
Lesson 1
Introduction

Programming

Grade in Computer Science

Outline

1. What is programming?

2. Components of a program: data and algorithms

3. Creating and running programs

4. Programming paradigms

5. Introduction to the Java programming language

jgromero@inf.uc3m.es 2

Outline

1. What is programming?

2. Components of a program: data and algorithms

3. Creating and running programs

4. Programming paradigms

5. Introduction to the Java programming language

jgromero@inf.uc3m.es 3

1. What is programming?

According to RAE:
5. tr. Inform. Develop programs to solve problems with computers

An informal but more elaborate definition:

Provide a computer with a set of instructions and a set of data on
what should be done with the data for the resolution of a given problem

Programming encompasses several activities aimed to develop a
computer program

> or to implement a computer program
software design

coding

compilation

running

debugging

deploying

etc.

Definition

jgromero@inf.uc3m.es 4

1. What is programming?

Jake2
[link]

Examples

5All your history are belong to us (id Software) [link]

1. What is programming?

Jake2
[link]

Examples

6All your history are belong to us (id Software) [link]

jCalculator [link]

1. What is programming?
Examples

jgromero@inf.uc3m.es 7

jCalculator [link]

1. What is programming?
Examples

jgromero@inf.uc3m.es 8

1. What is programming?

The kind of programs that we will develop…
> Calculate the factorial of a number introduced by the user

> The computer randomly choses a number. The user make guesses to find

out this number. The computer gives back clues to the user

> Simplified version of the Mastermind game

Examples

jgromero@inf.uc3m.es 9

1. What is programming?
Examples

jgromero@inf.uc3m.es 10

Code snippet
Piece of code

Outline

1. What is programming?

2. Components of a program: data and algorithms

3. Creating and running programs

4. Programming paradigms

5. Introduction to the Java programming language

jgromero@inf.uc3m.es 11

2. Data and algorithms

Programming

Provide a computer with a set of instructions

and a set of data on what should be done with

the data for the resolution of a given problem

jgromero@inf.uc3m.es 12

2. Data and algorithms
Computer architecture

jgromero@inf.uc3m.es 13

Hardware
Physical components of a computer

(the machine)

Software
Logical instructions, data, and

documentation (the programs)

2. Data and algorithms
Hardware

jgromero@inf.uc3m.es 14

99% of computers

(including all Personal

Computers) have an

architecture composed by:

• CPU

• Memory

• I/O Devices

Data and instructions

are stored in the

memory

(This architecture is called von

Neumann architecture, although

it was originally proposed by

Eckert and Mauchly)

2. Data and algorithms

Central processing unit (CPU)
It executes the instructions and coordinates the rest of
the elements

Memory
Stores the data, instructions and results

Volatile memory

Devices for input/output
For providing data and instructions and receiving results

Hard disk is usually considered an output device

Data Bus
For sharing information among the previous
components

Hardware

15jgromero@inf.uc3m.es

2. Data and algorithms
Hardware

16

Technical Features

Operating system

installed

Genuine Windows Vista® Home Premium

32-bit

Processor type Intel® Pentium® processor E5200

Chipset Intel® G31 express chipset

Standard memory 3 GB

Memory DDR2-SDRAM

Memory slots 2 DIMM sockets

Internal drives 1 TB

Optical drive type
DVD writer SATA DVD RAM and Double

Layer supporting LightScribe technology

Network interface
Ethernet 10/100BT integrated network

interface

External I/O ports 6 USB 2.0 ports (2 in front)

Video RAM

512 MB dedicated memory, up to 1791

MB total available graphics memory as

allocated by Windows Vista®

Video adapter, bus 1 PCI-Express 16x
Source: www.hp.com (HP Pavilion p6103uk) jgromero@inf.uc3m.es

2. Data and algorithms

System Software (Operating System):

Provides control over the hardware and underlies

applications

Application software

Programs for specific purposes, solving a specific

problem or family of problems

Office (word processors, spreadsheets…)

Accounting

Control

Games

...

Software

17jgromero@inf.uc3m.es

2. Data and algorithms
Abstract representation of a computer

18jgromero@inf.uc3m.es

2. Data and algorithms

Objective:

Solve a problem (by using a computer)

How?

