
1

First Practical Exercise
Programming

Grado en Ingeniería Informática

Universidad Carlos III de Madrid

Programming – Grado en Ingeniería Informática

Authors

Of the English version:

Juan Gómez Romero

Based on the work by:

Ángel García Olaya

Manuel Pereira González

Gustavo Fernández-Baillo Cañas

Programming First practical exercise

2

1. First practical exercise: Greenfoot

1.1 Introduction

The main objective of this practical exercise is to introduce the basic concepts of imperative and
object-oriented programming. In that regard, some exercises to be developed with Greenfoot
are proposed. Greenfoot is a development environment created by the University of Kent and
the University of Deakin, and can be freely downloaded from the web page
http://greenfoot.org/download/.

Greenfoot is a software tool designed to let beginners get experience with object-oriented

programming. It supports development of graphical applications in the Java™ Programming

Language. (Source: Greenfoot Tutorial)

Students are recommended to finish the tutorial included in the Greenfoot distribution before
starting the development of the practical exercise, in order to get used to the environment, the
syntax and the concepts that will be studied. The tutorial files (html + scenario) are installed with
the environment and can be started when the Greenfoot software is executed for the first time
(select Open Tutorial and tutorial scenario). The tutorial html files can be also found in the
“tutorial” folder of the Greenfoot installation folder.

NOTE: Students are recommended to try to solve only the “Getting started” section of the
tutorial. “Programming” and next sections are focused on more advanced topics.

This practical exercise consists of a single exercise divided in several tasks. Students must
develop the tasks described in section 2.2 in a single Greenfoot scenario.

1.2 Exercise

In this section, we will present some important concepts of the Java programming language,
and how they are realized in Greenfoot. To do so, we will start from a Greenfoot scenario with
some classes representing animals. We will modify the code of the scenario to change the
behavior of the animals.

Programming First practical exercise

3

Please download the file “practical_ex_1.zip” from Aula Global. Unzip the file in the “scenarios”
folder of the Greenfoot installation. Start Greenfoot and open “practical_ex_1” scenario.

NOTE: In Windows 7, you may experience some problems with the permissions of the files in
the Greenfoot installation folder. If this is your case, copy the “scenarios” folder to a different
location of your hard disk (e.g., Desktop) and use the newly created files.

1.2.1 Exercise 1

As seen in the tutorial, the first step to create a scenario in Greenfoot is to insert the objects that
participate in the world and study their behavior. Open the "practical_ex_1" scenario and
proceed to solve the following tasks:

Programming First practical exercise

4

Task 1.5

• Change the background of the scenario:

o Right click on the MouseAndCat class

o Select Set image

o Select backgrounds > weave

• Create two Mouse objects and leave them on the scenario at different positions

• Run the act() method on one of the new Mouse objects

o Right click on the Mouse object

o Select void act()

• Run the move() method on one of the new Mouse objects. Is there any difference with
respect to act()? Why?

o Right click on the Mouse object

o Select inherited from Animal > void move()

• Click the Act button of the scenario and study what happens

• Click the Run button of the scenario and study what happens

• Click the Pause button

1.2.2 Exercise 2

Task 1.5

• Create another Mouse object and put it on the central section of the scenario

• Run the void turn(int angle) method on the new Mouse object [inherited from Animal]. Use
different parameter values, both positive and negative. What happens? Why?

• Run the methods void turnLeft() and void turnRight() [inherited from Animal]

• Run the method boolean atWorldEdge() [inherited from Animal]. What happens?

• Drag and drop the mouse to the edge of the board

• Run again boolean atWorldEdge() [inherited from Animal]. What happens?

1.2.3 Exercise 3

Task 2

• Edit the Animal class

o Right click on Animal class

o Select Open editor

• Study the Java code that implements the methods turnRight() and turnLeft(), used in the
previous exercise

• Modify these two methods to make any animal turn 17º instead of 45º

• Add comments to the methods to explain how they are implemented

Programming First practical exercise

5

• Close the editor and go back to the scenario window

• Click the Compile button

• Create a Mouse object and put it on the central section of the scenario

• Run the methods void turnLeft() and void turnRight() to test the new implementation

[inherited from Animal]

1.2.4 Exercise 4

Task 3

• Edit the Mouse class

• Study the Java code that implements the methods act() used in exercise 1

• Modify this method to make mice turn to right (instead of turning to left) when they reach
the scenario edge

• Modify this method to make mice randomly turn just 10% of the times (instead of 50% of
the times) before moving

• Add comments to the methods to explain how they are implemented

• Close the editor and go back to the scenario window

• Click the Compile button

• Create some Mouse objects on the scenario

• Click the Run button. Is there any difference with respect to the previous implementation?

1.2.5 Exercise 5

Task 2

• Edit the MouseAndCat class

• Study the Java code that implements the methods MouseAndCat, in particular the last but
one sentence:

// populateWorld();

• Remove the comment to activate this sentence

• Close the editor and go back to the scenario window

• Click the Compile button

• Click the Run button. Is there any difference with respect to the previous implementation?

• As you can see, the scenario is initialized with 2 dogs, 1 cat and 5 mice. Modify the
MouseAndCat class to create 3 dogs and 8 mice

• Close the editor and go back to the scenario window

• Click the Compile button

• Select Scenario > Scenario information on the upper menu and read the game
instructions

• Click the Run button. Play the game! Reset the game to try to defeat all the crazy dogs

