful Randomized Sorting Algorithms, 4th

International Conference on Fun with Algorithms, Castiglioncello, Italy, 2007, Lecture Notes in Computer Science 4475, pp. 183-197.

jgromero@inf.uc3m.es

do {

swapped = false;

for (i=0; i <= list.length-2; i++)

if (list[i] > list[i+1])

swap(list[i], list[i+1]);

swapped = true;

} while (swapped);

2. Sorting algorithms

Idea:

Compare an element list[i] with the adjacent value
list[i+1]

If list[i] > list[i+1], the values are swapped

Repeat the procedure for the complete array while swaps

are performed

Bubble sort

13http://www.youtube.com/watch?v=UnK5ueUgc88

2. Sorting algorithms

Bubble sort implementation

14

sorting.basic.Algorithms

jgromero@inf.uc3m.es

2. Sorting algorithms

Bubble sort features

15

Worst case: The array is reversed O(n2)

The outer while is executed n times,
since swapping is always performed

Best case: Array is ordered O(n)

swapped is not changed from false to
true

Average: O(n2)

Swapping

Comparison

jgromero@inf.uc3m.es

2. Sorting algorithms

Idea:

For each value of the list (at position i),

Finds the smallest value (at position minPos) of the

elements i+1,…, list.length-1

If list[i] > list[minPos], the values are swapped

Selection sort

16

for (i=0; i <= list.length-2; i++)

minPos = i;

for (int j=i+1; j < list.length; j++)

if (list[j] < list[minPos])

minPos = j;

swap(list[i], list[minPos])

http://www.youtube.com/watch?v=TW3_7cD9L1A

2. Sorting algorithms

Selection sort implementation

17

sorting.basic.Algorithms

jgromero@inf.uc3m.es

2. Sorting algorithms

Selection sort features

18

• The number of comparison
operations does not depend on
the initial order of the values. It
will be equal to the number of
evaluations of the condition of the
if O(n2)

• The number of swap-related
operations depends on the initial
order of the values

Swapping

Comparison

jgromero@inf.uc3m.es

2. Sorting algorithms

Idea:

Assumes that the elements 0, …, i-1 of the list are ordered

Finds the position k in 0, …, i-1 where the element at

position i should be placed

(Simultaneously) Shift to the right the values at k, …, i-1

and inserts list[i] at position k

Insertion sort

19

for (i=1; i < list.length; i++)

e = list[i];

j = i-1;

while((j >= 0) && (list[j] > e))

list[j+1] = list[j];

j = j-1;

list[j+1] = e;

http://www.youtube.com/watch?v=Fr0SmtN0IJM

2. Sorting algorithms

Insertion sort implementation

20

sorting.basic.Algorithms

jgromero@inf.uc3m.es

2. Sorting algorithms

Selection sort features

21

Worst case: The array is reversed
O(n2)

The inner while is executed until j
< 0 (max. number of iterations)

Best case: Array is ordered O(n)

The inner while is never executed

Average: O(n2)

Swapping

Comparison

jgromero@inf.uc3m.es

2. Sorting algorithms

Algorithms can be compared according to the number

of comparisons performed in the best case, worst case,

and average case

Being n the length of the array:

Comparison

22

Algorithm Best ≈ Worst ≈ Average ≈

Bubble n n2 n2

Selection n2 n2 n2

Insertion n n2 n2

Quicksort n · log(n) n2 n · log(n)

jgromero@inf.uc3m.es

2. Sorting algorithms

Bubble sort is the simplest, but also has a the higher

worst-case execution time. Nevertheless, it behaves

quite well with ordered arrays

Selection sort is easy to implement and more efficient

that Bubblesort, but it behaves very bad even if the

array is ordered (it cannot be known if the array is

already sort at any iteration)

Insertion sort is simple to implement and behaves

quite well for almost ordered arrays. It is also more

efficient in practice

Comparison

23jgromero@inf.uc3m.es

2. Sorting algorithms

Develop a program to test the execution time of the three
basic sorting methods for different array sizes = {1000, 2000,
…, 20000}

The program must run 5 times each algorithm for an array
size with different initial values.

The program must generate three text files (bubble.txt,
selection.txt, insertion.txt) with this structure:

<array size> <average> <best time> <worst time>

<array size> <average> <best time> <worst time>

…

Represent the results (array size vs. average time) in a table
and graphically (use Microsoft Excel).

Exercise

24jgromero@inf.uc3m.es

2. Sorting algorithms

Results

25jgromero@inf.uc3m.es

2. Sorting algorithms

Graphical respresentation

26jgromero@inf.uc3m.es

2. Sorting algorithms

Results

27

Results for 5 executions with random values in [0, 10)

jgromero@inf.uc3m.es

Outline

1. Search

Linear

Binary

2. Sort

Bubble

Selection

Insertion

jgromero@inf.uc3m.es 28

Summary

Search

Linear search

Binary search

Use? Binary search if values are sorted; otherwise, linear search

Sort

Bubble sort

Selection sort

Insertion sort

Use? None of them, go for Quicksort

Algorithms with arrays

29jgromero@inf.uc3m.es

Additional lectures

Recommended lectures

H. M. Deitel, P. J. Deitel. Java: How to Program. Prentice Hall,

2011 (9th Edition), Chapter 19 [link]

Algorithms with arrays

jgromero@inf.uc3m.es 30

31

Programming – Grado en Ingeniería Informática

Authors

Of this version:

Juan Gómez Romero

Based on the work by:

Ángel García Olaya
Manuel Pereira González
Silvia de Castro García
Gustavo Fernández-Baillo Cañas

