
1

Second Practical Exercise
Programming

Grado en Ingeniería Informática

Universidad Carlos III de Madrid

Programming – Grado en Ingeniería Informática

Authors

Of the English version:

Juan Gómez Romero

Based on the work by:

Ángel García Olaya

Manuel Pereira González

Gustavo Fernández-Baillo Cañas

Programming Second Practical Exercise

2

Second Practical Exercise
This practical exercise has three parts:

• The first part is a tutorial aimed to introduce the programming environment (J2SE 1.6
and Eclipse). No deliveries will be made for this part.

• The second part is aimed at introducing Java programming. This part includes a set of
basic exercises to be developed by the students, and a set of questions associated to
each exercise to be answered. The code of these exercises will not be delivered.
Students have to create a video1

 (screencast) explaining the solutions to 4 of the
proposed exercises. These exercises will be assigned by your professor one week
before the deadline. In addition, this part will be also marked by filling an individual
test in Aula Global. This test will be held in the first lab class after the deadline.

• The third part encompasses more complex exercises. The code of these exercises
must be delivered.

1. First part: Introduction to Eclipse IDE
The first part of the second practical exercise is a tutorial aimed at introducing the tools that are
used in this lecture. No deliveries will be made for this tutorial part.

1.1 Java SE

The Java Development Kit (JDK) is the standard platform for general-purpose Java program
development. JDK includes, among others:

a) The javac compiler. The compiler verifies the syntax of the Java source files (.java
files) and converts them to compiled bytecode files (.class files).

b) The java virtual machine. The Java Virtual Machine (JVM) interprets the bytecode files
(.class) and runs the program.

c) The javadoc program. javadoc automatically generates program documentation.

d) A complete class catalogue with utilities for: file management, creation of graphical
interfaces, communications, etc.

1.1.1 javac compiler

javac is the program that transform Java source files to bytecode files. Bytecode files can be
interpreted by the virtual machine. javac reads a .java source file and generates a
corresponding .class file with bytecodes for each class included in it.

For instance, this command on the system command window:

> javac HelloWorld.java

Creates a HelloWorld.class file associated to the class defined in HelloWorld.java
2
 file.

1.1.2 Java Virtual Machine (JVM)

The JVM is a program that interprets the bytecode files. The JVM is an abstract layer between
Java programs and the operating system/hardware in which they are executed. In this manner,

1 Students are free to choose any setup for the video: a close-up of the student explaining the
solution to the camera with his/her words, a screencast without voice, etc. Software like
CamStudio (http://camstudio.org/) can be used to record the screen, if necessary –read
carefully the features and the help documents of this tool.
2 Notice that the class and the .java file that contains the class definition have the same name,
including upper and lowercase letters.

Programming Second Practical Exercise

3

Java programs are portable --which means that they can be executed in different platforms
without changing the source code--, because they are interpreted by JVMs with exactly the
same functionalities.

The call to the JVM program in the command line has a parameter: the name of the bytecode
file created from the source file that has a class with a main method. All the .class files
mentioned by the class with the main must be accessible (in a proper folder structure), in order
to load them:

For instance, this command:

> java HelloWorld

Executes the HelloWorld class previously compiled. To execute a class, it must contain

the method public static void main (String [] args). Java will execute all the instructions
in this method sequentially.

1.1.3 javadoc

javadoc is a tool to automatically generate the documentation of the classes contained in a Java
source file:

For instance, this command:

> javadoc HelloWorld.java

Generates a HTML file named HelloWorld.html with documentation for this class in the

format of the Java API (Application Programming Interface).

1.1.4 JDK class packages

JDK encompasses a complete class repository to facilitate the development of programs that
access the file system, create graphical interfaces, interchange data through a communication
network, etc. The documentation of the JDK 6 classes can be found at:
http://java.sun.com/javase/6/docs/api/.

1.1.5 Program development with the tools of the JDK

Usually, programmers use an integrated development framework that makes it easier to create,
test, and run source code. Nevertheless, the utilities of the JDK can be directly used. This
exercise explains how to compile and execute Java programs without using an IDE.

This exercise is not to be delivered.

