
Lesson 6
Introduction to Object-Oriented

Programming

Programming

Grade in Computer Engineering

Outline

1. Motivation

2. Classes, objects and attributes

3. Constructors

4. Methods

5. Composition

6. Object destruction

jgromero@inf.uc3m.es 2

Outline

1. Motivation

2. Classes, objects and attributes

3. Constructors

4. Methods

5. Composition

6. Object destruction

jgromero@inf.uc3m.es 3

1. Motivation

4jgromero@inf.uc3m.es

1. Motivation

Object-oriented programming

Programming paradigm that defines a program as a set of
objects that perform actions on demand

An object is an abstract entity of the application domain

A class defines a blueprint for a kind of objects

An object has

properties <-- Attributes!

operations <-- Methods!

which are defined in the class

What is O.O.P.?

jgromero@inf.uc3m.es 5

1. Motivation

Object-oriented programming is aimed to increase
system scalability while reducing undesired
interactions between components

Advantages

Closer to human way of thinking (more abstract)

> Improved code quality and readability

> Programs are easier to maintain

> Data and functionalities are encapsulated into meaningful
structures

> Rapid development and component reuse

> Reusability and encapsulation

Why O.O.P.?

jgromero@inf.uc3m.es 6

Outline

1. Motivation

2. Classes, objects and attributes

3. Constructors

4. Methods

5. Composition

6. Object destruction

jgromero@inf.uc3m.es 7

2. Classes, objects and attributes

An object can be seen as a data structure that represents an
entity of the domain

Object Entry #5 of an address book Object 2D point p

“Juan” (2.1, 3.2)

“Gomez Romero”

29

“jgromero@inf.uc3m.es”

> collection of values of different types which are managed together

An object belongs to a class, where the attributes or fields of the
objects of the class are defined

Class Entry of an address book Class 2D point

> Name > x coordinate

> Surname > y coordinate

> Age

> E-mail

Programmers can define classes their own classes and use objects in
their applications

Concept

8

Lesson 2

2. Classes, objects and attributes

[modifiers] class <name of the class> {

<attributes>

<methods>

}

[modifiers]

public The class can be used by any other class

abstract Objects cannot be created for this class, but subclasses are allowed

final Subclasses are not allowed

none By default, the class can be used by the classes of the same package

<name of the class>
valid Java identifier

E.g.:
public class Point2D {

// stuff

}

Classes

9

2. Classes, objects and attributes

[modifiers] <type> <name of the attribute>;

[modifiers]

public/private/protected

The attribute can/cannot be directly accessed from any other class.
If protected is specified, then the attribute can be accessed from the subclasses of this class

Control attribute access and avoid inappropriate use (encapsulation!). Usually, all
attributes are private

If none specified, the default is package, which means that the attribute can be
accessed from any other class inside the package

static Class attribute: it is shared by all the objects of the class

final Constant (only one assignment is allowed)

E.g.:
public class Point2D {

private double x;
private double y;

}

Attributes

10

2. Classes, objects and attributes

Create and use class objects

Create a class with a main method

The program begins here

> additional methods can be created

Inside the main (or another method),

1. Declare object variables

Object references are declared, but not initialized yet

2. Create objects

Allocate memory for an object (create an instance of the object)

3. Operate with objects

Each object stores its self values for the attributes

Object creation

11

2. Classes, objects and attributes
Example

jgromero@inf.uc3m.es 12

class definition

public attributes
reading and writing object attributes

geometry.basic

2. Classes, objects and attributes

13

public attributes
reading and writing object attributes

from any method

objects as parameters
objects can be used as method

parameters

objects as returning values
objects can be used as method

returning values

using objects in the program

geometry.methods

2. Classes, objects and attributes

Object arrays can be also declared, but memory for the array
and for the objects must be allocated

Array allocation
Point2D [] points;
points = new Point2D[5]; // 5-elements array

Array elements allocation
points[0] = new Point2D(); // point at pos. 0

points[1] = new Point2D();

Using array elements
points[0].x = 1.0; // x coordinate of point at pos. 0

points[0].y = 2.0; // y coordinate of point at pos. 0

If an array position is not allocated, the default value is null.
Thus, if we try to access to its attributes, we get a runtime
exception

points[3].x = 1.0; // Runtime error, points[3] is null

Object arrays

14

2. Classes, objects and attributes

Create a Java program based on TestPoint2D_Methods

class to read 10 points from the keyboard and calculate

the two closest points

Exercise

jgromero@inf.uc3m.es 15

geometry.collections

2. Classes, objects and attributes

An object can represent a collection of values

Matrix2D

Mathematical notion of matrix: collection of values which can be

accessed with two indexes (i, j)

Attributes

2D matrices are represented with a two dimensional array of doubles

2D matrices have a size (number of rows, number of columns)

