
Lesson 2
Data and Operators

Programming

Grade in Computer Science

Outline

1. Basic data types and variables

2. Input and output

3. Comments

4. Arrays

5. Operations with data

6. Casting between data types

7. Enumerates

8. Classes as data structures

jgromero@inf.uc3m.es 2

Outline

1. Basic data types and variables

2. Arrays

3. Input and output

4. Comments

5. Operations with data

6. Casting between data types

7. Enumerates

8. Classes as data structures

jgromero@inf.uc3m.es 3

1. Basic data types and variables

Data

Information processed by the program
read from the keyboard

used in calculations

printed on the screen

written on a file

…

Literals

Values directly introduced in the program

Variables

Symbols whose value change during the program execution

> piece of memory with a readable name

Literals and variables

4jgromero@inf.uc3m.es

1. Basic data types and variables

Literals
Integers

int

long

short

byte

Real
float

double

Characters

char

Boolean

boolean

String

String

Literals

jgromero@inf.uc3m.es 5

Type Example

int -2147483648, 2147483647

long -85738593L, 8593854L

short -30000, 8438, -4923

byte -32, 123, 39

float -3.56E+30F, 8.234

double -2.49E+300, 3.95E+200

char ‘a’, ‘D’, ‘\n’, ‘\\’, ‘\”’

boolean true, false

String "hello world!"

1. Basic data types and variables

Integers

Signed (positive and negative integer values)

Four types: byte, short, int, long

Range is platform independent

By default integers are of type int

For a long append an L

Example
> int

123456

-156

> long
123456L

989493849859L

-284829848L

Integers

6jgromero@inf.uc3m.es

1. Basic data types and variables

Real (floating point)
Two types: float, double

By default floats are of type double

For a float append an F

Example
> double

123.45

-18.23

3.14E-5

> float
123.45F

3.45E+21F

-284829848F

Special values for float and double:

Infinity (Inf), -Infinity (-Inf), not a number (NaN)
These values may appear as a result of an operation, but cannot be directly
assigned

Real

7jgromero@inf.uc3m.es

1. Basic data types and variables

Characters

Enclosed between single quotes: 'a', 'A'

Escape characters: '\'', '\b', '\t', '\n', '\\', …

UNICODE 16 bits

Each characters has an equivalent numerical code, defined by

the UNICODE standard

Unicode code '\u0065' corresponds to 'A'

Characters and integers can be interchanged in some cases

Integer value 65 corresponds to 'A'

Characters

8jgromero@inf.uc3m.es

1. Basic data types and variables
UNICODE table

9

Source: http://www.ftrain.com/unicode/
jgromero@inf.uc3m.es

1. Basic data types and variables

Strings are complex data types to represent and

manage a string of characters

Enclosed between double quotes " " (shift + 2 key)

"Hello world!"

"My name is Bond"

Strings can be concatenated with the + operator

"My name is Bond"

Strings

10jgromero@inf.uc3m.es

1. Basic data types and variables
Literals example

jgromero@inf.uc3m.es 11

Compilation error
Error in Java syntax

The program cannot run

Runtime error
Error in the execution of

the program

System.out.println
Printing instruction

Comments
Notes to the code

1. Basic data types and variables

Variables store data that can be changed during the

execution of a program

Can be seen as a piece of the memory to store a piece of data

User-defined readable name for a cell of the memory

When the name (or identifier) of the variable is used in the program, the

information at the address of the variable is accessed

Variables

12

?

25

1.802

1 age

0

height
?

jgromero@inf.uc3m.es

1. Basic data types and variables

Variables store data that can be changed during the

execution of a program

Java is a strongly typed language: Necessary to declare a

variable before it is used and define the type of the

variable

Java Syntax for declaration of variables:

<type> identifier [=value] [, identifier[=value]…];

Variables

13

int,

char…
name optional

optional: definition of

several variables

!!!

