
1

Third Practical Exercise
Programming

Grado en Ingeniería Informática

Universidad Carlos III de Madrid

Programming – Grado en Ingeniería Informática

Authors

Of the English version:

Juan Gómez Romero

Based on the work by:

Ángel García Olaya

Manuel Pereira González

Gustavo Fernández-Baillo Cañas

Programming Third practical exercise

2

Third Practical Exercise: Sokoban Game
In this exercise, students will develop a Java program to play Sokoban. In this game, the player
pushes boxes around in the board, trying to get them to storage locations. The game proceeds
as follows:

• At the beginning of the game, the player character is located on the initial position. The
player can move the character by using the keyboard

• The character can either move onto empty board cells or push a box
• To push a box, the cell where the box is moved to must be an empty cell or a storage

cell
• The game ends when all the boxes are on storage cells, or the player gives up

More information about Sokoban can be found on the Web [play] [Wikipedia].

1. First part: Methods
The first part of the practical exercise is focused on exercises with methods. A class named
FirstPart, including the methods described below, must be developed. During the development
of FirstPart, the main method will include calls to the methods to test them. At the end of the
development process, the code in the main method will be changed to allow playing the
Sokoban game.

A 2-dimensional array of characters will be used to represent the state of the board, according
to the following correspondence:

- 'H' (uppercase 'h'): Walls
- ' ' (space): Empty cell
- 'O' (uppercase 'o'): Storage cell
- '*' (asterisk): Box on an empty cell
- 'X' (uppercase 'x'): Stored box / Box on a storage cell
- 'a' (lowercase 'a'): Player character on an empty cell
- '@' ('at' symbol): Player character on a storage cell

For example, this array represents a valid Sokoban game board (11x19):

Programming Third practical exercise

3

A simpler board is the following (8x5):

At the beginning of the game, the board is printed on the screen. Next, the user is asked to
enter a move command (keys A, W, D, X to move; Q to end). The move is checked and, if valid,
it is performed, thus updating the board; otherwise, a corresponding message is displayed.

This is the output of a Sokoban game:

 HHH
 HOH

 H H

 H*H

HH HH

H H

HHaHH

 HHH

move? w

 HHH

 HOH

 H H

 H*H

HH HH

H a H

HH HH
 HHH

move? w

 HHH

 HOH

 H H

 H*H

HHaHH

H H

HH HH

 HHH

move? w

 HHHHH

 H H

 H* H

 HHH *HH

 H * * H

HHH H HH H HHHHHH

H H HH HHHHH OOH

H * * OOH

HHHHH HHH HaHH OOH
 H HHHHHHHHH
 HHHHHHH

 HHH

 HOH

 H H

 H*H

HH HH

H H

HHaHH
 HHH

Programming Third practical exercise

4

 HHH

 HOH

 H*H

 HaH

HH HH

H H

HH HH

 HHH

move? w

Good! You completed the game!

 HHH

 HXH

 HaH

 H H

HH HH

H H

HH HH

 HHH

1.1 Tasks

The implementation with methods of Sokoban must include two classes, Position and FirstPart,
which will be inside the package programming.partone.

Position is a data structure to represent the position of a cell in the board. This class has two
attributes:

- int row: integer number that stores the row of the cell
- int col: integer number that stores the column of the cell

For example, given the simple board above, the initial position of the player character is row: 6,
col: 2.

FirstPart includes the following STATIC methods to play Sokoban:

• main: This is the starting point of the program. At the beginning of the implementation,
the main method is empty. As long as additional methods are implemented, students
must include calls to them in the main, in order to test if they are correct. At the end of
the implementation, the main will only include a call to the play method

• generateBoard: Creates a 2-dimensional array of characters storing the initial state of
the game

o Parameters

� None

o Returns

� char [][]: Initial board

o Action

� Allocates and initializes an array with the initial representation of the
board. Returns this array

� The initial board is the 8x5 simple board

• printBoard: Prints the array representing the board

o Parameters

� char [][] board: Board to print

o Returns

Programming Third practical exercise

5

� Nothing

o Action

� Prints on the screen the array board

• getUserInput: Reads next move

o Parameters

� None

o Returns

� Read character

o Action

� Prints on the screen a message for the user and reads the input from
the keyboard. Returns a single character, which must be 'W', 'A', 'X', 'D'
or 'Q'

• findPlayerPosition: Finds player character position

o Parameters

� char [][] board: Board to search in

o Returns

� Position: Position of the player character on the board. If player is
not found, returns null

o Action

� Searches the player character on the board ('a' or '@'). Returns the
position where the character was found

