
Lesson 3
Control flow statements

Programming

Grade in Computer Engineering



Outline

1. Decision-making statements

if-else

switch

2. Looping statements

while

do-while

for

3. Branching statements

break

continue

System.exit

jgromero@inf.uc3m.es



Outline

1. Decision-making statements

if-else

switch

2. Looping statements

while

do-while

for

3. Branching statements

break

continue

System.exit

jgromero@inf.uc3m.es



1. Decision-making statements

Java program instructions are executed from 

top to bottom, in the order that they appear, 

starting from the first sentence inside the main

method

Control flow instructions break up this sequence

Blocks of code are executed or not depending 

on some conditions

Conditions are boolean expressions –relational 

and logical expressions

Control flow instructions

jgromero@inf.uc3m.es



1. Decision-making statements
Second grade equation revisited

EquationSimple.java jgromero@inf.uc3m.es



1. Decision-making statements

The most basic control flow 

instruction

If the condition is true, the 

block of code associated to the 

if part is executed

If the condition is false, the 

block of code associated to the 

else part is executed

if-else statements can be 

nested

if-else

if (<boolean expression>) {

<statement(s)>

} else {

<statement(s)>

}

jgromero@inf.uc3m.es



1. Decision-making statements
Second grade equation revisited

EquationBetter.java

jgromero@inf.uc3m.es



1. Decision-making statements
Second grade equation revisited

jgromero@inf.uc3m.es



1. Decision-making statements

Start

Read 

a, b, c

a == 0 ?

Calculate x as in 

a 1st grade 

equation

True

Calculate 

discriminant d

False

d >= 0 ?

Calculate x1, x2

with the 

formula

True

Calculate x1, x2

as imaginary 

solutions

False

Print x

Print 

x1, x2

Print 

x1, x2

End

b == 0 ?
FalseTrue

Print 

error

v



1. Decision-making statements
Second grade equation revisited

EquationBest.java

Exception management
try-catch is used to detect if there was an 

InputMismatchException error when 

reading from the keyboard

If this error happens, the catch block is 

executed; otherwise, the catch block is not 

executed

jgromero@inf.uc3m.es



1. Decision-making statements
Second grade equation revisited

Nested conditions
Nested if-else allow the programmer to define 

multiple execution branches depending on 

variable values

jgromero@inf.uc3m.es



1. Decision-making statements
Second grade equation revisited

jgromero@inf.uc3m.es



1. Decision-making statements

The else part is optional

if-else

If there is only one instruction 

inside the block, the braces

can be removed

if else instructions can be 

nested

if (<boolean expression>) {

<statement(s)>

}

if (<boolean expression>)

<statement> 

if (<boolean expression>)

<statement>

else

<statement>

Do not forget the ;

jgromero@inf.uc3m.es



1. Decision-making statements

Nested if-else instructions can 

be arranged to implement 

mutually exclusive execution 

branches

Only one of the blocks is 

executed

If none of the conditions is true, 

the final else block is executed

if-else-if

if (<boolean expression 1>) {

<statement(s)>

} else if (<boolean expression 2>) {

<statement(s)>

} else if (<boolean expression 3>) {

…

} else {

<statement(s)>

}

jgromero@inf.uc3m.es



1. Decision-making statements
if-else-if

jgromero@inf.uc3m.es

ExamplesIfElseIf.java



Outline

1. Decision-making statements

if-else

switch

2. Looping statements

while

do-while

for

3. Branching statements

break

continue

System.exit

jgromero@inf.uc3m.es



1. Decision-making statements

Allows for multiple execution paths, depending on the value of the 
switch variable

The switch variable must be integer, character, string or enumerated 
value

If the switch variable is equal to the value of a case, the sentences 
following the case are executed until a break is found

If a case block does not have a break, the execution continues in the 
next case, even if it is false!

Braces are not required to delimit each case

If no case is true, the default block (if defined –since it is optional) 
is executed

Deciding between switch and if-else-if is based on the type of 
the switch variable and code readability

switch

jgromero@inf.uc3m.es



1. Decision-making statements
switch

switch (<variable>) {

case <value 1>:

<sentence(s)>

[break;]

case <value 2>:

<sentence(s)>

[break;]

default:

<sentence(s)>

}

jgromero@inf.uc3m.es



1. Decision-making statements
switch

BasicConditionals.java

jgromero@inf.uc3m.es



1. Decision-making statements
switch + if-else

BasicConditionals.java

jgromero@inf.uc3m.es



Outline

1. Decision-making statements

if-else

switch

2. Looping statements

while

do-while

for

3. Branching statements

break

continue

System.exit

jgromero@inf.uc3m.es



2. Looping statements

Loops repeat sequentially the instructions in a 

block of code while a condition holds

When the block of code associated to a loop 

instruction is finished, the condition is tested

If the condition holds, the block is executed again

If the condition does not hold, the execution 

continues with the instructions below the block

General

jgromero@inf.uc3m.es



2. Looping statements

Continually executes a block 
of statements while a 
particular condition is true

When the program reaches 
the while statement for the 
first time, 

If the condition is true, the 
block of code associated to 
the while is executed

If the condition is false, the 
program continues by the 
sentence below the block