Arrays inside objects

16

myMatrix1

1.0 2.0 3.4 1.1 -1.1

-1.2 1.0 2.9 2.3 0.3

7.4 4.4 1.1 0.0 1.0

-3.1 2.2 -2.1 -0.2 0.0

elements

4 5

colsrows

myMatrix2

3.3 2.1 0.7 -1.9

12.2 2.1 9.3 0.01

4.9 1.1 7.9 -0.1

elements

3 4

colsrows

2. Classes, objects and attributes

Arrays can be used as attributes in class definitions

Array attributes are accessed by using . (to access the attribute) and [] (to

access the array element)

Arrays inside objects

jgromero@inf.uc3m.es 17

matrix.basic

2. Classes, objects and attributes

Notice the difference between:
an array of objects

Point2D [] points;
points = new Point2D[5];
System.out.println(points[1].x);
System.out.println(points[1].y);

an object with an array as attribute

Matrix m;
m = new Matrix();
m.elements = new double[3][4];
System.out.println(m.elements[2][3];

Combination is possible: we can have an array of objects that include
arrays as attributes

an array of matrix objects

Matrix [] matrices;
matrices = new Matrix[3];
matrices[0] = new Matrix();
matrices[0].elements = new double[4][5];
matrices[0].elements[2][3] = 12.1;

Arrays of objects vs objects with array attributes

jgromero@inf.uc3m.es 18

2. Classes, objects and attributes
Arrays of objects vs objects with array attributes

jgromero@inf.uc3m.es 19

2. Classes, objects and attributes

Static vs. non-static attributes
Non-static (or instance) attributes are attributes local to an object
instance

Each object of a class has its own values
E.g.: coordinates (x, y) of Point2D

To access non-static attributes, an object instance must be created

Static (or class) attributes are attributes shared by all the objects
of a class

static modifier is used

Common values for all the objects of a class
E.g.: constants, counters, etc.

To access static attributes, it is not necessary to create an object of the
class

static attributes are automatically initialized with default values if no
initial value is provided –although usually values are assigned in the class
definition

Frequently, static attributes are final (they cannot be changed)

static

20

2. Classes, objects and attributes
Example

21

Static attributes definition

Static attributes are defined

with the static modifier

student

2. Classes, objects and attributes
Example

Static attributes access

Static attributes are accessed

with the name of the class, dot

(.) and the name of the attribute

No objects of the class are

created to access the static

attribute

Non-static attributes access

student

2. Classes, objects and attributes
Example

jgromero@inf.uc3m.es 23

student

Outline

1. Motivation

2. Classes, objects and attributes

3. Constructors

4. Methods

5. Composition

6. Object destruction

jgromero@inf.uc3m.es 24

3. Constructors

It would be convenient to provide an initial

value for the attributes of a new object

Motivation

jgromero@inf.uc3m.es 25

Attribute value assignment

Non-static attributes are assigned

right after the allocation of the object

3. Constructors

Usually, after creating an object, some initializations may be
convenient

The coordinates of a Point object must be initialized
The internal array of a Matrix must be allocated

A special method is created inside the class template to initialize

object attributes: constructor

Constructors perform all the initializations required to create a valid
object of a class

Constructors are executed when calling to new

Memory is allocated for the object, then the constructor is executed

The syntax of the call to new must correspond to one of the constructors
of the class; otherwise, we get a compilation error

Definition

jgromero@inf.uc3m.es 26

3. Constructors

[modifiers] <class name> (

[<type of parameter 1> <name of parameter 1> [,

<type of parameter 2> <name of parameter 2> …]]) {

<sentences>

}

[modifiers]

public/private/protected

E.g.:

public class Point2D {

public Point2D(double x_value, double y_value) {

…

}

}

Syntax

jgromero@inf.uc3m.es 27

3. Constructors
Syntax

jgromero@inf.uc3m.es 28

geometry.constructor

3. Constructors

Constructors are never static

Constructors do not return any value (they do not have returning
type!)

The instructions inside the constructor can access to the object
attributes. These attributes correspond to the object instance
currently that is being initialized

More than one constructor could be implemented (with different
parameter number or type)

If not implemented, a default constructor with no arguments and
empty code is assumed. In this case, the fields of the object are
assigned default values (0: numbers and characters, false: booleans,
null: Strings, arrays, objects)

If there is at least one constructor with parameters, the default
constructor is no longer valid

Description

jgromero@inf.uc3m.es 29

3. Constructors

30

matrix.constructor

Constructors definition

Constructors use

Outline

1. Motivation

2. Classes, objects and attributes

3. Constructors

4. Methods

5. Composition

6. Object destruction

jgromero@inf.uc3m.es 31

4. Methods

Objects as data structures + operations
An object can be seen as a data structure that

represents an entity of the domain + A set of
related operations applied on the object

Matrix

Attributes

3 rows

2 columns

Values

Operations

get values

print

add (to other matrix)

subtract (to other matrix)

…

Objects and classes in O.O.P.

