
Mobile Information
Device Profile

for Java™ 2 Micro Edition

Version 2.0

JSR 118 Expert Group
jsr-118-comments@jcp.org

Java Community Process

ii

de,
,

e

thout
create
s)
xtend

or

ur not

h”
cts
ved

ise
thorize
tion.

th an
; and
a”,
e Java

l

rs is
re

t any
Mobile Information Device Profile Specification (“Specification”)
Version: 2.0
Status: FCS
Release: November 5, 2002

Copyright 2002 Sun Microsystems, Inc. and Motorola, Inc.
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. (“Sun”) hereby grants you a fully-paid, non-exclusive, non-transferable, worldwi
limited license (without the right to sublicense), under Sun’s applicable intellectual property rights to view
download, use and reproduce the Specification only for the purpose of internal evaluation, which shall b
understood to include developing applications intended to run on an implementation of the Specification
provided that such applications do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (wi
the right to sublicense) under any applicable copyrights or patent rights it may have in the Specification to
and/or distribute an Independent Implementation of the Specification that: (i) fully implements the Spec(
including all its required interfaces and functionality; (ii) does not modify, subset, superset or otherwise e
the Licensor Name Space, or include any public or protected packages, classes, Java interfaces, fields
methods within the Licensor Name Space other than those required/authorized by the Specification or
Specifications being implemented; and (iii) passes the TCK (including satisfying the requirements of the
applicable TCK Users Guide) for such Specification. The foregoing license is expressly conditioned on yo
acting outside its scope. No license is granted hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular “pass throug
requirements in any license You grant concerning the use of your Independent Implementation or produ
derived from it. However, except with respect to implementations of the Specification (and products deri
from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may neither: (a) grant or otherw
pass through to your licensees any licenses under Sun’s applicable intellectual property rights; nor (b) au
your licensees to make any claims concerning their implementation’s compliance with the Spec in ques

For the purposes of this Agreement: “Independent Implementation” shall mean an implementation of the
Specification that neither derives from any of Sun’s source code or binary code materials nor, except wi
appropriate and separate license from Sun, includes any of Sun’s source code or binary code materials
“Licensor Name Space” shall mean the public class or interface declarations whose names begin with “jav
“javax”, “com.sun” or their equivalents in any subsequent naming convention adopted by Sun through th
Community Process, or any recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any materia
provision of or act outside the scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licenso
granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, J2ME, and the Java Coffee Cup logo a
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED “AS IS”. SUN MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, THAT
THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY
PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represen
commitment to release or implement any portion of the Specification in any product.
iii

from:
oom
u are

U.S.
e and
.R.
 and

 your
y: (i)
n a
h

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. SUN
MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the
Specification will be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR
DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR
RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting
(i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or clean r
implementation; and/or (iii) any claims that later versions or releases of any Specification furnished to yo
incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a
Government prime contractor or subcontractor (at any tier), then the Government’s rights in the Softwar
accompanying documentation shall be only as set forth in this license; this is in accordance with 48 C.F
227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101
12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
use of the Specification (“Feedback”). To the extent that you provide Sun with any Feedback, you hereb
agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii) grant Su
perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense throug
multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any
purpose related to the Specification and future versions, implementations, and test suites thereof.

(LFI#119098/Form ID#011801)
iv

..... 1

23

9

... 35

... 39

. 49

15
Contents
Overview ..

Mobile Information Device Profile, v2.0 (JSR-118).................................... 1

Over The Air User Initiated Provisioning Specification 11

Security for MIDP Applications ...

Trusted MIDlet Suites using X.509 PKI .. 2

java.lang ...
IllegalStateException .. 37

java.util ..
Timer ... 40
TimerTask ... 46

javax.microedition.io ..
CommConnection ... 55
Connector .. 60
HttpConnection ... 65
HttpsConnection .. 85
PushRegistry ... 89
SecureConnection ... 100
SecurityInfo ... 103
ServerSocketConnection ... 105
SocketConnection ... 108
UDPDatagramConnection .. 113

javax.microedition.lcdui .. 1
Alert .. 128
AlertType .. 136
Canvas ... 139
Choice ... 155
ChoiceGroup ... 166
Command .. 175
CommandListener ... 183
CustomItem ... 184
DateField ... 201
Display .. 205
Displayable .. 218
Font ... 223
Form .. 231
Gauge .. 240
Graphics .. 247
Image ... 270
ImageItem ... 281
Item ... 287
ItemCommandListener .. 300
ItemStateListener .. 301
List .. 303
v

Contents

47

91

21

31

453

463

501

. 517

. 543
Screen .. 315
Spacer .. 316
StringItem .. 319
TextBox ... 323
TextField ... 330
Ticker .. 345

javax.microedition.lcdui.game .. 3
GameCanvas ... 349
Layer ... 356
LayerManager ... 360
Sprite ... 365
TiledLayer ... 382

javax.microedition.media .. 3
Control .. 396
Controllable ... 397
Manager .. 399
MediaException .. 404
Player .. 406
PlayerListener ... 416

javax.microedition.media.control ... 4
ToneControl .. 422
VolumeControl .. 428

javax.microedition.midlet ... 4
MIDlet ... 444
MIDletStateChangeException .. 450

javax.microedition.pki ...
Certificate .. 455
CertificateException .. 458

javax.microedition.rms ..
InvalidRecordIDException ... 469
RecordComparator .. 471
RecordEnumeration .. 473
RecordFilter .. 478
RecordListener .. 479
RecordStore ... 481
RecordStoreException .. 493
RecordStoreFullException .. 495
RecordStoreNotFoundException .. 497
RecordStoreNotOpenException .. 499

The Recommended Security Policy for GSM/UMTS
Compliant Devices ..

Almanac ...

Index ..
vi

ofiles

p

rnal

p

ing
C H A P T E R 1
Overview
Description

Mobile Information Device
Profile, v2.0 (JSR-118)
JCP Public Draft Specification

Java 2 Platform, Micro EditionTM

Copyright 2000,2002, Motorola, Inc. and Sun Microsystems, Inc. ALL RIGHTS RESERVED.

Preface
These documents define theMobile Information Device Profile (MIDP) v2.0 Specification for the Java 2
Platform, Micro Edition (J2METM).

A profile of J2ME defines device-type-specific sets of APIs for a particular vertical market or industry. Pr
are more exactly defined in the related publication,Configurations and Profiles Architecture Specification, Sun
Microsystems, Inc.

Revision History

Date Version Description

1-September-2000 MIDP 1.0 Specification Final MIDP 1.0 specification

23-October-2001 MIDP 2.0, EG Draft 2 First complete draft published to the Expert Group

6-November-2001 MIDP 2.0, EG Draft 3 Incorporated changes made during 30-31 October Expert Grou
meeting

20-November-2001 MIDP 2.0, EG Draft 4 Incorporated changes discussed on EG mailing lists.

18-December-2001 MIDP 2.0, EG Draft 5 Incorporated changes made during 5-6 December Expert group
meeting and EG mailing lists. Published for Community Review

12-February-2002 MIDP 2.0, EG Draft 6 Incorporated changes made during Community Review and inte
EG mailing lists.