After finishing the while
block, the condition is tested 
again

while

while(<boolean expression>) {

<sentence(s)>

}

jgromero@inf.uc3m.es



2. Looping statements
while

ExamplesWhile.java

jgromero@inf.uc3m.es



2. Looping statements
while

ExamplesWhile.java

jgromero@inf.uc3m.es



Outline

1. Decision-making statements

if-else

switch

2. Looping statements

while

do-while

for

3. Branching statements

break

continue

System.exit

jgromero@inf.uc3m.es



2. Looping statements

Executes a block of statements; 
repeat the execution if the 
condition is true

First, the block of code is 
executed

If the condition is true, the block 
of code associated to the do 
while is executed again

After finishing the do while
block, the condition is tested 
again

If the condition is false, the 
execution continues by the first 
instruction below the block

do-while

do{

<sentence(s)>

} while(<boolean expression>);

condition

truestatements

false

jgromero@inf.uc3m.es



2. Looping statements
do-while

ExamplesDoWhile.java

jgromero@inf.uc3m.es



2. Looping statements
do-while

ExamplesDoWhile.java

jgromero@inf.uc3m.es



2. Looping statements
while and do-while

ExamplesWhileDoWhile.java

jgromero@inf.uc3m.es



Outline

1. Decision-making statements

if-else

switch

2. Looping statements

while

do-while

for

3. Branching statements

break

continue

System.exit

jgromero@inf.uc3m.es



2. Looping statements

Executes a block of statements; repeat the 
execution if the condition is true (similar to 
while) 

Additionally, performs more operations

Pre-block statement (optional)

Usually, a variable declaration

After-block statement (optional)

Usually, a variable increment/decrement

The first time, the pre-block statement is 
executed

If the condition is true, the associated block 
of code

After finishing the block, the after-block
statement is executed 

If the condition is true, the block is 
executed again

If the condition is false, the execution 
continues by the next instruction below the 
for

for

for ([pre-block]; <expression>; [post-block]){

<statement(s)>

}

condition

true

statements

false

pre-block statement

post-block statement

jgromero@inf.uc3m.es



2. Looping statements
for

ExamplesFor.java

for / while equivalence
for loops can be implemented with while

loops, and vice versa

jgromero@inf.uc3m.es

pre-block and post-block statements
The pre-block statement is usually a variable definition, 

whereas the post-block statement is usually a 

modification of the pre-block variable



2. Looping statements

Loop instructions can be nested –with the 

following observations:

The inner loop must be included inside the outer 

loop

For each value of the counter of the outer 

instruction, the counter of the inner instruction 

takes all its values

Outer loop: i = {0, …, n-1}

Inner loop: j = {0, …, m-1} 

n x m pairs (i, j) inside the loop

for

jgromero@inf.uc3m.es



2. Looping statements
for

ExamplesFor.java

for and arrays
for loops are frequently used to traverse all 

the elements of an array: initialization, 

operations with elements, etc.

jgromero@inf.uc3m.es



Outline

1. Decision-making statements

if-else

switch

2. Looping statements

while

do-while

for

3. Branching statements

break

continue

System.exit

jgromero@inf.uc3m.es



3. Branching statements

break terminates the execution of the loop 

After the break, the execution continues in the statement just below 

the loop

continue jumps to the next iteration of the loop

After the continue, the execution continues just before the evaluation 

of the condition of the loop

System.exit(-1)terminates the execution of the program

System.exit is used to finish the program when a wrong condition 

due to the parameters or the input values is detected

break, continue, System.exit

break;

continue;

System.exit(-1);

jgromero@inf.uc3m.es



3. Branching statements
break, continue, System.exit

ExamplesBranching.java

jgromero@inf.uc3m.es



Outline

1. Decision-making statements

if-else

switch

2. Looping statements

while

do-while

for

3. Branching statements

break

continue

System.exit

jgromero@inf.uc3m.es



Summary

Conditional instructions
if-else

A block of code is executed depending on a condition

switch
A block of code is executed depending on the value of a single variable

Cases have a special behavior

Loop instructions
while

A block of code is repeated depending on a condition

do-while
A block of code is repeated depending on a condition

The block is executed at least once

for
A block of code is repeated depending on a condition

Additional statements are executed the first time the for is reached (pre-statement) and each time the for block 
is finished (post-statement)

Branching instructions
break

The loop is finished; execution continues below the block

continue
The loop is restarted; the condition is evaluated again

System.exit
The program is finished

Control flow statements

jgromero@inf.uc3m.es



Additional lectures

Recommended lectures

The JavaTM Tutorials. Oracle, Control flow statements [link]

H. M. Deitel, P. J. Deitel. Java: How to Program. Prentice Hall, 

2007 (7th Edition), Chapters 4 [link], 5 [link], 

K. Sierra, B. Bates. Head First Java. O'Reilly Media, 2005 (2nd 

Edition), Chapter 5 [link]

B. Eckel. Thinking in Java. Prentice Hall, 2002 (3rd Edition), 

Chapter 3 [link]

I. Horton. Beginning Java 2, JDK 5 Edition. Wrox, 2004 (5th 

Edition), Chapter 3 [link]

Control flow statements

jgromero@inf.uc3m.es



42

Programming – Grado en Ingeniería Informática

Authors

Of this version:

Juan Gómez Romero 

Based on the work by:

Ángel García Olaya
Manuel Pereira González
Silvia de Castro García
Gustavo Fernández-Baillo Cañas