Exercise 1. Direct use of J2SE

a. Create a file named HelloWorld.java with the contents described in Appendix I. Use any
text editor (e.g. the notepad in Windows) and save it in the Desktop. Be sure that the file
has .java extension, and not .java.txt.

b. Open a system console. In Windows 7, click Start and type "cmd" in the search box. An
alternative is to click on Start >> All programs >> Accessories >> Command Prompt.

c. In the command line, type "cd Desktop".

d. Compile the Java file to transform it into bytecodes with javac. Be sure that a .class file
has been created3.

e. Interpret the bytecodes with the java program.

3 If Windows does not find the javac program, before running javac the following command
must be executed: path = "path of the javac file".

Programming Second Practical Exercise

4

1.2 Eclipse

Eclipse is an open source4 Java-based graphical IDE (integrated development environment).
The Eclipse IDE is organized in perspectives. Each perspective shows the IDE functionalities
useful in a concrete task. For instance, the default Java perspective is intended for writing Java
source code and executing Java programs, whereas the Debug perspective is intended for code
debugging. The current Eclipse perspective can be changed by selecting Window >> Open
perspective in the menu, or by clicking the button on the top-right corner of the screen. As
mentioned, we will use the Java perspective for Java programming.

1.2.1 Running Eclipse

The first time Eclipse in launched (and successively, if desired), the user is asked for the
workspace location. The workspace is the directory where Eclipse will save the programs
created by the user (.java files) and the corresponding compiled bytecodes (.class files), as well
as the information related to the software projects. Students are recommended to use a
pendrive and choose as the workspace a directory of the USB file system. To do this, a
directory must be created in the pendrive (named Java, for instance) and designated as
workspace when launching Eclipse.

Figure 1: Selection of the workspace

1.2.2 Project creation

Eclipse manages Java developments with projects; that means that in order to create a Java
program in Eclipse, it is necessary to create a project before. To create a project, the following
steps must be completed:

1. Select File >> New >> Java Project in the menu.

2. Fill in the project data. For simple projects --like the ones that we will create in this
lecture--, only the project name needs to be specified. Create a project named
Practice, which will be used in this exercise and in the next one.

3. Once project data has been typed, click on the Finish button.

1.2.3 Package creation

A package is a folder inside the Eclipse project used to store Java source files. By default,
Eclipse saves class source files in a default package. It is recommended to create at least one
package in a project. To create a package:

1. File >> New >> Package in the menu.

4 Open source means that the source code of the program is available and, under certain conditions, it can be changed
and distributed. More information on open source software: http://www.opensource.org/docs/definition.php.

Programming Second Practical Exercise

5

2. Assign a name for the package in the package creation dialog (practicalex2)
(The convention is to name packages starting with a lowercase letter).

 Figure 2: Project creation

As a result, Eclipse creates a folder for the project in the workspace with two files: .project and
.classpath. These files do not contain Java code, because they are internally used by the IDE.
The Java source code is saved in the src sub-folder. The compiled Java code is saved in the
bin subfolder. The active workspace can be changed by selection File >> Switch Workspace in
the menu.

1.2.4 Class creation

To create a Java class inside a project, the following steps must be carried out:

1. Select File>> New >> Class in the menu.

2. Select the package of the class (practicalex2).

3. Type a name for the class in the class creation dialog which appears next (e.g.:

HelloWorld). The convention is to name Java classes starting with an uppercase letter.

4. Specify if a main method must be created for this class by ticking the corresponding

check box. (This is not necessary in our example, because we will change all the

contents of the file with the code in Appendix I).

5. Click the Finish button.

Programming Second Practical Exercise

6

Figure 3: Class creation dialog

Eclipse creates a file named <name of the class>.java with the source code corresponding to
the class skeleton. Next, the code implementing the class must be typed (inside the main
class). As mentioned, we will change all the contents of the file but the first line --the package of
the class.

1.2.5 Program running

Programs can be executed in the Java perspective by clicking on Run >> Run in the menu, or
alternatively, by typing Control + F11 in the keyboard. Running the program makes Eclipse
show the result of the execution on the console.

1.2.6 Program running with arguments5

As it occurs when invoking a Java program from the command-line, Eclipse allows changing the
arguments (also named program parameters, or simply parameters) passed to the main method
of the class. To change these values, select Run >> Open Run Dialog in the menu. In the
Arguments tab, we can specify a suitable list of arguments, one per line. Each argument will be

5 This section is recommended to be read when solving the exercise 28 of the second part of
the practical exercise.

Programming Second Practical Exercise

7

stored in successive positions of the args array, i.e. the first one is args[0], the second one is
args[1], etc.