12-March-2002 MIDP 2.0, EG Draft 7 Incorporated changes made during 20-21 February Expert grou
meeting and EG mailing lists. Published for Public Review

09-April-2002 MIDP 2.0, EG Draft 8 Incorporated changes made during 26 March Expert group meet
and EG mailing lists.
1

Mobile Information Device Profile, v2.0 (JSR-118)

cts, the

n-

aft is

e EG

 RI

n

Who Should Use This Specification
This document is targeted at the following audiences:

• The Java Community Process (JCP) expert group defining this profile

• Implementers of the MIDP

• Application developers targeting the MIDP

• Network operators deploying infrastructure to support MIDP devices

How This Specification Is Organized
This specification is contained in this HTML file and the following related documents:

• JavaDoc API Documentation

• OTA User Initiated Provisioning Specification

• Security for MIDlet suites

• The Recommended Security Policy for GSM/UMTS Compliant Devices

There are requirements listed both in this document and the API documentation. Where there are confli
requirements listed in this document override the API documentation.

Related Literature
• The Java Language Specification, Second Edition by James Gosling, Bill Joy, and Guy L. Steele. Addiso

Wesley, June 2000, ISBN 0-201-31008-2

• The Java Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm and Frank Yellin.
Addison-Wesley, 1999, ISBN 0-201-43294-3

• Connected, Limited Device Configuration (JSR-30), Sun Microsystems, Inc (http://jcp.org/jsr/detail/
30.jsp).

• Mobile, Information Device Profile (JSR-37), Sun Microsystems, Inc (http://jcp.org/jsr/detail/37.jsp).

23-April-2002 MIDP 2.0, EG Draft 9 Incorporated changes discussed in the EG mailing lists.

9-May-2002 MIDP 2.0, EG Draft 10 Incorporated changes discussed in the EG mailing lists.

29-May-2002 MIDP 2.0, EG Draft 11 Incorporated changes discussed in the EG mailing lists.

11-June-2002 MIDP 2.0, EG Draft 12 Incorporated changes discussed in the EG mailing lists. This dr
considered final in terms of functionality in all areas. Further
clarifications and editorial changes may be made in one more
revision, but only if necessary.

15-July-2002 MIDP 2.0, EG Draft 13 Incorporated editorial changes and clarifications discussed in th
mailing lists. This is final draft candidate 1.

02-August-2002 MIDP 2.0, EG Draft 14 Incorporated editorial changes and clarifications from the RI and
TCK teams and EG. This draft is being submitted to the PMO as
Proposed Final Draft.

04-September-2002 MIDP 2.0, EG Draft 15 Incorporated minor editorial changes and clarifications from the
and TCK teams and EG.

05-November-2002 MIDP 2.0, Final
Specification

Incorporated minor changes to the Security Policy Appendix, fixed a
incorrect IETF URL, corrected MIDlet.platformRequest() method
signature, finalized copyright co-ownership, and incorporated final
license.
2

Mobile Information Device Profile, v2.0 (JSR-118)

tail/

.txt).

s. The
• Connected, Limited Device Configuration 1.1 (JSR-139), Sun Microsystems, Inc (http://jcp.org/jsr/de
139.jsp).

Report and Contact
Your comments on this specification are welcome and appreciated. Please send your comments to:

jsr-118-comments@jcp.org

Definitions
This document uses definitions based upon those specified in RFC 2119 (http://www.ietf.org/rfc/rfc2119

Specification Terms

Contributors
This specification was produced by the JSR-118 Expert Group, as a part of the Java Community Proces
following companies and individuals, listed in alphabetical order, were members of the Expert Group:

• Companies:

•4thpass Inc

•AGEA Corporation

•Alcatel

•Aplix Corporation

•AromaSoft Corp

•Baltimore Technologies

•CELLon France

•Distributed Systems Technology Centre

•Elata PLC

•Esmertec

•Espial Group Inc

Term Definition

MUST The associated definition is an absolute requirement of this specification.

MUST NOT The definition is an absolute prohibition of this specification.

SHOULD Indicates a recommended practice. There may exist valid reasons in
particular circumstances to ignore this recommendation, but the full
implications must be understood and carefully weighed before choosing a
different course.

SHOULD NOT Indicates a non-recommended practice. There may exist valid reasons in
particular circumstances when the particular behavior is acceptable or
even useful, but the full implications should be understood and the case
carefully weighed before implementing any behavior described with this
label.

MAY Indicates that an item is truly optional.
3

Mobile Information Device Profile, v2.0 (JSR-118)
•France Telecom / Orange

•Fujitsu Limited

•German Aerospace Center (DLR), Institute of Communications and Navigation

•Hitachi Ltd./Digital Media Group

•In Fusio

•J-PhoneEast Co. Ltd

•Logica Mobile Networks

•Mitsubishi Electric Corp

•Mobile Scope AG

•Mobilitec

•Motorola

•NEC Corporation

•Nextel Communications Inc

•Nokia

•NTT DoCoMo, Inc

•Omnitel Pronto Italia S.p.A

•One 2 One

•Openwave Systems, Inc

•Orange (UK)

•Palm

•Philips Consumer Communications

•Philips Semiconductors

•Research In Motion (RIM)

•Samsung Electronics Co., Ltd

•Sharp Labs

•Siemens AG

•Siemens ICM

•Smart Fusion

•Sony Ericsson Mobile Communications

•Sun Microsystems, Inc

•Symbian Ltd

•Telefónica Móviles España

•Vaultus, Inc

•Veloxsoft, Inc

•Vodafone Global Platform & Internet Services

•Vodafone Group Services Limited
4

Mobile Information Device Profile, v2.0 (JSR-118)

ation

lication

 with

is

 will
ns.

 all
t of
chieve
•Vodafone Multimedia

•Zucotto Wireless

• Individuals:

•Fabio Ciucci

•Glen Cordrey

•Jon Eaves

•David Hook

•Myank Jain

•Neil Katin

•Steve Ma

•Ravi Reddy

•Wai Kit Tony Fung

Introduction
This document, produced as a result of Java Specification Request (JSR) 118, defines the Mobile Inform
Device Profile (MIDP) v2.0 for the Java 2 Platform, Micro Edition (J2METM). The goal of this specification is
to define an enhanced architecture and the associated APIs required to enable an open, third-party, app
development environment for mobile information devices, or MIDs.

The MIDP 2.0 specification is based on the MIDP 1.0 specification and provides backward compatibility
MIDP 1.0 so that MIDlets written for MIDP 1.0 can execute in MIDP 2.0 environments.

The MIDP is designed to operate on top of the Connected, Limited Device Configuration (CLDC) which
described inConnected, Limited Device Configuration (JSR-30) (http://jcp.org/jsr/detail/30.jsp), Sun
Microsystems, Inc. While the MIDP 2.0 specification was designed assuming only CLDC 1.0 features, it
also work on top ofCLDC 1.1 (JSR-139)(http://jcp.org/jsr/detail/139.jsp), and presumably any newer versio
It is anticipated that most MIDP 2.0 implementations will be based on CLDC 1.1.