• playerWins: Tests if all the storage positions are filled with boxes

o Parameters

� char [][] board: Board to test

o Returns

� boolean: true, if there are no cells with value 'O' (storage) or '@'
(player on storage); otherwise, false

o Action

� Searches cells with values 'O' or '@'. If a cell with any of these values is
found, the method ends and returns false; otherwise, the method
returns true

• getPositionAfterMove: Calculates the position which would result after making a move

o Parameters

� Position currentPos: Original position

� char direction: direction to move to ('W', 'A', 'D', 'X')

o Returns

� Position: Position after move. If move is not valid, the returned
position is null

o Action

� Creates a new Position object representing the position that would
result after moving currentPos to direction

• makeMove: Performs a move on the board

o Parameters

Programming Third practical exercise

6

� char[][] board: Game board

� char direction: direction to move to ('W', 'A', 'D', 'X')

o Returns

� boolean: true if the move was successful; otherwise, false

o Action

� First, the method finds the current position of the player character (use
findPlayerPosition)

� The method obtains the position that would result after moving the
player character in direction (use getPositionAfterMove)

� If the position is inside the board, the method must test if the movement
is valid according to the current state of the board. If so, the board will
be conveniently updated.

Please notice that several situations must be considered: the player
moves from an empty cell to an empty cell, the player moves from a
storage cell to an empty cell, the player moves a box to an empty cell,
the player moves a box to a storage cell, etc.

• play: Plays Sokoban game

o Parameters

� None

o Returns

� Nothing

o Action

� Implements the game loop: while the game continues, the program

1. Generates a new board
2. Prints the board
3. Gets player input
4. Makes move
5. Checks if player won

a. True: game ends
b. False: game continues (step 2)

1.2 Optional tasks

Optional tasks allow students to obtain extra points –please notice that the grade in this
exercise is 10 at most. In this part, two optional tasks are proposed:

1. Display the number of "steps" done by the player and the number of stored boxes when
the board is printed

2. Support several stages. When a scenario is solved, the player can continue with the
next stage (Implement 4-5 stages)

Programming Third practical exercise

7

2. Second part: Classes, objects and GUI
In the second part of the exercise, students will implement again the Sokoban game by relying
on classes and objects. The board will be shown now in graphical mode. Previous methods can
be partially reused.

Students are provided with two initial files: Sokoban.java and MySokoban.java:

- Sokoban: Includes several functionalities to deal with the graphical interface. DO NOT
MODIFY this class

- MySokoban: Students will complete this class will be completed to accomplish the
requirements of the exercise

These files are included inside the package programming.parttwo. They can be downloaded
from Aula Global.

Students must create two additional classes:

- Position: Class to represent a position of the board
- Board: Class to represent a game board

2.1 Starting tasks

Before starting with the solution of the second part, students are recommended to study the
code of the class MySokoban to understand how it works. To do so, please follow the
indications below:

• Run MySokoban. The initial implementation of this class just prints on the screen
random cell values. If any key is pressed, the cells are printed again with new random
values and the step counter is incremented in 10. 'Q' can be used to end the program.

• Study MySokoban. Look carefully the code of MySokoban:
o enum Cell: This enumerated type is used to represent allowed cell values

(The new implementation does not use an array of characters to represent the
state of the board, but an array of MySokoban.Cell)

o Constants ROWS, COLS: Size of the board

o public void processKey(char key): This method is automatically called
when a key is pressed

Programming Third practical exercise

8

o public Cell getCellFromBoard(int row, int col): This method is
used to retrieve a cell in a given position. In the initial implementation, no board
is created and random cells are returned

o public int getMoves(), public void setMoves(int moves):
Get/set methods for private attribute moves

• Test MySokoban. Solve these preliminary tasks:
o Remove the method getRandomCell. Change the method getCellFromBoard to

return a WALL cell at any case

o Modify the method processKey to increment the step counter in a random value
in {1, P, 100} after any key pressing

o Change the board size

o Extend the method processKey to increment the step counter in 1000 after
pressing key 'P'

2.2 Tasks

The new implementation of Sokoban must include four classes, which will be inside the
package programming.parttwo.

Sokoban MUST NOT BE MODIFIED by the students.