[] optional

<> compulsory

1. Basic data types and variables
Variable types

jgromero@inf.uc3m.es 14

Type Contains Default Size Range

boolean true or false false 1 bit NA

char Unicode character '\u0000' 16 bits '\u0000' to '\uFFFF'

byte Signed integer 0 8 bits -128 to 127

short Signed integer 0 16 bits -32768 to 32767

int Signed integer 0 32 bits -2147483648 to 2147483647

long Signed integer 0 64 bits -9223372036854775808 to

9223372036854775807

float IEEE 754 floating

point

0.0 32 bits ±1.4E-45 to ±3.4028235E+38

double IEEE 754 floating

point

0.0 64 bits ±4.9E-324 to

±1.7976931348623157E+308

String Unicode character

string

Empty

string

- -

1. Basic data types and variables
Variable declaration and assignation

15

a

b c

10x

4a

5b

4a

1c

VariablesExamples.java

6a

Variable declaration
Memory is allocated

Variable initialization
First value assignment

Variable definition
Declaration + initialization

1. Basic data types and variables

Variables are not valid in a whole program

Names can be reused

Side-effects are avoided

Scope: Section of the code where the variable is

valid and can be used

The scope of a variable encompasses is the block of

code in which it is declared

A block is delimited by braces {}

Also named curly brackets

Variable scope

jgromero@inf.uc3m.es 16

1. Basic data types and variables
Variable declaration and assignments

17

Variable assignment
Variables can be assigned to

values with different types

only under certain conditions

VariablesExamples.java

jgromero@inf.uc3m.es

1. Basic data types and variables

Special variables whose value cannot be changed during
the execution of the program

Use final in the declaration of a variable to make it
constant:

final <type> <identifier> [= value];

Constants are used as variables
E.g.:
final double PI = 3.14;

double r = 5;

double a = 2 * PI * r;

The value of a constant can be modified only once!
Otherwise, we get a compilation error.

Constants

18jgromero@inf.uc3m.es

Outline

1. Basic data types and variables

2. Arrays

3. Input and output

4. Comments

5. Operations with data

6. Casting between data types

7. Enumerates

8. Classes as data structures

jgromero@inf.uc3m.es 19

2. Arrays

Arrays are collections of elements of the
same type which are collectively managed

Creation

Syntax for declaration of one-dimensional arrays
<type> [] <identifier>;

E.g.:

int [] myArray;

Syntax for initialization of one-dimensional arrays

<identifier> = new <type>[<nº of elements>];

E.g.:

myArray = new int[10];

Definition and creation

20jgromero@inf.uc3m.es

2. Arrays

Syntax for accessing values
<identifier>[<position>];

E.g.:

System.out.println(myArray[2]);

Syntax for value assignment
identifier[<position>] = <value>;

E.g.:

myArray[3] = 28;

Syntax for multi-value assignment (only in initialization)
identifier = new <type>[] {<list of values>};

E.g.:

myArray = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

Use length to get the size of an array

E.g.:

System.out.println(myArray.length)

Array use

21jgromero@inf.uc3m.es

Array elements have a default value
Array elements do not have to be

initialized before using them in an

expression
Default values are 0 for numbers and characters,

false for booleans, null for Strings

2. Arrays
Basic array example

22

a

a 0 0 0 0 0 0

a[0] a[1] a[2] a[3] a[4] a[5]

a 4 0 0 0 0 0

a 4 8 15 16 23 42

a 4 8 15 16 23 42
a[6]

Runtime error!

ArraysExamples.java

Array index out of bounds
Accessing to a non-allocated position

of an array is a serious mistake

resulting in a runtime error

jgromero@inf.uc3m.es

2. Arrays

Syntax for array assignment

Contents are not copied in a direct assignment! Both identifiers refers to the
same array

<identifier1> = <identifier2>;

E.g.:

myArray_1 = myArray_2;

Syntax for array copy

Contents are copied! Both identifiers refers to different arrays

Option 1: <identifier1>[index] = <identifier2>[index];

E.g.:

myArray_1[0] = myArray_2[0];

Option 2: System.arrayCopy(source_array, source_position,
destination_array, destination_position, n_elements_to_copy)

E.g.:

System.arrayCopy(myArray_2, 0, myArray_1, 0, myArray_1.length);

Direct assignment vs. Copy

23jgromero@inf.uc3m.es

2. Arrays

24

b

a 100 101 102

200 201 202 203 204

b

a
100 101 102

200 201 202 203 204

b

a
300 201 202 203 204

ArraysExamples.java

2. Arrays
Array copy example

25

b 300 201 202 203 204

c 0 0 0 0 0

c 300 201 202 203 204

b 300 201 202 203 204

c 500 201 202 203 204

b 300 201 202 203 204

ArraysExamples.java
jgromero@inf.uc3m.es

2. Arrays

Multi-dimension arrays can be also created

Syntax for declaration of two-dimensional arrays
<type> [][] identifier;

E.g.:

int [][] my2DMatrix;

Syntax for initialization of two-dimensional arrays
identifier = new <type>[<nº elements>][<nº elements>];