Scope
Mobile Information Devices (MIDs) span a potentially wide set of capabilities. Rather than try to address
such capabilities, the MIDP 1.0 (JSR-037) and MIDP 2.0 (JSR-118) expert groups agreed to limit the se
APIs specified, addressing only those functional areas that were considered absolute requirements to a
broad portability and successful deployments. These include:

• Application delivery and billing

• Application lifecycle (i.e., defining the semantics of a MIDP application and how it is controlled)

• Application signing model and privileged domains security model

• End-to-end transactional security (https)

• MIDlet push registration (server push model)

• Networking

• Persistent storage

• Sound

• Timers

• User interface (UI) (including display and input, as well as the unique requirements for games).
5

Mobile Information Device Profile, v2.0 (JSR-118)

. These

rather
ple, a

ided

g and
uring

nt for

ces
 into
n in

m and

 the
rlying

tionality
The above features are discussed in more depth in the associated Javadoc.

By the same reasoning, some areas of functionality were considered to be outside the scope of the MIDP
areas include:

• System-level APIs: The emphasis on the MIDP APIs is, again, on enabling application programmers,
than enabling system programming. Thus, low-level APIs that specify a system interface to, for exam
MID’s power management or voice CODECs are beyond the scope of this specification.

• Low-level security: The MIDP specifies no additional low-level security features other than those prov
by the CLDC.

Architecture
This section addresses issues that both implementers and developers will encounter when implementin
developing MIDP. While not comprehensive, this chapter does reflect the most important issues raised d
deliberations of the MIDP Expert Group (MIDPEG).

As stated before, the goal of the MIDP is to create an open, third-party application development environme
MIDs. In a perfect world, this specification would only have to address functionality defined by the MIDP
specification. In reality, most devices that implement the MIDP specification will be, at least initially, devi
that exist on the market today. The High-Level Architecture shows a high-level view of how the MIDP fits
a device. Note that not all devices that implement the MIDP specification will have all the elements show
this figure, nor will every device necessarily layer its software as depicted in this figure.

In the High-Level Architecture, the lowest-level block (MID) represents the Mobile Information Device
hardware. On top of this hardware is the native system software. This layer includes the operating syste
libraries used by the device.

Starting at the next level, from left to right, is the next layer of software, the CLDC. This block represents
Virtual Machine and associated libraries defined by the CLDC specification. This block provides the unde
Java functionality upon which higher-level Java APIs may be built.

High-Level Architecture View

Two categories of APIs are shown on top of the CLDC:

• MIDP APIs: The set of APIs defined in this specification.

• OEM-specific APIs: Given the broad diversity of devices in the MIDP space, it is not possible to fully
address all device requirements. These classes may be provided by an OEM to access certain func
specific to a given device. These applications may not be portable to other MIDs.
6

Mobile Information Device Profile, v2.0 (JSR-118)

 not
nt of
s the

ription

ment
have

 or

.

Note that in the figure, the CLDC is shown as the basis of the MIDP and device-specific APIs. This does
imply that these APIs cannot have native functionality (i.e., methods declared as native). Rather, the inte
the figure is to show that any native methods on a MID are actually part of the virtual machine, which map
Java-level APIs to the underlying native implementation.

The top-most blocks in the figure above represent the application types possible on a MID. A short desc
of each application type is shown in the table below.

MID Application Types

It is beyond the scope of this specification to address OEM-specific or native applications.

Device Requirements
The requirements listed in this chapter are additional requirements above those found inConnected, Limited
Device Configuration (JSR-30 and JSR-139), Sun Microsystems, Inc.

At a high level, the MIDP specification assumes that the MID is limited in its processing power, memory,
connectivity, and display size.

Hardware
As mentioned before, the main goal of the MIDP is to establish an open, third-party application develop
environment for MIDs. To achieve this goal, the MIDPEG has defined a MID to be a device that SHOULD
the following minimum characteristics:

• Display:

• Screen-size: 96x54

• Display depth: 1-bit

• Pixel shape (aspect ratio): approximately 1:1

• Input:

• One or more of the following user-input mechanisms: one-handed keyboard, two-handed keyboard,
touch screen

• Memory:

• 256 kilobytes of non-volatile memory for the MIDP implementation, beyond what’s required for CLDC

• 8 kilobytes of non-volatile memory for application-created persistent data

Application Type Description

MIDP A MIDP application, or MIDlet, is one that uses only the APIs defined by
the MIDP and CLDC specifications. This type of application is the focus
of the MIDP specification and is expected to be the most common type of
application on a MID.

OEM-Specific An OEM-specific application depends on classes that are not part of the
MIDP specification (i.e., the OEM-specific classes). These applications
are not portable across MIDs.

Native A native application is one that is not written in Java and is built on top of
the MID’s existing, native system software.
7

Mobile Information Device Profile, v2.0 (JSR-118)

led

stem
stem
, some
ems,
 with

nts are

imal

arantees

ge and

ussed.

e

icated
• 128 kilobytes of volatile memory for the Java runtime (e.g., the Java heap)

• Networking:

• Two-way, wireless, possibly intermittent, with limited bandwidth

• Sound:

• The ability to play tones, either via dedicated hardware, or via software algorithm.

Examples of MIDs include, but are not restricted to, cellular phones, two-way pagers, and wireless-enab
personal digital assistants (PDAs).

Software
For devices with the aforementioned hardware characteristics, there is still a broad range of possible sy
software capabilities. Unlike the consumer desktop computer model where there are large, dominant sy
software architectures, the MID space is characterized by a wide variety of system software. For example
MIDs may have a full-featured operating system that supports multi-processing and hierarchical filesyst
while other MIDs may have small, thread-based operating systems with no notion of a filesystem. Faced
such variety, the MIDP makes minimal assumptions about the MID’s system software. These requireme
as follows:

• A minimal kernel to manage the underlying hardware (i.e., handling of interrupts, exceptions, and min
scheduling). This kernel must provide at least one schedulable entity to run the Java Virtual Machine
(JVM). The kernel does not need to support separate address spaces (or processes) or make any gu
about either real-time scheduling or latency behavior.

• A mechanism to read and write from non-volatile memory to support the requirements of the Record
Management System (RMS) APIs for persistent storage.

• Read and write access to the device’s wireless networking to support the Networking APIs.

• A mechanism to provide a time base for use in time-stamping the records written to Persistent Stora
to provide the basis for the Timer APIs.

• A minimal capability to write to a bit-mapped graphics display.

• A mechanism to capture user input from one (or more) of the three input mechanisms previously disc

• A mechanism for managing the application life-cycle of the device.

Specification Requirements
This section lists some explicit requirements of this specification. Other requirements can be found in th
associated Javadoc. If any requirements listed here differ from requirements listed elsewhere in the
specification, the requirements here take precedence and replace the conflicting requirements.

Compliant MIDP 2.0 implementations:

• MUST support MIDP 1.0 and MIDP 2.0 MIDlets and MIDlet Suites.

• MUST include all packages, classes, and interfaces described in this specification.

• MUST implement the OTA User Initiated Provisioning specification.

• MAY incorporate zero or more supported protocols for push.

• MUST give the user a visual indication of network usage generated when using the mechanisms ind
in this specification.