Figure 4: Arguments in the execution of a Java program

1.2.7 Program debugging

The Eclipse debug perspective is intended for detecting and correcting program runtime errors,
which is known as debugging. The debug perspective can be activated by selecting Window >>
Open perspective >> Debug in the menu. The execution of programs with the debug
perspective can be analyzed by:

1. Pausing the execution of the program when it reaches a break point. The menu option
Run >> Toggle BreakPoint allows for specifying a line of the code where the execution
of the program is paused. After defining a break point, the program can be launched in
debugging mode by selecting Run >> Debug. The execution of the program will be
paused in the first break point.

2. Executing the program step by step (pausing the execution after each instruction). The
menu options Run >> Step into and Run >> Step Over allows for executing the program
line by line.

The debug perspective also allows programmers to check the value of variables during the
execution of the program in debug mode. The Variables tab list the variables which are active in
the current scope and their values. It is also possible to add new watches to check the value of
other variables or expressions. To do so, we have to select the expression to watch in the code
editor, right click and select Watches. The expression and its value will be shown on the
Watches tab. Watched expressions can be edited and removed.

Programming Second Practical Exercise

8

Using the debugger is strongly recommended to detect and fix runtime error. Using println
instruction usually leads to new errors and difficulties to find program bugs.

Figure 5: Debug perspective in Eclipse

Exercise 2. Introduction to Eclipse

a. Create a Java Project including the HelloWorld class described in Appendix I.

b. Execute the main method of the HelloWorld class.

c. Run the main method of the HelloWorld class step by step (Debug mode).

d. Watch the value of the name variable.

Programming Second Practical Exercise

9

2. Second part: Introduction to Java programming
The second part of the second practical exercise is aimed at applying the knowledge learnt in
lectures 2-4. In that regard, various exercises of increasing difficulty are proposed. Solutions to
this second part must be delivered for marking –that is, no code must be delivered and a video
must be created. This part is also evaluated with a test in Aula Global.

2.1 Basic Java data types, arrays and operators6

Note: Do not deliver the code of the exercises in this section. Instead, students must answer the
questions in their reports and complete the test in Aula Global (date to be scheduled). The
exercises should be developed with the Eclipse environment.

Exercise 1. Variable declaration

Create a class named Exercise1. Inside this class, create a main method and, inside this
method, declare eight variables, each one with a different basic Java data type (one declaration
per sentence). Declare a String variable. Next, assign valid values to each variable. Print
variable values on the screen with System.out.println(<variable name>) instructions,
replacing <variable name> by the name of each variable.

Exercise 2. Basic data types range

Continue the previous exercise (do not change anything, just append the new instructions below
the last System.out.println instruction) by adding assignment instructions for the numeric
variables with values out of the ranges of each one of the types. Print the results on the screen.
What happens in each case?

Exercise 3. Numeric types precision

Continue the previous exercise (do not change anything, just append the new instructions below
the last System.out.println instruction) by declaring two float variables. Initialize the first
variable with the value 1234567890F and the second one with the value 1234567899F. What is
the result? Repeat the same procedure with two integer variables. What is the result?

Exercise 4. Variable use

Create a class named Exercise4. Inside this class, create a main method and, inside this
method, declare a variable (of any type) without an initial value. Print this variable on the screen
before any value assignment. What happens? Why?

Create a second variable of the same type and make it equal to the first variable. What
happens? Why?

Exercise 5. Multiple declarations

Create a class named Exercise5. Inside this class, create a main method and, inside this
method, declare in a single line 3 variables of the same basic type (anyone of them).

Declare in a single sentence three variables of a type different from the previous one, assigning
a value to the first one and to the last one in the same declaration. Next, in other sentence,
assign a value to the second variable. Declare a variable of the same type and assign a value
resulting from the combination of them (e.g., the sum of all of them). Print the four variables on
the screen.

6 Some of the following exercises have been designed with errors. In these cases, the report
written by the student must explain which these errors are and why they occur. In order to
continue the execution of the incorrect program, once the errors have been located and
explained, please add two slashes (//) before the line that produces the error. This way, Java
will consider this line as a comment and the error will be eluded.

Programming Second Practical Exercise

10

Add below an instruction that changes the value of the first variable of this second set. Print the
value of the forth variable. Does the forth variable value (the ‘combination’ variable) change
after modifying the first variable? Why?