Position is a class to represent the position of a cell in the board. The contents of this class are:

- Attributes (private)
o int row: integer number that stores the row of the cell
o int col: integer number that stores the column of the cell

- Constructor
o Position

� Parameters
• int row: Initial row value

• int col: Initial column value
� Action

• Initializes attributes with the values passed as parameters
- Methods (non static)

o getRow, getCol: get methods for private attributes
� Parameters

• None
� Returns

• Attribute value
� Action

• Returns the current value of a private attribute

o getPositionAfterMove: Calculates the position which would result after making
a move

� Parameters

• char direction: direction to move to ('W', 'A', 'D', 'X')

� Returns

• Position: Position after move. If move is not valid, the
returned position is null

� Action

Programming Third practical exercise

9

• Creates a new Position object representing the position that
would result after moving this position in direction

Board is a class to represent the cells of the game. The contents of this class are:

- Attributes (private)
o MySokoban.Cell [][] b: board array

- Constructor
o Board

� Parameters
• int rows: Number of rows

• int cols: Number of columns
� Action

• Initialize the attribute b according to the configuration in the
complex 11x19 board

- Methods (non static)
o getCell: get cell value at specified position

� Parameters
• int row: Row

• int col: Column
� Returns

• MySokoban.Cell: Board value
� Action

• Returns the board value at position (row, col)

o findPlayerPosition: Finds player character position

� Parameters

• None

� Returns

• Position: Position of the player character on the board. If
player is not found, returns null

� Action

• Searches the player character on the board (cells
MySokoban.Cell.PLAYER or
MySokoban.Cell.PLAYER_AT_STORAGE). Returns the
position where the character was found

o playerWins: Tests if all the storage positions are filled with boxes

� Parameters

• None

� Returns

• boolean: true, if there are no cells with value
MySokoban.Cell.STORAGE or
MySokoban.Cell.PLAYER_AT_STORAGE; otherwise, false

� Action

• Searches cells with values STORAGE or
PLAYER_AT_STORAGE. If a cell with any of these values is
found, the method ends and returns false; otherwise, the
method returns true

o makeMove: Performs a move on the board

Programming Third practical exercise

10

� Parameters

• char direction: direction to move to ('W', 'A', 'D', 'X')

� Returns

• boolean: true if the move was successful; otherwise, false

� Action

• First, the method finds the current position of the player
character (use findPlayerPosition in Board)

• The method obtains the position that would result after moving
the player character to direction (use getPositionAfterMove
in Position)

• If the position is inside the board, the method must test if the
movement is valid according to the current state of the board. If
so, the board will be conveniently updated.

Please notice that several situations must be considered: the
player moves from an empty cell to an empty cell, the player
moves from a storage cell to an empty cell, the player moves a
box to an empty cell, the player moves a box to a storage cell,
etc.

MySokoban must be extended to play the game.

- Add an attribute with type Board named theBoard
- Extend the constructor of MySokoban to allocate memory for the attribute theBoard
- Modify the method getCellFromBoard to retrieve the cell at position (row, col) of

theBoard
- Modify the method processKey to:

1. Make move according to pressed key
2. If move was successful

a. Update moves counter
b. Test if player won. If player won, end the game

Programming Third practical exercise

11

2.3 Optional tasks

Optional tasks allow students to obtain extra points –please notice that the grade in this
exercise is 10 at most. In this part, two optional tasks are proposed:

1. Display the number of stored boxes
2. Support several stages. When a scenario is solved, the player can continue with the

next stage (Implement 4-5 stages) (All stages can have the same size)

3. Evaluation
The exercise will be graded according to the following criteria:

• TASK ACHIEVEMENT (6)

o First Part (3)
� Position class: 0,2
� main: 0,1
� generateBoard: 0,1
� printBoard: 0,1
� getUserInput: 0,2
� findPlayerPosition: 0,3
� playerWins: 0,3
� getPositionAfterMove: 0,4
� makeMove: 0,9
� play: 0,4

o Second Part (3)
� Class Position (0,5)

• Attributes, get/set: 0,1
• Constructor: 0,1
• getPositionAfterMove: 0,3

� Class Board (1,5)
• Attributes: 0,1
• getCell: 0,3
• findPlayerPosition: 0,2
• playerWins: 0,3
• makeMove: 0,6

� Class MySokoban (1)
• Attributes: 0,1
• main: 0,3
• getCellFromBoard: 0,2
• processKey: 0,4

• REPORT (2)

o Presentation, exposition, ortography: 0,5
o Quality of technical and user manual: 1
o Justification of design decisions: 0,5

• CODE (2)

o Quality of the implementation (efficiency, user input and error management): 1
o Quality of code and comments: 1

• EXTENSIONS (1)

o Section 1, display number of steps and stored boxes: 0,2
o Section 1, multiple stages: 0,3
o Section 2, display number of stored boxes: 0,1
o Section 2, multiple stages: 0,4
o Other improvements will be also considered