E.g.:

my2DMatrix = new int[3][3];

Syntax for value assignment of two-dimensional arrays
identifier[<position>][<position>] = <value>;

E.g.:

my2DMatrix[1][2] = 17;

Syntax and use can be extended to n-dimension arrays

Multi-dimension arrays

26jgromero@inf.uc3m.es

2. Arrays
Multi-dimension arrays example

a

matrix

down-

right

up-

right

[0][2]

[1][2]

down

up

[0][1]

[1][1]

down-

left

up-left

[0][0]

[1][0]

ArraysExamples.java
jgromero@inf.uc3m.es 27

2. Arrays

Irregular arrays are arrays that have a different number of elements in each row

E.g.: A 2-dimensional array to store the names of the 1st year students, classified by
group

Syntax for declaration of irregular two-dimensional arrays is the same as for
regular arrays

<type> [][] <identifier>;

E.g.:

String [][] students;

Syntax for initialization of irregular two-dimensional arrays is different! Each
row is created with a different new instruction.

<identifier> = new <type>[<nº rows>] [];

E.g.:

students = new String[2][];

students[0] = new String[23]; // Students of grade in Computer Eng.

students[1] = new String[36]; // Students of grade in Comm. Syst.

Syntax for accessing values is the same as for regular arrays, but we must be
careful with the size of the arrays

Irregular arrays

28jgromero@inf.uc3m.es

3.1.5. Arrays

students

“Beltran

de la

Cita, J.”

“Amigo

Herrera,

V.”

[1][2]

[0][2]

“Aubert

Gilbart,

P.”

“Alvarez

Fernandez

, P.”

[1][1]

[0][1]
“De

Andres

Lopez,

G.”

“Alonso

Martínez,

C.M.”

[1][0]

[0][0]

“Zimmerma

nn

Casado,

M.”

[0][22]

���������
“Ventero

Peña,

V.M.”

[1][35]

���.

ArraysExamples.java

29

Outline

1. Basic data types and variables

2. Arrays

3. Input and output

4. Comments

5. Operations with data

6. Casting between data types

7. Enumerates

8. Classes as data structures

jgromero@inf.uc3m.es 30

3. Input and output

System.out for printing on the screen

Methods for writing on screen:

Without a line jump
System.out.print(<String>);

With a line jump
System.out.println(<String>);

A line jump can be achieved by writing a new line character '\n'

> println("Hi!") is equivalent to print("Hi!\n")

Strings can be concatenated with the + operator within printing
instructions

Other values with different datatypes can be appended with the +
operator

> Java automatically converts them into the corresponding string

Arrays must be printed element-by-element!

Printing on the screen

31jgromero@inf.uc3m.es

3. Input and output
Printing on the screen

32

Printing.java

jgromero@inf.uc3m.es

3. Input and output

Scanner class can be used to read values from the keyboard

Use:
1. Import java.util.* package

import java.util.*;

2. Declare and initialize a Scanner object sc
Scanner sc = new Scanner(System.in);

3. Read values
Integer: int a = sc.nextInt ();

Float: float b = sc.nextFloat();

Double: double c = sc.nextDouble();

String: String s = sc.next(); (No blank spaces)

String s = sc.nextLine(); (With blank spaces)

…

Reading from the keyboard

33jgromero@inf.uc3m.es

3. Input and output
Reading from the keyboard

34

Reading.java

Outline

1. Basic data types and variables

2. Arrays

3. Input and output

4. Comments

5. Operations with data

6. Casting between data types

7. Enumerates

8. Classes as data structures

jgromero@inf.uc3m.es 35

4. Comments

Comments are notes to the code that are not

executed

Its very important to comment the code well:

Makes the code readable and understandable

Although we now know perfectly what it does, perhaps

within years we will have to reuse it

Perhaps other programmers reuse our code and need to

understand it

It is a good practice to introduce a comment at the

beginning of each file describing what it does

Definition

36jgromero@inf.uc3m.es

4. Comments

Single line comments

Using the characters //

Everything appearing on the right is a comment,
and it is ignored by the compiler

Multiple line comments

Using the characters /* for the beginning of the
comment, and */ for the end

Everything written in between is a comment, and
it is ignored by the compiler

Types

37jgromero@inf.uc3m.es

4. Comments
Example

38

HelloWorld.java

jgromero@inf.uc3m.es

Outline

1. Basic data types and variables

2. Arrays

3. Input and output

4. Comments

5. Operations with data

6. Casting between data types

7. Enumerates

8. Classes as data structures

jgromero@inf.uc3m.es 39

5. Operations with data

Expressions

An expression is a combination of data by means of one or
several operators (e.g., sum)