Exercise 6. Constants

Continue the previous exercise by adding final before de declaration of the second set of
variables. What happens? Why?

Remove the previous final modifier and add final before the declaration of the forth
variable. What happens? Why?

Create a String constant and provide a value. In the next line, change its value. Is it possible?

Exercise 7. Text strings (char data type)
Create a class named Exercise7. Inside, create a main method and, inside this method, type
the following code:

 char a;

 a = '\\\';

 System.out.println(a);

What is the result of the execution of the previous sentences? Why?

Is it possible to create a char with more than a character (for instance, char b = 'hola')?

Exercise 8. Variable copy

Create two variables of anyone of the basic types, assign a value to the first one, and make the
second one equal to the first one. Print on the screen the second variable. Extend the program
with a new instruction that changes the value of the first variable, and add other instruction to
print again the second one. Does the second variable change its value? Why? Repeat the same
procedure for two String variables.

Exercise 9. Array declaration (I)

Create a class named Exercise9. Inside, create a main method. Inside the main, declare an
array of any integer data type, an array of any real data type, a char array, a boolean array,
and a String array. Create these arrays with different sizes. In the next sentences, assign
values to some of the elements of the arrays. What happens when we use (e.g. print) some of
the elements that have not been initialized? What is the difference with respect to exercise 3?

Create an array of any type providing an initial value for its elements in the declaration.

Use length to print on the screen the size of the previous arrays. Change the length of one of
these arrays by typing array.length = 5. What happens? Why?

Select one of the previous arrays and make equal two array elements (e.g. a[5] = a[3]). Print
both elements. Next, add a line changing the value of the second element, and print both
elements again. Does the first one also change? Why?

Exercise 10. Array copy

Create a class named Exercise10. Inside, create a main method. Create an array of any
type. Provide a value for all its elements. Create a second array and make it equal to the first
one (with a = b). Change the value of an element of the first array. Does the corresponding
element of the second array change? Why?

Create two additional arrays and repeat the previous steps, but instead of = use
System.arraycopy(source, first element, destination, first element,

number of elements). Can you notice any difference?

Exercise 11. Multiple dimension arrays

Create a class named Exercise11. Inside, create a main method. Create a two dimension
array of any type and assign values to its elements in the declaration.

Create a two dimension array of a different type. Assign values to its elements one by one.

Exercise 12. Length of the dimensions of an array

Programming Second Practical Exercise

11

Create a class named Exercise12 and its corresponding main method. Define a 3x4 String
array and assign values to its elements. Print on the screen the number of rows and columns of
the array by using the length property.

Exercise 13. Arithmetic operations with integers (I)

Create a class named Exercise13 and its corresponding main method. Type the following
code inside:

 int a;

 int b;

 int c;

 int d;

 a = 2;

 b = 3 * 3;

 c = 7 / 3;

 d = a + b * c;

System.out.println(d);

What is the result of the previous code? Why?

Exercise 14. Arithmetic operations with integers (II)

Create a class named Exercise14 and its corresponding main method. Declare three
variables for each one of the four integer-based (byte, short, int, long) data types (12
variables) and three char variables. For each one of the types (integers and chars), provide
initial values for the first two variables, and assign to the third one the result of operations
involving all the Java arithmetic operators (adding, subtraction, etc.). Print the results on the
screen.

Do you get any error? Why? (Note: Once discovered the errors, add // in the beginning of the
wrong lines to convert them in comments, instead of erasing them).

Exercise 15. Arithmetic operations with integers (III)
Create a class named Exercise15 and its corresponding main method. Declare three int
variables. Assign value 5 to the first one, and value 0 to the second one. Assign the third
variable the result of dividing the first variable by the second one. Print the result on the screen.
Is there any error? Why? Does the result change if the variables are declared with other integer
type instead of int?

Exercise 16. Autoincrement

Create a class named Exercise16 and its corresponding main. Declare two long variables,
assign a value for the first one, and make the second one equal to the autoincrement of the first
one (with the prefix autoincrement operator). Print them.

Next, create two additional variables and repeat the same code, but using the postfix
autoincrement operator. Print them. Is there any difference? Why?

Repeat these steps for the autodecrement operator.