32

1 2

3 4

5 6

















jgromero@inf.uc3m.es

4. Methods
Example

33

Class Matrix2D

• elements (double [][])

• number of rows (int)

• number of columns (int)

• retrieve element at

position (i, j) (double)

• assign element x at

position (i, j)

• add to other Matrix2D

(Matrix2D)

Object
myMatrix1

1.0 2.0 3.4 1.1 -1.1

-1.2 1.0 2.9 2.3 0.3

7.4 4.4 1.1 0.0 1.0

-3.1 2.2 -2.1 -0.2 0.0

elements

4

5cols

rows

3.3 2.1 0.7 -1.9

12.2 2.1 9.3 0.01

4.9 1.1 7.9 -0.1

What is your number of columns,

myMatrix1?

What is your value at position (1, 3),

myMatrix2?

Add myMatrix2 to you,

myMatrix1

elements

3

4cols

rows
Object
myMatrix2

jgromero@inf.uc3m.es

4. Methods

Methods are included in the class definition

Static methods (also named class methods)
Methods previously studied

General methods

Return values calculated from the parameter values

Cannot access to non-static attributes & can access to static
attributes

static keyword

Non-static methods (also named instance methods)
Methods applied on an object of the class

Modify values of the object instance

Return values calculated from the object instance values and the
parameters

Can access to non-static attributes & can access to static attributes

Without the static keyword

Static vs. non-static methods

34jgromero@inf.uc3m.es

4. Methods

Non-static method use

Methods are applied on an object of the class (which can be
considered as their implicit parameter)

Methods are called by using the dot (.) operator

myMatrix1.getRows()
myMatrix1.add(myMatrix2)

Non-static method definition

Methods have access to attributes defined in the class. The value
of the attributes is retained through calls

Methods can define local variables. Their visibility extends over
the code appearing within the same scope ({…})

Methods can be overloaded: we can define two methods with the
same name and different number of parameters

Static vs non-static methods

35jgromero@inf.uc3m.es

4. Methods

Matrix (reloaded)

> Create Matrix class

> Attributes
- rows

- cols

- values

> Constructor
- allocate memory for values

> Methods
- read values from keyboard

- random initialization

- print

- get value at position (i, j)

- set value at position (i, j)

- add to other matrix

- get transpose

- etc.

Example

36jgromero@inf.uc3m.es

4. Methods

Recommendations

Use public for the class

Use private for all the attributes, instead of

public –they cannot be accessed from any other

class

Define at least one public constructor

Define proper get/set methods –we can control

how object attributes are modified

Use public for the methods –unless they are

internal methods

Class definition

37jgromero@inf.uc3m.es

4. Methods

The accessibility to attributes and methods depends on
scope modifiers:

public The entity can be used from any package

An attribute can be accessed from methods of other class
A method can be invoked from methods of other class

private The entity cannot be accessed from outside the class

An attribute can be directly accessed only from the methods of the class; it is not
accessible even from subclasses (same for methods)

protected The entity can be only accessed from inside the subclass

An attribute can be only accessed from the methods of the subclasses (same for
methods)

none The entity can be accessed only from the package

An attribute can be only accessed from methods in classes of the same package
(same for methods)

The general scope rule is valid for local variables: a variable is accessible
only from the block in which it has been declared

Attribute accessibility

jgromero@inf.uc3m.es 38

4. Methods
Example

39

matrix.methods

jgromero@inf.uc3m.es

4. Methods
Example – accesibility modifiers

40

Compilation error:

The field Matrix.rows is not

accesible (not visible)

4. Methods
Example – method definition

41jgromero@inf.uc3m.es

4. Methods
Example – object declaration

42

Object m

jgromero@inf.uc3m.es

4. Methods
Example – object allocation

43

Object m

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

elements

4

5cols

rows

jgromero@inf.uc3m.es

4. Methods
Example – method call

44

Object m

0.4 0.2 0.1 0.5 0.6

0.2 0.0 0.2 0.7 0.1

0.8 0.8 0.0 0.2 0.7

0.2 0.3 0.9 0.5 0.1

elements

4

5cols

rows

jgromero@inf.uc3m.es

4. Methods
Example – method call

45

Object m

0.4 0.2 0.1 0.5 0.6

0.2 0.0 0.2 0.7 0.1

0.8 0.8 0.0 0.2 0.7

0.2 0.3 0.9 0.5 0.1

elements

4

5cols

rows

jgromero@inf.uc3m.es

4. Methods
Static vs non-static methods

46

Non-static

method definition

Static

method definition

jgromero@inf.uc3m.es

4. Methods
Static vs non-static methods

47

Calls to static methods

Calls to non-static methods

4. Methods

Inside a method implementation, an object can refer to

itself with this keyword

this is implicitly defined in the method (it is not

necessary to declare or initialize it)

this keyword

48jgromero@inf.uc3m.es

4. Methods

this must be used when disambiguation is

required

A parameter can be defined with the same name as an attribute.