Data can be literal values, variables, constants, and other
expressions

> calls to methods can be also included

Data symbols in an expression are called operands

a + b

Expression composition is guided by rules
For example, operands must have a concrete type to be used in an
operation

Operators and expressions

40

operandoperand

operator

Non-initialized variables cannot be used in expressions
Compilation error

5. Operations with data

Operations with data
Arithmetic

Operate with numbers; the result is a number

Relational
Operate with numbers; the result is true/false

Conditional
Operate with true/false; the result is true/false

Bitwise
Operate with the binary representation of integer numbers; the result is
a number

Assignment
Perform an operation on an expression and assign the resulting value to a
variable

Operators

jgromero@inf.uc3m.es 41

Expressions have a returning value

Returning values have a type
Expressions are said to have type

5. Operations with data

Two numbers

+ - * / %

One number

++ --

Increasing / decreasing a variable

They can be used in prefix or suffix, and they have a different
precedence

Ej.:

x++ means increment x in 1

++y means increment y in 1

Arithmetic operators

42jgromero@inf.uc3m.es

5. Operations with data
Arithmetic operators

43

ArithmeticOperators.java

jgromero@inf.uc3m.es

5. Operations with data
Arithmetic operators

jgromero@inf.uc3m.es 44

k = ++i is equivalent to

i = i + 1;

k = i;

k = i++ is equivalent to

k = i;

i = i + 1;

5. Operations with data
Arithmetic operators

jgromero@inf.uc3m.es 45

ArithmeticOperators.java

k = ++i * 2 is equivalent to

i = i + 1;

k = i * 2;

k = i++ * 2 is equivalent to

k = i * 2;

i = i + 1;

5. Operations with data

Used for comparisons

== != > < >= <=

Have a boolean value as result (true/false)

E.g.:

boolean result;

int x = 10, y = 16;

result = x == y; // result is false

result = x <= y; // result is true

For String comparisons, use equal method

Relational operators

46jgromero@inf.uc3m.es

5. Operations with data
Relational operators

47
RelationalOperators.java

jgromero@inf.uc3m.es

5. Operations with data

Used for operations between boolean values
AND: & && OR: || | NOT: !

Logic operators are usually combined with relational
operators to compose complex conditions

Result is a boolean value
E.g.:
boolean result;

int x = 10, y = 16;

result = (x != 0) & (x <= y); // true

result = (x <= y) || (y > 100); // true

| is OR; || is OR “short-circuit” (same for &, &&)
> the evaluation stops when the result is known

Logic operators

48

 a AND b a OR b

b is true b is false b is true b is false

a is true true false true true

a is false false false true false

jgromero@inf.uc3m.es

5. Operations with data
Logic operators

49

LogicOperators.java

jgromero@inf.uc3m.es

5. Operations with data

Operations on the bit-based internal representation of integer
values

~ NOT

& AND

| OR

^ XOR

>> SHIFT right

>>> SHIFT right with carry

<< SHIFT left

Have an int value as result
> short and byte are promoted to int

Ej.:
int x = 64;

int y = x << 2;

Bitwise operators

50

64x 0000 0000 0000 0000 0000 0000 0100 0000

y 0000 0000 0000 0000 0000 0001 0000 0000

5. Operations with data
Bitwise operators

jgromero@inf.uc3m.es 51

Source: mozilla.org

5. Operations with data
Bitwise operators

52

BitwiseOperators.java

jgromero@inf.uc3m.es

5. Operations with data

Change the value of the variable on the left by the result of the
operator applied on the variable and the expression on the right

<v> <op>= <exp> is equivalent to <v> = <v> <op> <exp>

= += -= *= /= %= &=

|= ^= <<= >>= >>>=

Abbreviation for an operation and a assignment
E.g.:
int x = 10, y = 2;

y += x; // y = y + x; (y : 12)

y -= ++x; // y = y – (x + 1); (y : -9)

Special abbreviation involving boolean values:
<variable> =

<logical expression> ?