Use an algorithm (and implement it)

An algorithm is:

A set of instructions that allow for the resolution of a

problem step by step

A well-defined, ordered, and finite list of

operations that is able to find a solution for a problem

Algorithms

19jgromero@inf.uc3m.es

2. Data and algorithms

Instructions to create a paper plane
Fold a sheet of paper exactly in half long-ways, and re-open it so you have a

crease separating the two halves

On one end of the paper, fold each corner in towards the center to the point

where the inside edges are even with the centerline crease

Starting at the very tip of the point, fold the paper down on each side so the

inside edges line up with the center crease

Turn the paper airplane over and fold it in half along the centerline

Fold the first wing with the line of the fold running nearly parallel to the

centerline of the plane. Make this fold from 1/2 to 1 inch from the center.

Step 6 shows this fold more clearly

Fold the second wing exactly as you did the first

Source: 10paperairplanes.com [link]

Algorithms

jgromero@inf.uc3m.es 20

Ordered and finite
…but well-defined?

2. Data and algorithms

The previous example is written in natural language: is a form
easily readable by people

Computers
Do not understand natural language

Offer a restricted collection of instructions

Do not admit imprecision: one end of the paper, nearly parallel, etc.

How do we instruct a computer what to do: Translate the
algorithm into a program written in a programming language
suitable for the implementation of that algorithm

There exist many languages for programming computers (e.g.
C++, Java, etc.)

Algorithms

21jgromero@inf.uc3m.es

Outline

1. What is programming?

2. Components of a program: data and algorithms

3. Creating and running programs

4. Programming paradigms

5. Introduction to the Java programming language

jgromero@inf.uc3m.es 22

3. Creating and running programs

Creating and running a program with Eclipse IDE

1. Run Eclipse IDE

2. Select workspace folder

3. Create project (File > New > Java Project, set name Test)

4. Create program (File > New > Class, set name HelloWorld)

5. Type the code (see next slide)

6. Run the program (Run > Run)

At home:

a. Download JDK [link]

b. Download Eclipse IDE for Java Developers [link]

c. Unzip folder

d. Double click eclipse file to run Eclipse IDE

Our first program!

jgromero@inf.uc3m.es 23

Run/execute
Put the program

into functioning

Create/develop/

write/implement
Write the program

in a programming

language

3. Creating and running programs

/* My first Java program! */

public class HelloWorld {

public static void main(String [] args) {

System.out.println("Hello world!");

}

}

Our first program!

jgromero@inf.uc3m.es 24

3. Creating and running programs

Binary language (machine code)

0s and 1s

Low level languages

Very basic operations (move registers, add, etc.)

High level languages

Closer to natural language

…but no so much

Types of programming languages

jgromero@inf.uc3m.es 25

3. Creating and running programs

Binary language (or machine code) is the language that

the computer can directly understand

Data and instructions are encoded using sets of 0 and 1

The fastest: talking to the computer on its own idiom

Very error prone, very complicated

E.g.: Adding the registers 1 and 2 and placing the result in register 6

(MIPS architecture)

Binary language

26

type Op 1 Op 2 Res Shift Function

0 1 2 6 0 32

000000 00001 00010 00110 00000 100000

jgromero@inf.uc3m.es

3. Creating and running programs

Low level instructions expressed as text

Not very intuitive

Processor-dependent: a specific set of instruction for each

processor type

Compiler: Program that translates assembly code into

a binary program

Assembly language

27jgromero@inf.uc3m.es

3. Creating and running programs

.model small

.stack

.data

String1 DB 'HelloWorld.$'

.code

program:

mov ax, @data

mov ds, ax

mov dx, offset String1

mov ah, 9

int 21h

mov ah,4ch

int 21h

end program

Assembly language

jgromero@inf.uc3m.es 28

3. Creating and running programs

High-level languages are intended to bring programming
languages closer to human language

A program encoded in a high-level programming language is
translated into binary code

Compilation

Interpretation

There exist over 300 (over 2400 with dialects) [link] [link]

The pioneers included concepts such as:

Variables –it is not necessary to directly manage data in memory

Complex data structures

New instructions, other than those provided by the computer

High-level languages

29jgromero@inf.uc3m.es

3. Creating and running programs

Structured languages
Group data and instructions in blocks of code (no GOTO)

Modular languages
The program is divided into separate modules (C, Pascal)

Object-oriented languages
Data and operations are conceptually grouped into objects (C++,
Java)

Component-oriented languages
Programs are constructed by gluing together sets of pieces (.NET
platform)

Web-oriented languages
Specially suited to develop web applications (JavaScript, Ruby)

…

30

High-level languages

jgromero@inf.uc3m.es

3. Creating and running programs

The translation from a program written in a programming
language into binary code can be done in two ways:

All at once: compilation
An executable program is generated (plus intermediate object
files)

Faster

One instruction at a time: interpretation
Run even if there are errors in the program (as long as the current
instruction is correct)

More flexible

Java has a hybrid schema
Pre-compilation to bytecode

Interpretation by means of a Java Virtual Machine

Compilation and interpretation

31jgromero@inf.uc3m.es

Compilation time!

32

Source: XKCD (http://xkcd.com/303/)

Compilation time
Code development

Runtime
Program execution

Evolution of programming languages

33Source: http://people.mandriva.com/~prigaux/language-study/diagram-light.png

Usage of some languages

34

Source: http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Which programming language is the best?

35

Source: http://www.thesmokesellers.com/?p=812

Outline

1. What is programming?

2. Components of a program: data and algorithms

3. Creating and running programs

4. Programming paradigms

5. Introduction to the Java programming language

jgromero@inf.uc3m.es 36

4. Programming paradigms

A programming paradigm is a philosophy to solve a problem with
a computer program

Imperative programming (Java, C++, Python, Perl)

A program describes the necessary steps that need to be taken to solve the
problem

Functional programming (Lisp, Erlang, Haskell, F#)

Program instructions are given as mathematical expressions

Logic programming (Prolog)

Program does not include instructions, but logical formulas

The problem is solved through logical inference.

None is better than the other

Many languages are mixed

37jgromero@inf.uc3m.es

4. Programming paradigms

38jgromero@inf.uc3m.es

Java – Factorial.java

public class Factorial {

public static double factorial(int n) {

int f = 1;

for(int i=2; i<=n; i++)

f *= i;

return f;

}

public static void main(String [] args) {

factorial(42);

}

}

Haskell – fac.hs

fac 0 = 1 fac n = n * fac (n-1)

main = print (fac 42)

Prolog - factorial.hs

factorial(0,1).

factorial(N,F) :-

N>0,

N1 is N-1,

factorial(N1,F1),

F is N * F1.

?- factorial(42,X).

39

4. Programming paradigms

Source: http://www.info.ucl.ac.be/~pvr/paradigmsDIAGRAMeng.pdf

Outline

1. What is programming?

2. Components of a program: data and algorithms

3. Creating and running programs

4. Programming paradigms

5. Introduction to the Java programming language

…but before:

jgromero@inf.uc3m.es 40

Additional lectures (1-4)

Recommended lecture:

H. M. Deitel, P. J. Deitel. Java: How to Program. Prentice Hall,
2007 (7th Edition), Chapter 1 [link]

Additional lectures on "Introduction to Programming"
http://en.wikipedia.org/wiki/Programming_language

http://nayar.uan.mx/~iavalos/introprog.htm

http://mosaic.uoc.edu/recursos/Introduccion_a_la_Programacion.pdf

http://elvex.ugr.es/decsai/java/pdf/2B-Java.pdf

http://www.landofcode.com/programming-intro/

http://www.bfoit.org/itp/

http://chortle.ccsu.edu/java5/index.html

http://www.tecnun.es/asignaturas/Informat1/AyudaInf/aprend
ainf/Java/Java2.pdf (Spanish)

Introduction to programming

41jgromero@inf.uc3m.es

Outline

1. What is programming?

2. Components of a program: data and algorithms

3. Creating and running programs

4. Programming paradigms

5. Introduction to the Java programming language

jgromero@inf.uc3m.es 42

5. Introduction to Java

A high-level object oriented language

Sun Microsystems (1991) designs a language for
embedded systems (set-top-boxes, electrical
appliances)