By default, if this is not used, the parameter is used

this keyword

49jgromero@inf.uc3m.es

4. Methods

this can be also used to invoke a constructor from inside other

constructor

In this case, the call with this must be the first instruction of the

constructor

this keyword

50

Both implementations are equivalent

jgromero@inf.uc3m.es

4. Methods

Scope issues
(The same as for methods defined in Lesson 5)

1. A copy of the value passed as
argument is stored in the parameter

2. The scope of formal parameters and
local variables is the method

The values of basic-type variables and the references to
arrays and objects used as actual parameters are not
changed inside methods

The values of arrays and the attributes of objects used as
actual parameters may be changed inside methods

Scope issues

51

Lesson 2

jgromero@inf.uc3m.es

Outline

1. Motivation

2. Classes, objects and attributes

3. Constructors

4. Methods

5. Composition

6. Object destruction

jgromero@inf.uc3m.es 52

5. Composition

The attributes of a class can be objects

Definition

53

geometry.composition

jgromero@inf.uc3m.es

5. Composition

54

Triangle

a
x

y

b
x

y

c
x

y

watch out object references!
every object in the composition must be

properly allocated (constructors) to avoid

null pointer exceptions

Object references

5. Composition
Example – using composite objects

55jgromero@inf.uc3m.es

Outline

1. Motivation

2. Classes, objects and attributes

3. Constructors

4. Methods

5. Composition

6. Object destruction

jgromero@inf.uc3m.es 56

6. Object destruction

In Java, it is not necessary to explicitly release

the memory

The garbage collector is an automatic procedure

that frees the memory associated to unused

object and array references

E.g.: The memory assigned to a local array is marked as

free by the garbage collector when the method ends

The case for an object is equivalent

Garbage collector

57jgromero@inf.uc3m.es

6. Object destruction
Example – memory released

58

a

a[0] a[1] a[2] a[3] a[4]

7.2

a[0] a[1] a[2] a[3] a[4]

a 7.2

a[0] a[1] a[2] a[3] a[4]

a 7.2

a[0] a[1] a[2] a[3] a[4]

a

a

jgromero@inf.uc3m.es

6. Object destruction
Example – memory is alive

59

a

a

a[0] a[1] a[2] a[3] a[4]

a 7.2

a[0] a[1] a[2] a[3] a[4]

a

array
7.2

a[0] a[1] a[2] a[3] a[4]

array 7.2

a[0] a[1] a[2] a[3] a[4]

jgromero@inf.uc3m.es

6. Object destruction

Code can be executed when the object is destroyed by the
Garbage Collector: create (override) method finalize

E.g.: Close a file that is open while the object is alive

protected void finalize() {
// Clean-up operations

System.out.println("An object is finalized");

}

It can not be known exactly when the garbage collector will
be triggered. If there is no lack of memory, it is probable that
it will be never triggered

It is advisable not to rely on it for conducting any other task

You can explicitly call the Garbage Collector with
System.gc(), although this is only a “suggestion” to the JVM

finalize()

60jgromero@inf.uc3m.es

Outline

1. Motivation

2. Classes, objects and attributes

3. Constructors

4. Methods

5. Composition

6. Object destruction

jgromero@inf.uc3m.es 61

Summary

Classes

Attributes (properties)

private

private int x;

arrays

private double [][] values;

composition (objects)

private Point a;

Methods (behavior)

constructor

object attribute initialization

get/set methods

retrieve and change values of private attributes

other methods

object functionalities

Introduction to O.O.P.

62jgromero@inf.uc3m.es

Summary

Objects

References

single reference

Point p;

arrays of objects

Point [] points = new Point[5];

Object allocation

p = new Point();

p = new Point(1, 2);

points[0] = new Point();

Method calling

int x_coordinate = p.getX();

int y_coordinate = points[0].getX();

Introduction to O.O.P.

63jgromero@inf.uc3m.es

Additional lectures

Recommended lectures

H. M. Deitel, P. J. Deitel. Java: How to Program. Prentice Hall,

2011 (9th Edition), Chapters 6 [link], 8 [link]

The JavaTM Tutorials. Oracle, Classes and objects [link]

I. Horton. Beginning Java, Java 7 Edition. Wrox, 2011,

Chapter 5 [link]

Introduction to O.O.P.

jgromero@inf.uc3m.es 64

65

Programming – Grado en Ingeniería Informática

Authors

Of this version:

Juan Gómez Romero

Based on the work by:

Ángel García Olaya
Manuel Pereira González
Silvia de Castro García
Gustavo Fernández-Baillo Cañas