Exercise 17. Arithmetic operations with char
Create a class named Exercise17 and its corresponding main method. Declare a char
variable with a suitable initial value. Print it with System.out.println(variable+1). What
happens? Why? Print it with System.out.println(++variable). What happens? Why?

Exercise 18. String concatenation
Create a class named Exercise18 and its corresponding main method. Declare three
String variables. Assign any value to the first two variables and make the third one equal to
the first one + second one. Print the third variable. What happens? What happens if you make
third = first – second?

Programming Second Practical Exercise

12

Exercise 19. Arithmetic operations with real numbers

Repeat exercises 13, 14 and 15, but use real types (double or float) instead of int. Can
you see any difference?

Exercise 20. Automatic type conversion

Create a class named Exercise20 and its corresponding main. Declare and assign an initial
value to variables of each basic data type, including String. Next, assign one variable to the
other ones, and repeat for each variable. In your report, complete the next table with the valid
assignments. Write "YES" if the variable in the row can be assigned to the variable in the
column (i.e. <column variable> = <row variable>; is possible); otherwise write "NO".

Type byte short int Long float double char boolean String

byte YES

short YES

int YES

long YES

float YES

double YES

char YES

boolean YES

String YES

Exercise 21. User-forced type conversion

Create a class named Exercise21 with the same contents as Exercise20. Use the casting
operator to force the conversion between all types, and fill in the table. Are there remaining
"NO" cells? If some cell is still "NO", answer why.

Exercise 22. Type conversion

Create a class named Exercise22 with a corresponding main method. Type the following
code inside the main method:

 char a;

 int b;

 short c;

 long d;

 float e;

 double f;

 System.out.println("we assign a char var. to integers");

 a = '4';

 b = a;

 c = a;

 d = a;

 System.out.println("a:" + a);

 System.out.println("b:" + b);

 System.out.println("c:" + c);

 System.out.println("d:" + d);

 System.out.println("we assign a double var. to a float");

 f = 1e200;

 e = f;

 System.out.println("f:" + f);

 System.out.println("e:" + e);

Programming Second Practical Exercise

13

 System.out.println("we assign a float var. to an int");

 e = 1234.5678;

 b = e;

 System.out.println("e:" + e);

 System.out.println("b:" + b);

What is the result of the previous program? Why?

Exercise 23. Relational operators
Create a class named Exercise23 with a corresponding main method. Type the following
code inside the main method:

 int a,b;

 float c=3;

 boolean r,s,t,u,v,w,x;

 a = 3;

 b = 8;

 r = a == 0;

 s = a != 0;

 t = a <= b;

 u = b >= a;

 v = b > a;

 w = b < a;

 x = c == 3.0;

 System.out.println("r:" + r);

 System.out.println("s:" + s);

 System.out.println("t:" + t);

 System.out.println("u:" + u);

 System.out.println("v:" + v);

 System.out.println("w:" + w);

 System.out.println("x:" + x);

What is the result of the previous program? Why?

Exercise 24. Debugging programs with basic data types

Run the program developed in the previous exercise in debug mode –use a breakpoint and step
by step execution. Can you see how the values of the variables change? Which are the
advantages of the debugger in this case?

Exercise 25. Logic operators
Create a class named Exercise25 with a corresponding main method. Type the following
code inside the main method:
 int a,b;

 boolean r,s,t;

 a = 3;

 b = 8;

 r = a == 0 | b >= a;

 s = a != 0 & b < a;

 t = a <= b ^ b > a;

 System.out.println("r:" + r);

 System.out.println("s:" + s);

 System.out.println("t:" + t);

What is the result of the previous program? Why?

Programming Second Practical Exercise

14

Exercise 26. Assignment operators

Create a class named Exercise26 with a corresponding main method. Type the following
code inside the main method:

 int a=5,b=3;

 boolean r=true,s=false;

 a+=b+8*b;

 r&=s;

 System.out.println("a:" + a);

 System.out.println("b:" + b);

 System.out.println("r:" + r);

 System.out.println("s:" + s);

What is the result of the previous program? Why?

Exercise 27. Operator precedence

Create a class named Exercise27 with a corresponding main method. Type the following
code inside the main method:

 int a=5,b=3,c=20,d=20;

 c-=++a/b-3+a%b;

 d-=++a/(b+3-4*a)%b;

 System.out.println("c:" + c);

 System.out.println("d:" + d);

What is the result of the previous program? Why?