• MAY provide support for accessing any available serial ports on their devices through the
CommConnection interface.
8

Mobile Information Device Profile, v2.0 (JSR-118)

way

ch as

.

r

ted

ric

the

CA,

rers
• MUST provide support for accessing HTTP 1.1 servers and services either directly, or by using gate
services such as provided by WAP or i-mode.

• MUST provide support for secure HTTP connections either directly, or by using gateway services su
provided by WAP or i-mode.

• SHOULD provide support for datagram connections.

• SHOULD provide support for server socket stream connections.

• SHOULD provide support for socket stream connections.

• SHOULD provide support for secure socket stream connections.

• MUST support PNG image transparency.

• MAY include support for additional image formats.

• MUST support Tone Generation in the media package.

• MUST support 8-bit, 8 KHz, mono linear PCM wav format IF any sampled sound support is provided

• MAY include support for additional sampled sound formats.

• MUST support Scalable Polyphony MIDI (SP-MIDI) and SP-MIDI Device 5-to-24 Note Profile IF any
synthetic sound support is provided.

• MAY include support for additional MIDI formats.

• MUST implement the mechanisms needed to support “Untrusted MIDlet Suites”.

• MUST implement “Trusted MIDlet Suite Security” unless the device security policy does not permit o
support trusted applications.

• MUST implement “Trusted MIDlet Suites Using X.509 PKI” to recognize signed MIDlet suites as trus
unless PKI is not used by the device for signing applications.

• MUST implement “MIDP x.509 Certificate Profile” for certificate handling of HTTPS and
SecureConnections.

• MUST enforce the same security requirements for I/O access from the Media API as from the Gene
Connection framework, as specified in the package documentation for javax.microedition.io.

• MUST support at least the UTF-8 (http://ietf.org/rfc/rfc2279.txt) character encoding for APIs that allow
application to define character encodings.

• MAY support other character encodings.

• SHOULD NOT allow copies to be made of any MIDlet suite unless the device implements a copy
protection mechanism.

References
1. Scalable Polyphony MIDI Specification Version 1.0, MIDI Manufacturers Association, Los Angeles,

USA, February 2002.

2. Scalable Polyphony MIDI Device 5-to-24 Note Profile for 3GPP Version 1.0, RP-35, MIDI Manufactu
Association, Los Angeles, CA, USA, February 2002.
9

Mobile Information Device Profile, v2.0 (JSR-118)

P

f rich

e
uns.
Package Summary

User Interface Package

javax.microedition.lcd
ui 115

The UI API provides a set of features for implementation of user interfaces for MID
applications.

javax.microedition.lcd
ui.game 347

The Game API package provides a series of classes that enable the development o
gaming content for wireless devices.

Application Lifecycle Package

javax.microedition.mid
let 431

The MIDlet package defines Mobile Information Device Profile applications and th
interactions between the application and the environment in which the application r

Persistence Package

javax.microedition.rms

463

The Mobile Information Device Profile provides a mechanism for MIDlets to
persistently store data and later retrieve it.

Networking Package

javax.microedition.io 4

9

 MID Profile includes networking support based on theGeneric Connection
framework from theConnected, Limited Device Configuration.

Public Key Package

javax.microedition.pki

453

Certificates are used to authenticate information for secure Connections.

Sound and Tone Media

javax.microedition.med
ia 391

The MIDP 2.0 Media API is a directly compatible building block of the Mobile Media
API (JSR-135) specification.

javax.microedition.med
ia.control 421

This package defines the specificControl types that can be used with aPlayer .

Core Packages

java.lang 35 MID Profile Language Classes included from Java 2 Standard Edition.

java.util 39 MID Profile Utility Classes included from Java 2 Standard Edition.
10

ail/
n of
C H A P T E R 2
Over The Air User Initiated
 Provisioning Specification

for the Mobile Information Device Profile

Preface
This document,Over The Air User Initiated Provisioning, is for the Mobile Information Device Profile (MIDP)
specification version 2.0. The original JSR and expert group details can be found at http://jcp.org/jsr/det
118.jsp (http://jcp.org/jsr/detail/118.jsp). The terminology used herein is defined in the Definitions sectio
the MIDP 2.0 specification except where noted.

How This Specification Is Organized
The topics in this specification are organized in the following sections:

• Section 1, “Over The Air User Initiated Provisioning”, defines how MIDP applications should be
distributed to wireless devices.

• Section 2, “MIDP Provisioning and Networking in the WAP June2000 Environment”, describes the specific
requirements for deploying MIDP applications via a proxied WAP Gateway.

References
1. Connected, Limited Device Configuration (CLDC)

 http://jcp.org/jsr/detail/30.jsp (http://jcp.org/jsr/detail/30.jsp)

2. Mobile Information Device Profile (MIDP 1.0)
 http://jcp.org/jsr/detail/37.jsp (http://jcp.org/jsr/detail/37.jsp)

3. Mobile Information Device Profile 2.0 (MIDP 2.0)
 http://jcp.org/jsr/detail/118.jsp (http://jcp.org/jsr/detail/118.jsp)

4. HTTP 1.1 Specification
 http://www.ietf.org/rfc/rfc2616.txt (http://www.ietf.org/rfc/rfc2616.txt)

5. HTTP Authentication: Basic and Digest Access Authentication
 http://www.ietf.org/rfc/rfc2617.txt (http://www.ietf.org/rfc/rfc2617.txt)

6. Java(tm) Servlet 2.3 Specification
 http://jcp.org/jsr/detail/53.jsp (http://jcp.org/jsr/detail/53.jsp)
11

Over The Air User Initiated Provisioning Specification

res the

tive
g the
ify
ble.

d the
dations
e to

e
cases,

tion,

he

nager

g the
and

g
entity

t
tials

ce the
Changes since the OTA Recommended Practice
After the MIDP 1.0 specification was published, a document entitled,Over The Air User Initiated Provisioning
Recommended Practice for the Mobile Information Device Profile, was published. This specification replaces
that document, and the following changes were made for MIDP 2.0:

• Removed the Cookie support requirement. This was necessary because in some network architectu
cookie information may not be transmitted to the client. The cookies were used to maintain state
information between the Application Descriptor, JAR downloads, and Install-Notify reports. An alterna
approach of URL rewriting is possible, and can serve the same purpose. For example, when sendin
Application Descriptor, the server can insert unique JAR, MIDlet-Install-Notify, and MIDlet-Delete-Not
URLs that associate these with this a particular download session. Other options may also be possi

Section 1, Over The Air User Initiated Provisioning

Overview and Goals
The purpose of this document is to describe how MIDlet suites can be deployed Over-The-Air (OTA), an
requirements imposed upon the client device to support these deployments. Following these recommen
will help ensure interoperability between clients and servers from all manufacturers and provide guidanc
mobile network operators deploying MIDP devices.

Devices MUST provide mechanisms that allow users to discover MIDlet suites that can be loaded into th
device. In some cases, discovery will be via the device’s resident browser (e.g., i-mode or WAP). In other
it may be a resident application written specifically to identify MIDlet suites for the user to download.
Throughout this document, an application with this functionality will be referred to as the discovery applica
or DA.