<value if true> : <value if false>;

Assignment operators

53jgromero@inf.uc3m.es

5. Operations with data

54

AssignmentOperators.java

Assignment operators

jgromero@inf.uc3m.es

5. Operations with data

Precedence
If not specified, expressions are evaluated in a predefined order

> not directly from left to right

Similar to usual mathematical operator precedence

Parentheses () are used when:
The order of operator application is ambiguous

We want to give higher precedence to some operators over others

We want to make the code more readable / understandable

E.g.:
int x = 3, y = 4, z = 5;

a = x + y * z; // a : 23

a = x + (y * z); // a : 23

a = (x + y) * z; // a : 35

a = (x * z) + (y * z); // a : 35

Parentheses

55jgromero@inf.uc3m.es

5. Operations with data
Precedence

56jgromero@inf.uc3m.es

Outline

1. Basic data types and variables

2. Arrays

3. Input and output

4. Comments

5. Operations with data

6. Casting between data types

7. Enumerates

8. Classes as data structures

jgromero@inf.uc3m.es 57

6. Casting between data types

Automatic promotion

Assigning a value of type A to a variable of type B is only allowed when A
is “bigger” than B (no information is lost in the conversion!)

integers can be assigned to floats
float <-- int

chars can be assigned to integers
int <-- char

Direct assignment, no special code is required

Type casting

The programmer can enforce the conversion in the opposite direction,
from a “bigger” type to a “smaller” type (information is lost in the
conversion!)

a float can be explicitly cast to an integer
int <-- (int) float

the floating part is removed

Use the explicit casting operator
(<destination type>) (besides the expression to cast)

Automatic promotion and explicit casting

58

6. Casting between data types
Examples

59

CastingExamples.java

jgromero@inf.uc3m.es

Outline

1. Basic data types and variables

2. Arrays

3. Input and output

4. Comments

5. Operations with data

6. Casting between data types

7. Enumerates

8. Classes as data structures

jgromero@inf.uc3m.es 60

7. Enumerates

New data types can be created by enumeration of the allowed values
of the new type

> Create a new type named DayOfTheWeek with allowed values {Mon, Tue,
Wed, Thu, Fri, Sat, Sun}

New variables with type DayOfTheWeek can be created

These variables can store the values defined in the enumerate

Syntax

Definition
enum <type identifier> {<value 1>, …, <value n>};

E.g.:
enum DayOfTheWeek {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

enum declarations must be outside of the main procedure!

Use

E.g.:
DayOfTheWeek x;
x = DayOfTheWeek.Mon;

Definition

jgromero@inf.uc3m.es 61

7. Enumerates
Definition

jgromero@inf.uc3m.es 62

CostEnumExamples.java

enums are similar to Strings
but enums restrict the possible values of the

“string”

Outline

1. Basic data types and variables

2. Arrays

3. Input and output

4. Comments

5. Operations with data

6. Casting between data types

7. Enumerates

8. Classes as data structures

jgromero@inf.uc3m.es 63

8. Classes as data structures

An object can be seen as a data structure that represents an
entity of the domain

Object Entry #5 of an address book Object 2D point p

“Juan” (2.1, 3.2)

“Gomez Romero”

29

“jgromero@inf.uc3m.es”

> collection of values of different types which are managed together

An object belongs to a class, where the attributes or fields of the
objects of the class are defined

Class Entry of an address book Class 2D point

> Name > x coordinate

> Surname > y coordinate

> Age

> E-mail

Programmers can define classes their own classes and use objects in
their applications

Concept

64

8. Classes as data structures

Class definition

[modifiers] class <name of the class> {

<attributes>

}

[modifiers]

public The class can be used by any other class

abstract Objects cannot be created for this class, but subclasses are allowed

final Subclasses are not allowed

none By default, the class can be used by the classes of the same package

<name of the class>
valid Java identifier

E.g.: public class Point2D { … }

Class definition syntax

65

8. Classes as data structures

66

8. Classes as data structures

Only a single public class is allowed within a file.
That file should be named after the public class that
contains with the extension “.java”

Usually, an application consists of numerous .java
files

Compilation (javac) converts each class definition
(.java) into bytecode (.class)

The execution of the application starts from the
class that contains the main()

Several classes can be grouped in packages, in the
same way as classes of the Java platform

Conventions for classes

67

8. Classes as data structures

A class defines the attributes (or fields) of the objects that belong to
(or are members of) the class

Attributes definition

Syntax

[modifiers] <type> <name of the attribute>;

[modifiers]

public The attribute can be accessed from any other class

private The attribute cannot be accessed from any class
other than this

protected The attribute can be accessed only from this class
and its subclasses

package The attribute can be accessed from any other class
inside this package

E.g.: public double x;