Requirements for the new language:

Object oriented

Multiplatform

No company shows interest in the language

Language simple, small, neutral

History

43jgromero@inf.uc3m.es

5. Introduction to Java

Object Oriented

Absolutely Portable

Interpreted Language

Bytecode is machine independent

Java Virtual Machine (JVM)

Automatic management of dynamic memory

Garbage collector

Case sensitive

Distributed

Robust

Secure

Efficient (JIT compilation)

Clean?

Features

44jgromero@inf.uc3m.es

5. Introduction to Java

1995: Java is introduced on the Internet, very complete language

Netscape 2.0 introduces the first JVM (Java Virtual Machine) in a web
browser

Java Philosophy: “Write once, run everywhere”

1997: Appears Java 1.1. Many improvements with respect to 1.0

1998: Java 1.2 (Java 2). Very mature platform Supported by large
companies: IBM, Oracle, Inprise, Hewtlett-Packard, Netscape, Sun

1999: Java Enterprise Edition. Revolutionizes server side programming

2006: Java SE 6 is launched

2007: Sun publishes Java core as open-source software (GPL)

2009: Oracle acquires Sun

2011: Oracle launches Java SE 7

History

45jgromero@inf.uc3m.es

5. Introduction to Java

Java uses a virtual machine
Two steps are needed, but platform independence is
accomplished

Just-in-time (JIT) compilation [link]

Compilation and interpretation

46

Source: http://support.novell.com/techcenter/articles/ana19970701.html

jgromero@inf.uc3m.es

5. Introduction to Java

Multiple specifications

J2ME (Java 2 Mobile Edition)

J2SE (Java 2 Standard Edition)

J2EE (Java 2 Enterprise Edition)

Multiple technologies

Programming: java.*, JNI, Java Beans

UI Programming: AWT, Swing

Graphics programming: Java 2D, Java 3D

www: Applets

Server: JSP, Servlets

Distributed programming: RMI, Corba, EJB

Databases: JDBC

Third-party tools!

Java specifications

47jgromero@inf.uc3m.es

5. Introduction to Java

Java SDK (Java Software Development Kit)

Includes compiler and other development tools

javac

Includes JRE interpreter to run Java bytecodes

java

Command-line tools!

Tools included in JDK

48

5. Introduction to Java
javac and java

49

5. Introduction to Java

Software that supports program development,
debugging and running

Project management

Syntax highlight

Productivity

Visual modeling

Debugging

Rapid development

Examples

Eclipse
Netbeans

JBuilder

Oracle Jdeveloper

BlueJ

Integrated development environments (IDEs)

50

Summary

What is programming?

Solve problems using computer

An algorithm is used for the
resolution of problems

An algorithm is written in a
programming language

Basic computer architecture

CPU

Memory

Devices for I/O

Abstract algorithmical machine

Programming languages
Machine code

Low level languages

High level languages

First steps

Compilation vs. interpretation

Program execution

Programming paradigms
Imperative programming

Functional programming

Logic programming

Introduction to programming

51

Summary

Java is an object-oriented programming language

Java has a hybrid compilation process

Compilation to bytecode

Interpretation with JVM

Java SDK includes java core libraries and tools
(compiler, execution, etc.)

IDEs (e.g. Eclipse) support program development

Programming is easy and fun!

Java programming language

52

Additional lectures

Recommended lectures:

H. M. Deitel, P. J. Deitel. Java: How to Program.

Prentice Hall, 2011 (9th Edition), Chapters 1 [link], 2

[link]

K. Sierra, B. Bates. Head First Java. O'Reilly Media,

2005 (2nd Edition), Chapter 1 [link]

Introduction to Java

53jgromero@inf.uc3m.es

54

Programming – Grado en Ingeniería Informática

Authors

Of this version:

Juan Gómez Romero

Based on the work by:

Ángel García Olaya
Manuel Pereira González
Silvia de Castro García
Gustavo Fernández-Baillo Cañas