Other installation mechanisms (e.g. BluetoothTM wireless technology, serial cable, IrDATM, etc.) MAY be
supported by devices, but are outside the scope of this version of the specification.

The term Application Management Software (AMS) is a generic term used to describe the software on t
device that manages the downloading and lifecycle of MIDlets. This term does not refer to any specific
implementation and is used for convenience only. In some implementations, the term Java Application Ma
(JAM) is used interchangeably.

This document describes the general functional requirements on the device and the functions supportin
MIDlet suite lifecycle. The lifecycle of a MIDlet suite consists of discovery, installation, update, invocation
removal. Descriptions are included for additional Application Descriptor attributes and mechanisms that
identify the device type and characteristics to servers providing MIDlet suites.

Functional Requirements
A MIDP-compliant device MUST be capable of:

• Browsing, or otherwise locating MIDlet suite Application Descriptors in the network.

• Transferring a MIDlet suite and its associated Application Descriptor to the device from a server usin
HTTP 1.1 or a session protocol that implements the HTTP 1.1 functionality (including the header and
fields) as required in this document.

• Responding to a 401 (Unauthorized) or 407 (Proxy Authentication Required) response to an HTTP reques
by asking the user for a user name and password and re-sending the HTTP request with the creden
supplied. The device MUST be able to support at least the RFC2617 Basic Authentication Scheme.

• Installing the MIDlet suite on the device

• Invoking MIDlets

• Allowing the user to delete MIDlet suites stored on the device. Single MIDlets cannot be deleted sin
12

Over The Air User Initiated Provisioning Specification

ed

ptor

t suite
file
 start
tion:

sferred

device

ST be
tions
s
ation

at is
IME

or
ed by

T

ght to
let
ry is
ry for

s well
t. The
MIDlet suite is the unit of transfer and installation.

MIDlet Suite Discovery
Application discovery is the process by which a user locates a MIDlet suite using the device. User-initiat
discovery and installation of MIDlet suites MUST be supported in the following high-level manner:

• While using the DA, the user is presented with a link to a MIDlet suite or Application Descriptor.

• The user selects the link to begin the installation process

• If available, the Application Descriptor is transferred to the device first. This descriptor contains
information about the MIDlet suite and can be used by the device’s AMS to start installation

• If the Application Descriptor is not available, or after the AMS has downloaded the Application Descri
and determined that installation should continue, the MIDlet suite JAR file download begins.

Using the DA, the user SHOULD be able to access a network location and see a description of the MIDle
along with a link that, when selected, initiates the installation of the MIDlet suite. If the link refers to a JAR
as described in the MIDP specification, the JAR file and its URL are passed to the AMS on the device to
the installation process. If the link refers to an Application Descriptor, as described in the MIDP specifica

1. Once the link has been selected, the server MUST indicate in the response that the data being tran
(i.e., the Application Descriptor) has a MIME type of “text/vnd.sun.j2me.app-descriptor”.

2. After completing this transfer, the application descriptor and its URL are passed to the AMS on the
to start the installation process. The Application Descriptor is used by the AMS to determine if the
associated MIDlet suite can be successfully installed and executed on the device. If not, the user MU
notified of the conditions that prevent its installation. The user SHOULD be informed of unusual condi
as early as possible to minimize wasted time and network bandwidth. The request-header attribute
described in Device Identification and Request Headers SHOULD be used when retrieving the Applic
Descriptor.

3. The Application Descriptor MUST be converted from its transport format to the Unicode-encoding th
specified by the MIDP specification before it can be used. The default character set specified for the M
type “text/vnd.sun.j2me.app-descriptor” is “UTF-8”. If the device supports other character sets, the
appropriateAccept-Charset header SHOULD be included in the request, and the content SHOULD be
converted based on thecharset attribute returned on theContent-Type header. Ifcharset is undefined, the
encoding defaults to “UTF-8”, and it SHOULD be converted accordingly. The attributes in the descript
MUST be formatted according to the syntax in the MIDP specification and all of the attributes requir
the MIDP specification MUST be present in the descriptor. If this is not the case, then the client MUS
returnStatus Code 906 in the status report.

4. Using the information in the Application Descriptor including the vendor, name, version, and size
attributes, the user SHOULD be given a chance to confirm that they want to install the MIDlet suite.
Situations such as trying to install an older version, or installing the same version, SHOULD be brou
the user’s attention. Conditions that can prevent the successful installation and execution of the MID
suite SHOULD be identified, and the user notified. For example, if it is known that insufficient memo
available, the software SHOULD aid the user in reviewing memory usage and freeing sufficient memo
installation of the new MIDlet suite.

MIDlet Suite Installation
Application installation is the process by which a MIDlet suite is downloaded onto the device and made
available to the user. Application installation MUST be supported. The network supporting the devices, a
any proxies and origin servers that are used during provisioning, MUST be able to support this requiremen
13

Over The Air User Initiated Provisioning Specification

e or

tiple
evice

ncel
an.

ite

r with

ST be

an
 be

enter
cheme

Dlet

ce

JAR

be

evice
user retains control of the resources used by MIDlet suites on the device and MUST be allowed to delet
install MIDlet suites.

The device MUST make the MIDlet(s) in the MIDlet suite available for execution by the user. When mul
MIDlets are contained in a MIDlet suite, the user MAY need to be aware that there is more than one. The d
MAY run a MIDlet from the MIDlet suite immediately at the user’s option.

During installation, the user SHOULD be informed of progress and MUST be given an opportunity to ca
the process. Interrupting installation MUST leave the device in the state it was in before installation beg

If the MIDlet suite is already installed on the device, it SHOULD be treated as an update. See MIDlet Su
Update for additional information on how to handle an update.

To install a MIDlet suite, the AMS performs the following series of steps and checks and provides the use
feedback about the progress:

1. The device initiates the download of the MIDlet suite via HTTP. If an Application Descriptor was first
downloaded as described in the MIDlet suite Discovery section, the request for the MIDlet suite MU
for exactly the URL specified in the descriptor; additional headers are unnecessary.

2. If the server or proxy responds to the request for the MIDlet suite with a 401 (Unauthorized) or 407 (Proxy
Authentication Required), the device SHOULD re-send the request with the user-supplied credentials in
Authorization or Proxy-Authorization header field as specified in RFC2617. The credentials SHOULD
provided by the user—-for example, a common mechanism would be to present a dialog to the user to
a user name and password. The device MUST be able to support at least the Basic Authentication S
as described in RFC2617.

3. The MIDlet suite and the headers that are received MUST be checked to verify that the retrieved MI
suite is valid and can be installed on the device. The user MUST be alerted to at least the following
problems that prevent installation:

• If there is insufficient memory to store the MIDlet suite on the device, the device MUST returnStatus Code
901 in the Status Report.

• If the JAR is not available at theMIDlet-Jar-URLattribute in the descriptor, the device MUST returnStatus
Code 907 in the Status Report.

• If the received JAR file size does not match the size specified in the Application Descriptor, the devi
MUST returnStatus Code 904 in the Status Report.

• If the manifest or any other file can not be extracted from the JAR, the device MUST returnStatus Code
907 in the Status Report.

• If the JAR manifest is not in the correct syntax, or if any of the required attributes are missing in the
manifest, the device MUST returnStatus Code 907 in the Status Report.