Exercise 28. Variable scope

Create a class named Ejercicio28 with a corresponding main method. Inside the main
method, declare a variable of any type. Next, declare again the same variable (same name and
same type). Is it possible? Why? What happens if the name is the name, but the type is
different?

Enclose the declaration of the first variable between two braces {}. Can you declare now the
same variable out of the braces? Why?

Assign a value to the variable inside the braces. Print it out of the braces. What happens? Why?

Exercise 29. Irregular arrays

Create a class named Exercise29 with a corresponding main method. Define a two-
dimension irregular array of String named year. Each row will represent a month, and the
columns of each row will represent the days of the month (in a non-leap year). That is, the first
row should have 31 elements, the second one 28, etc. Assign the value "no class today" to the
cell corresponding to January, 8th. Assign other values to the cell corresponding to today. Print
on the screen the number of rows and columns of the array by using the length property.

Exercise 30. Arguments of the main method

When executing the main method of a class, we can add execution parameters (see the Eclipse
tutorial in Part I). These parameters are stored in an array of String named args. This array,
specified in the declaration of the main, is automatically created and assigned by Java.

Create a class named Exercise30 with a corresponding main method that prints on the
screen the first three arguments passed to the program. What happens if the program is called
with less than three arguments? And is it is called with more than three arguments?

Exercise 31. Loops and arrays

Define an array of 100 integer elements. Use a while loop to initialize the array with the
numbers from 100 to 199. Next, use a while loop to print on the screen the contents of the
array.

Programming Second Practical Exercise

15

Exercise 32. Objects as data structures

Define a class named Student with three attributes: name (String), surname (String),
average_mark (double). Create a second class named Exercise32 with a main method.
Declare a Student object reference and print directly this variable on the screen. What
happens? Initialize the object reference with a null value. Print the variable and the name
attribute. What happens? Why? Add the proper code to initialize the object reference –use the
new operator. Print the variable and the name attribute. What happens?

Exercise 33. Attribute initialization

Extend the previous exercise to print all the object attributes on the screen. What happens?
Assign values to the object attributes in the main method and print them again. What happens?
Modify the implementation of the Student class to assign default values to the attributes: name
and surname must be "??", average_mark must be 0. Declare a second Student object
reference and initialize it with the new operator. Print the attribute values of this second object
on the screen. What happens? Which is difference with respect to the previous case? Assign
other values to the attributes of the second object. Is it possible?

Exercise 34. Direct object assignment

Extend the previous exercise by assigning the first Student object to the second Student
object. Print on the screen the values of the attributes of both objects. Assign the value "John"
to the name attribute of the second object. Print on the screen the value of the name attribute of
the first object. What happens?

Exercise 35. Debugging programs with objects

Run the program developed in the exercises 33 and 34 in debug mode –use a breakpoint and
step by step execution. Can you see how the values of the objects and their attributes change?
Which are the advantages of the debugger in this case?

Programming Second Practical Exercise

16

3. Third part: Advanced exercises

Exercise 1. Division

Create a program that reads two integer values from the keyboard and stores them in two
integer variables, respectively value_a and value_b. If value_a is divisible by value_b, the
program must print "[a] is divisible by [b]" ([a] and [b] must be the actual values of the variables
value_a and value_b). If value_a is not divisible by value_b, the program must print "[a] is
not divisible by [b], the remainder is [r]" (being [r] the actual value of the reminder of a/b).

Exercise 2. Rock-paper-scissors

Create a program to calculate who is the winner of a "rock-paper-scissors" game. The program
must read two String values from the keyboard each one representing the selection of a
player (selection_1, selection_2). The program must print on the screen which player is
the winner of the game and the players' gestures. For example, if selection_1 is "Rock" and
selection_2 is "Paper", the program must print "Player 2 wins. Paper defeats Rock". If both
players make the same gesture, the program must print "Tie game!"

Select in Eclipse the option "Show line numbers" (Preferences >> Text editors --> Show line
numbers). Run the program step by step with the debugger, using "Paper" and "Rock" as the
inputs, and write down the sequence of line numbers resulting from this execution. Include this
sequence as a comment at the end of the program.

Exercise 3. Football pool

Create a program that declares a 2-dimension char array of15 rows x 3 columns. Use nested
loops to set a '1' to the elements in the first column, 'X' to the elements in the second column,
and '2' to the elements in the last column. Use nested loops to print the array contents on the
screen. Change the value of any cell in the array (set '?' value) and print it again.