Class attributes definition

68

8. Classes as data structures
Example

69

8. Classes as data structures
Example

70

8. Classes as data structures

Classes are not directly used

Instead, once classes have been implemented,

1. Create a class with a main method

> the program begins here

2. Inside the main,

1. Declare object variables

2. Create objects (allocate memory for an object instance)

3. Operate with objects

Objects

71

8. Classes as data structures

1. Declare object variables

Object variables are declared as basic data type
variables

An object declaration declares a reference to the object,
not the object itself

Basic syntax

<class name> <variable name>;

E.g.:

Point2D p1;
Student stud;

Object declaration

72

8. Classes as data structures

2. Create objects (allocate memory)

Operator new creates a new object of a class (memory

for the object is allocated)

This object is assigned to a reference (variable

previously defined) of the type of the class

Basic syntax

<variable name> = <new> <class name>();

E.g.:

p1 = new Point2D();

st = new Student();

Object allocation

73

8. Classes as data structures

3. Operate with objects

Use the dot operator (.) to access to object attributes

> attributes can be seen as a collection of variables grouped in

the object

E.g.:
p1.x = 2.1;

p1.y = 3.2;

System.out.println(

"Position (" + p1.x + ", " + p1.y + ")");

Object allocation

74

8. Classes as data structures

75

8. Classes as data structures

• Object references initial value

– The value of an object reference may be the special value null

– null means ‘not a valid reference’ and can be also used for arrays
and String

– If we try to access to the attributes of a null reference, we get a
runtime error (NullPointerException)

• Object attributes initial value

– The attributes of an object have a default value after creation with
new (0 for integers, false for boolean, null for String, etc.) –in the
same way as arrays

– An initial value (other than the default) can be assigned to object
attributes in the class declaration

– Until changed, this is the value of the attributes of any object of the
class

Non-initialized object references and object attributes

76

8. Classes as data structures
Example

77

8. Classes as data structures

Pointer fun! http://cslibrary.stanford.edu/104/

(http://youtu.be/vm5MNP7pn5g)

Access to referenced objects

78

pointer: reference

pointee: referenced object

dereference: access to referenced object

8. Classes as data structures
Example

79

8. Classes as data structures
Example

80

8. Classes as data structures

Object assignment

Direct object assignment is similar to direct array

assignment

(An object variable is a reference to the section of

the memory where the object attributes are actually

stored.)

> If two objects are directly assigned, they point to the

same section of the memory, and consequently, to the

same object

> Changes in one reference affect the other reference

> Object copy must be performed attribute by attribute

Direct assignment

81

8. Classes as data structures
Direct assignment

82

Outline

1. Basic data types and variables

2. Input and output

3. Comments

4. Arrays

5. Operations with data

6. Casting between data types

7. Enumerates

8. Classes as data structures

jgromero@inf.uc3m.es 83

Summary

Data in Java

Basic

integers (int, long, short), real (float, double), character (char), boolean

(boolean), strings (String)

Complex

arrays ([])

Variables are used to store values

Variable type is assigned in the variable declaration

Printing (System.out) and reading (Scanner)

Data and operators

84jgromero@inf.uc3m.es

Summary

Operators (arithmetic, relational, logical, bitwise, assignment)

Use of parenthesis when precedence is not clear or the code is
confusing

In assignments, the type of the variable and the type of the expression
must be compatible

Explicit casting may be convenient in some cases

Beware of direct assignment of arrays and objects

Use of comments in the code is fundamental

Programmers can define their own data types
Enumerators

Classes

Data and operators

85jgromero@inf.uc3m.es

Additional lectures

Recommended lectures

The JavaTM Tutorials. Oracle, Language Basics [link]

H. M. Deitel, P. J. Deitel. Java: How to Program. Prentice Hall,

2007 (7th Edition), Chapters 7 [link], L [link], 3 [link],

K. Sierra, B. Bates. Head First Java. O'Reilly Media, 2005 (2nd

Edition), Chapter 3 [link]

I. Horton. Beginning Java 2, JDK 5 Edition. Wrox, 2004 (5th

Edition), Chapters 2 [link], 4 [link]

B. Eckel. Thinking in Java. Prentice Hall, 2002 (3rd Edition),

Chapters 1-3 [link]

Data and operators

86jgromero@inf.uc3m.es

87

Programming – Grado en Ingeniería Informática

Authors

Of this version:

Juan Gómez Romero

Based on the work by:

Ángel García Olaya
Manuel Pereira González
Silvia de Castro García
Gustavo Fernández-Baillo Cañas