• If the mandatory attributes in the descriptor “MIDlet-Name”, “ MIDlet-Version”, and “MIDlet-Vendor” do
not match those in the JAR manifest, the device MUST returnStatus Code 905 in the Status Report.

• If the MIDlet suite is trusted, then the values in the application descriptor for MIDlet-* attributes MUST
identical to the corresponding attribute values in the Manifest. If not, the device MUST returnStatus Code
905 in the Status Report.

• If the application failed to be authenticated, the device MUST returnStatus Code 909 in the Status Report.

• If the application is an unsigned version of an installed signed version of the same application, the d
MUST returnStatus Code 910 in the Status Report.

• If the application is not authorized for a permission listed in theMIDlet-Permissions attribute, the device
MUST returnStatus Code 910 in the Status Report.
14

Over The Air User Initiated Provisioning Specification

UST
m.

verable

Dlet
upport
btain
. See

r, or
g.

e

ed

 the
UST

inal

tents
given
ain

the

, the
n the
Dlet
• If a static push registration fails for a reason other than not being authorized, the device MUST returnStatus
Code 911 in the Status Report.

• If the network service is lost during installation,Status Code 903 SHOULD be used in a Status Report if
possible (it may be impossible to deliver the status report due to the network-service outage).

1. Provided there are no problems that prevent installation, the MIDlets contained in the MIDlet suite M
be installed and made available for execution by the user via the device’s MIDlet selection mechanis

2. Installation is complete when the MIDlet suite has been made available on the device, or an unreco
failure has occurred. In either case, the status MUST be reported as described in Installation Status
Reports..

MIDlet Suite Update
A MIDlet suite update is defined as the operation of installing a specific MIDlet suite when that same MI
suite (either the same version or a different version) is already installed on the device. Devices MUST s
the updating of MIDlet suites. In order to be meaningful to the user, the device MUST allow the user to o
information about the MIDlet suite(s) on the device and determine which versions of software are installed
Device Identification and Request Headers. for the attributes that apply to updates.

When a MIDlet suite update is started, the device MUST notify the user if the MIDlet suite is a newer, olde
the same version of an existing MIDlet suite and MUST get confirmation from the user before proceedin

The RMS record stores of a MIDlet suite being updated MUST be managed as follows:

• If the cryptographic signer of the new MIDlet suite and the original MIDlet suite are identical, then th
RMS record stores MUST be retained and made available to the new MIDlet suite.

• If the scheme, host, and path of the URL that the new Application Descriptor is downloaded from is
identical to the scheme, host, and path of the URL the original Application Descriptor was download
from, then the RMS MUST be retained and made available to the new MIDlet suite.

• If the scheme, host, and path of the URL that the new MIDlet suite is downloaded from is identical to
scheme, host, and path of the URL the original MIDlet suite was downloaded from, then the RMS M
be retained and made available to the new MIDlet suite.

• If the above statements are false, then the device MUST ask the user whether the data from the orig
MIDlet suite should be retained and made available to the new MIDlet suite.

In all cases, an unsigned MIDlet MUST NOT be allowed to update a signed MIDlet suite. The format, con
and versioning of the record stores is the responsibility of the MIDlet suite. The user-granted permissions
to the original MIDlet suite SHOULD also be given to the new MIDlet suite, if they are in the security dom
of the new MIDlet suite.

MIDlet Suite Execution
When the user selects a MIDlet to be run, the device MUST invoke the MIDlet with the CLDC and MIDP
classes required by the MIDP specification. If multiple MIDlets are present, the user interface MUST allow
user to select each one for execution.

MIDlet Suite Removal
Devices MUST allow users to remove MIDlet suites. When a MIDlet suite is to be removed from the device
user SHOULD be prompted to confirm that the MIDlet suite may be removed. The device SHOULD war
user of any special circumstances that arise during the deletion of the MIDlet suite. For example, the MI
suite MAY contain multiple MIDlets, and the user SHOULD be made aware that all of the MIDlets and
associated RMS record stores are being removed.
15

Over The Air User Initiated Provisioning Specification

 in
the

e
sed

ple, if
UST
 status

rst line.

ULD
a

equest.

status
ice has
he
ill. The

on is
rt

atus
 (as
being
 the
rt has
If the Application Descriptor includes the attribute MIDlet-Delete-Confirm, its value SHOULD be included
the prompt. This will allow the MIDlet suite provider to highlight any specific conditions that might arise if
MIDlet suite were to be removed.

Installation/Deletion Status Reports
The success or failure of the installation, upgrade, or deletion of a MIDlet suite is of interest to the servic
providing the MIDlet suite. The service MAY specify URLs in the Application Descriptor that MUST be u
to report installation and deletion status. See Additional Descriptor Attributes for more information. If the
device cannot send the installation status report, the requested action MUST still be completed. For exam
the device cannot send the installation status report to the MIDlet-Install-Notify URL, the MIDlet suite M
still be enabled, and the user MUST be allowed to use it. Likewise if the device cannot send the deletion
report to the MIDlet-Delete-Notify URL, the MIDlet suite MUST still be deleted.

The operation status is reported by means of an HTTP POST to the URL specified in theMIDlet-Install-Notify
attribute for installations, or theMIDlet-Delete-Notify attribute for deletions. The only protocol that MUST be
supported is “http://”. Other protocols MAY be ignored by the device.

The content of the body of the POST request MUST include a status code and status message on the fi
See Status Codes and Message for list of valid codes and status messages.

In the case of a deletion status report, the notification is sent only when the MIDlet is deleted;Status Code 912
MUST be sent, notifying that the deletion occurred.

In response to a status report, the server MUST reply with a “200 OK” response. No content SHOULD be
returned to the device and, if any is sent, it MUST be ignored. If a response is received the request SHO
NOT be retried. Contrary to the MIDP 1.0 OTA Recommended Practice, the server MUST NOT include Set-
Cookie header with the attributeMax-Age=0 to request that thecookie be discarded. If such an attribute is
received, the device MUST ignore it. As an example, please see Example: Install Status via HTTP Post R

For installations, if the status report cannot be sent, or if the server reply is not received, the installation
report MAY be sent again (as described above) each time a MIDlet in this suite is executed and the dev
data network connectivity. This will improve the likelihood of the status report being successfully sent. T
number of retries attempted SHOULD be kept small since each one may result in a charge to the user’s b
MIDlet suite MUST be made available for use, whether or not the installation status report has been
successfully sent and the acknowledgement have been received.

For deletions, an attempt to send the status report MUST be made the next time either an OTA installati
performed or an installation status report is being sent. This will improve the likelihood of the status repo
being successfully sent and will minimize confusion by the user when they see network activity. If the st
report cannot be sent, or if the server reply is not received, the deletion status report MAY be sent again
described above) each time an OTA installation installation is performed or an installation status report is
sent. The number of retries attempted SHOULD be kept small since each one may result in a charge to
user’s bill. The MIDlet suite MUST be removed from memory, whether or not the installation status repo
been successfully sent and the acknowledgement have been received.