Exercise 4. Exponentiation

Create a program to print the powers of an integer number read from the keyboard. For
example, if the read value is 3, the program must print the output below. NOTE: use the
Math.pow(base, exponent) method to make the calculus.

3^0 = 1

3^1 = 3

3^2 = 9

3^3 = 27

W

3^10 = 59049

Exercise 5. Daytime

Create a program to calculate the day period corresponding to a given hour read from the
keyboard. The program must check if the received hour is between 0 and 23, and print (by
using a switch instruction):

 "morning" when the hour is between 6 and 12

 "afternoon" when the hour is between 13 and 21

 "evening" when the hour is between 22 and 2

 "night" when the hour is between 3 and 5

Exercise 6. Draughts

Create a program that defines an array to represent a draughts 10x10 board with the initial
position of all the pieces. Print the board on the screen. Implement the first movement of one of
the white pieces situated in one of the most advanced position. The piece to be moved must be
read from the keyboard –an integer value in {1, W, 5}. The destination position must be also

Programming Second Practical Exercise

17

read from the keyboard –an integer value in {1, 2}; being 1 the position on the left, and 2 the
position on the right. Print the board resulting from the move. If the combination of the piece and
the position is not valid, print "Not valid move!".

The board must be represented as follows:

• Empty squares: '@' symbol for empty light squares; '#' symbol for empty dark squares.

• Non-empty squares: 'd' for squares with a white piece on; 'D' for squares with a black
piece on.

Source: http://en.wikipedia.org/wiki/Draughts

Exercise 7. Factorization

Create a program with a main method that, given an integer value received as a parameter,
prints out the result of its prime factorization.

Exercise 8. Previous second

Create a program with a main method that, given a time value, prints out the time
corresponding to the previous second. The time values must be passed as arguments to the
main method (the first one is the hour, the second one the minutes, the third one the seconds).

Exercise 9. Set inclusion

Create a program with a main method that receives several numerical values as arguments.
The values must be stored in 2 arrays named array1 and array2; the first half of them in
array1, the remaining ones in array2. If the number of values is odd, the last value is
discarded. The program must check if all the values in array2 are included in array1. If this
condition holds, the program must print "set 2 is included in set 1"; otherwise, the program must
print "set 2 is not included in set 1".

NOTE: Repeated values are allowed in both arrays.

Exercise 10. Blackjack

Create a program to play a simplified version of the blackjack game for one player.

The game consists of several iterations in which cards are drawn from the deck managed by the
computer. Each card as a numerical value; the value of the drawn card is added to the player
score. Accordingly, at each iteration, the program must generate a random card. Cards will be
objects of the Card class, which must have three attributes: value (int), name (String), and
suit (String: clubs ♣, diamonds ♦, hearts ♥ and spades ♠) (see NOTE). The value of a card is
calculated as follows: aces 1 point, figures 10 points, remaining cards have their numerical
value.

After updating the player score, the program must print the name of the card, its value and the
player score. The player selects whether he/she wants to continue or not. The player wins either
if he/she: (a) obtains 21 points; (b) obtains less than 21 points, but the score is closer to 21 than
the score of the computer –the points of the computer are calculated as a random number in {1,
W, 21}. The player loses if he/she: (a) obtains more than 21 points; (b) obtains less than 21
points, but this number is not closer to 21 than the score of the computer.

NOTE: It is not necessary to check if a card has been previously generated; i.e., repeated cards
are allowed.

Programming Second Practical Exercise

18

Appendix I: HelloWorld.java

/**

 * The HelloWorld class is an example for the students.

 * @author Juan Valdes.

 * @version 1.0, March 2008.

*/

import java.util.Scanner;

public class HelloWorld {

 /**

 * Generates a String with the name of the student as read

 * from the keyboard.

 * @return the name of the student.

 */

 public static String readName(){

 Scanner sc = new Scanner(System.in);

 System.out.println("Enter your name and type Enter: ");

 String name = sc.nextLine();

 return name;

 }

 /**

 * Says Hello to the student.

 * @param args the set of command-line arguments.

 * @return .

 * @exception .

 */

 public static void main(String[] args) {

 if(args.length > 0){

 System.out.println("Hello " + args[0]);

 } else{

 System.out.println("Hello "+ readName());

 }

 }

}