Install Status Codes and Message

Status Code Status Message

900 Success

901 Insufficient Memory
16

Over The Air User Initiated Provisioning Specification

in the

ion
rer

DA will
d

tch the
Additional Descriptor Attributes
The following additional attributes are defined in the Application Descriptor. Each may appear only once
descriptor.

MIDlet Attributes

Device Identification and Request Headers
The process of discovering a MIDlet suite via the DA can be customized by the device sending informat
about itself to the server. The DA MUST provide the network server with information (e.g. the manufactu
and device model number) so that the server can determine the device’s capabilities. In many cases, a
already have identified the device type to the server by means consistent with its network connection an
markup language.

During the download of a MIDlet suite, a device SHOULD identify its characteristics and the type of the
content being requested as completely as possible to the server. The HTTP request-headers used to fe

902 User Cancelled

903 Loss of Service

904 JAR size mismatch

905 Attribute Mismatch

906 Invalid Descriptor

907 Invalid JAR

908 Incompatible Configuration or Profile

909 Application authentication failure

910 Application authorization failure

911 Push registration failure

912 Deletion Notification

Attribute Name Attribute Description

MIDlet-Install-Notify The URL to which a POST request is sent to report the installation status
(whether a new installation or MIDlet suite update) of this MIDlet suite.
The device MUST use this URL unmodified. The URL MUST be no
longer than 256 UTF-8 encoded characters. If the device receives a URL
longer than 256 UTF-8 encoded characters it MUST reject the installation
and returnStatus Code 906 in the status report.

MIDlet-Delete-Notify The URL to which a POST request is sent to report the deletion of this
MIDlet suite. The device MUST use this URL unmodified. The URL
MUST be no longer than 256 UTF-8 encoded characters. If the device
receives a URL longer than 256 UTF-8 encoded characters it MUST
reject the installation and returnStatus Code 906 in the status report.

MIDlet-Delete-Confirm A text message to be provided to the user when prompted to confirm
deletion of this MIDlet suite
17

Over The Air User Initiated Provisioning Specification

ing

duct-
cation.

age

et
content MUST include,User-Agent, Accept-Language, andAccept. Servers SHOULD use this additional
information to select the appropriate Application Descriptor for the device.

User-Agent Product Tokens
The MIDP specification identifies HTTP User-Agent request headers to identify the client to the server.
RFC2616 specifies a format for product tokens such as:

“User-Agent” “:” 1*(product | comment)

The product tokens used to identify the device as supporting CLDC and MIDP are specified the Network
portion of the MIDP specification. As in RFC2616, the comment field is optional.

In addition, the device SHOULD further identify itself by adding a device-specific product token to the User-
Agent header as defined by RFC2616. The device-identifying token SHOULD be the first token. The pro
token and product-version values are specific to each device and are outside of the scope of this specifi

Accept-Language Header
The device MAY supply theAccept-Languagerequest-header as specified in RFC2616 to indicate the langu
that is in use on the device.

Accept Header
TheAccept HTTP header is used to indicate the type of content being requested. When requesting MIDl
suites, this header SHOULD include application/java-archive. For retrieving application descriptors, this
header SHOULD include text/vnd.sun.j2me.app-descriptor.

Example: HTTP Request for Application Descriptor
When requesting the download of an Application Descriptor, the request headers might look as follows:

GET http://host.foo.bar/app-dir/game.jad HTTP/1.1
 Host: host.foo.bar
 Accept: text/vnd.sun.j2me.app-descriptor
 User-Agent: CoolPhone/1.4 Profile/MIDP-2.0 Configuration/CLDC-1.0
 Accept-Language: en-US, fi, fr
 Accept-Charset: utf-8

The response headers from the server might look as follows:

HTTP/1.1 200 OK
 Server: CoolServer/1.3.12
 Content-Length: 2345
 Content-Type: text/vnd.sun.j2me.app-descriptor; charset=utf-8

Example: HTTP Request to Install/Update a MIDlet suite
When requesting the download of a MIDlet suite JAR file, the request headers might look as follows:

GET http://host.foo.bar/app-dir/game.jar HTTP/1.1
 Host: host.foo.bar
 Accept: application/java, application/java-archive

The response headers from the server might look as follows:

HTTP/1.1 200 OK
 Server: CoolServer/1.3.12
 Content-Length: 25432
 Content-Type: application/java-archive
18

Over The Air User Initiated Provisioning Specification

ts and
000
se
rs. It
ed

ction

n).

e end-

nly
protocol
nd the
P/IP

tocols,
e

Example: Install Status via HTTP Post Request
For example, installing a MIDlet suite with an application descriptor given below:

...
 MIDlet-Install-Notify: http://foo.bar.com/status
 ...

After a successful install of the MIDlet suite, the following would be posted:

POST http://foo.bar.com/status HTTP/1.1
 Host: foo.bar.com
 Content-Length: 13
 900 Success

The response from the server might be:

HTTP/1.1 200 OK
 Server: CoolServer/1.3.12

Section 2, MIDP Provisioning and Networking in the WAP June2000 Environment

Purpose of This Section
The purpose of this section is to complement the OTA and MIDP specifications by providing requiremen
recommendations specific to MIDP Over The Air Provisioning and MIDlet networking in the WAP June2
environment. Future WAP developments will be addressed in future versions of the MIDP. Following the
recommendations will help ensure interoperability between different WAP elements from all manufacture
will also provide guidance to network operators in deploying MIDP services when provisioning is perform
via a browser using the WAP protocol stack, as well as to MIDlet developers in creating MIDlets that fun
optimally when the transport is WSP.

Overview
MIDlet suites are downloaded using HTTP from a provisioning server (possibly via a gateway in betwee
Also, the MIDP library MUST support network access in the form of the HTTP/1.1 protocol.

Depending on the end-user device and the wireless network, the communication MAY occur between th
user device and provisioning server with the HTTP protocol end-to-end, or the end-user device MAY use
another protocol, and have a gateway convert this protocol to HTTP. The provisioning server needs to o
support HTTP in any case (unless there are other reasons for the same service provider to operate the
gateway as well). In WAP June2000 environments, there is always a WAP gateway between the terminal a
provisioning server to translate between the WSP protocol used to communicate with the device and TC
used to communicate with the server.

There are essentially two basic interfaces that need to be considered:

• the interface from the end-user device to the network

• the interface from the provisioning server to the network

The latter of these interfaces will always be HTTP carried as usual over TCP/IP.

For the former interface, this document describes one of the two basic cases:

• the end-user device uses a browser using the WAP protocol stack and

• the WSP protocol is used for communication between the terminal and the WAP gateway.

When the end-user device uses a browser using the WAP protocol stack and has the WAP transport pro
WSP MAY be used instead of HTTP in the end-user device. Only connection-oriented WSP and only th
following WAP protocol stack configurations and bearers are supported:
19

Over The Air User Initiated Provisioning Specification

ents.

r
e scope

ommon
erminal

TP

P
same

y

IDlet

es
• WAP/UDP/IPv4/PPP/CSD

• WAP/UDP/IPv4/GPRS

Where WAP can be either:

• WSP/WTP/WTLS, or

• WSP/WTP

(The other bearers in [WAP_WDPS.], such as SMS- or USSD -based bearers are not supported). These
restrictions are made in order to achieve maximal interoperability in MIDP provisioning in WAP environm

Depending on the wireless network and the capabilities of the end-user device, different mechanisms fo
obtaining the IP connection are used. These mechanisms and their required configurations are outside th
of this document.

Terminal Requirements and Recommendations
This section lists the requirements and recommendations related to the WAP terminals. In the case of c
requirements to both terminals and gateways, the requirements and recommendations are listed in both t
and gateway sections.

WAP terminals used MUST be WAP June2000 conformant.

Specifically, the following issues are critical:

• JAD and JAR MIME-types, as described in previous sections, MUST be supported.

• HTTP authentication (server responses 401 and 407) MUST be supported.

• POST-messages from the terminal to provisioning server MUST be supported.

Requirements and recommendations in addition to those in the WAP Specifications
In the case where the HTTP connections are implemented over WSP, the system implementation of HT
MUST add the request header “Accept: */*” to GET and POST requests when a MIDlet creates an HTTP-
request, but the MIDlet does not include a non-emptyAccept header in the request. This ensures that the WA
Gateway will always have an explicit set of types and will pass the requested data. This is conceptually the
as leaving out theAccept header from an HTTP-request on other transports. If the MIDlet sets a non-empt
Accept header for its HTTP-request, no change is made (the MIDlet’s ownAccept field is the only one sent).

Gateway Requirements and Recommendations
This section lists the requirements and recommendations related to the WAP gateways. The purpose of
presenting these issues here is to make sure that they are taken into consideration when WAP-based M
provisioning is considered.

WAP gateways used MUST be WAP June2000 conformant.

Specifically, the following issues are critical:

• JAD and JAR MIME-types MUST be supported. WAP Gateway must follow the rules for HTTP proxi
(RFC2616) these MIME types.

• HTTP authentication (server responses 401 and 407) MUST be supported.

• Data of any kind MUST be passed to the terminal, if the terminal’s request has included “ Accept: */*”
header.

• POST-messages from the terminal to provisioning server MUST be supported.
20

Over The Air User Initiated Provisioning Specification

ion.

/

MIDlet/MIDlet Suite Recommendations
MIDlets SHOULD function correctly even with long connection setup delays and long breaks in connect
Long connection setup delays affect circuit-switched data connections, and long breaks affect GPRS
connections.

References
1. OTA

 Over The Air User Initiated Provisioning for Mobile Information Device Profile

2. MIDP
 Mobile Information Device Profile Specification 1.0, http://jcp.org/jsr/detail/37.jsp (http://jcp.org/jsr/
detail/37.jsp)

3. MIDP 2.0
 Mobile Information Device Profile Specification 2.0, http://jcp.org/jsr/detail/118.jsp (http://jcp.org/jsr/
detail/118.jsp)

4. WAP_JUNE2000
 WAP June2000 Conformance Release, http://www.wapforum.org/what/technical.htm (http://
www.wapforum.org/what/technical.htm)

5. WAP_WDPS
 WAP Wireless Datagram Protocol Specification, http://www.wapforum.org/what/technical.htm (http:/
www.wapforum.org/what/technical.htm)

Terms
• CSD = Circuit Switched Data

• GPRS = General Packet Radio Service

• PPP = Point-to-Point Protocol

• SMS = Short Message Service

• USSD = Unstructured Supplementary Services Data

• WAP = Wireless Application Protocol

• WSP = Wireless Session Protocol
21

Over The Air User Initiated Provisioning Specification
22

Is

idered
ess is
e
 the

be

 user

ving

or.

ss to
C H A P T E R 3
Security for MIDP Applications

The MIDP 1.0 specification constrained each MIDlet suite to operate in a sandbox wherein all of the AP
available to the MIDlets would prevent access to sensitive APIs or functions of the device. That sandbox
concept is used in this specification and all untrusted MIDlet suites are subject to its limitations. Every
implementation of this specification MUST support running untrusted MIDlet suites.

MIDP 2.0 introduces the concept of trusted applications that may be permitted to use APIs that are cons
sensitive and are restricted. If and when a device determines that a MIDlet suite can be trusted then acc
allowed as indicated by the domain policy. The Trusted MIDlet Suite Security section below describes th
concepts. Any MIDlet suite that is not trusted by the device MUST be run as untrusted. If errors occur in
process of verifying that a MIDlet suite is trusted then the MIDlet suite MUST be rejected.

Untrusted MIDlet Suites
An untrusted MIDlet suite is a MIDlet suite for which the origin and the integrity of the JAR file can NOT
trusted by the device. Untrusted MIDlet suites MUST execute in the untrusted domain using a restricted
environment where access to protected APIs or functions either is not allowed or is allowed with explicit
permission. Any MIDP 1.0 compliant MIDlet suite MUST be able to run in an implementation of this
specification as untrusted. Any APIs or functions of this specification which are not security sensitive, ha
no permissions defined for them, are implicitly accessible by both trusted and untrusted MIDlet suites.
Untrusted MIDlet suites do not request permissions explicitly in the JAR manifest or application descript

The untrusted domain for untrusted MIDlet suites MUST allow, without explicit confirmation by the user,
access to:

The untrusted domain for untrusted MIDlet suites MUST allow, with explicit confirmation by the user, acce
protected APIs or functions:

API Description

javax.microedition.rms RMS APIs

javax.microedition.midlet MIDlet Lifecycle APIs

javax.microedition.lcdui User Interface APIs

javax.microedition.lcdui.game The Game APIs

javax.microedition.media
javax.microedition.media.control

The multi-media APIs for playback of sound
23

Security for MIDP Applications

s how
e
dentify
twork,

ned
ses

nts:

ions

 when
Trusted MIDlet Suite Security
Security for Trusted MIDlet suites is based on protection domains. Each protection domain defines the
permissions that may be granted to a MIDlet suite in that domain. The protection domain owner specifie
the device identifies and verifies that it can trust a MIDlet suite and bind it to a protection domain with th
permissions that authorize access to protected APIs or functions. The mechanisms the device uses to i
and trust MIDlet suites are defined separately to allow them to be selected appropriately to the device, ne
and business case.

The Trusted MIDlet Suites Using X.509 PKI describes a mechanism for identifying trusted MIDlet suites
though signing and verification. If an implementation of this specification will recognize MIDlet suites sig
using PKI as trusted MIDlet suites they must be signed and verified according to the formats and proces
specified in Trusted MIDlet Using X.509 PKI.

Definition of Terms

Authorization Model
The basic authorization of a MIDlet suite is established by the relationships between the following eleme

• A protection domain consisting of a set ofAllowed andUser permissions

• A set of permissions requested by the MIDlet suite inMIDlet-Permissions andMIDlet-
Permissions-Opt attributes

• A set of permissions for each protected API or function on the device which is a union of all permiss
defined by every API on the device for protected functions

• The user who may be asked to grant permissions

Assumptions
• MIDlets do not need to be aware of the security policy except for security exceptions that may occur

using APIs.

• A MIDlet suite is subject to a single protection domain and its permissible actions.

• The internal representation of protection domains and permissions is implementation specific.

API Protocol

javax.microedition.io.HttpConnection http

javax.microedition.io.HttpsConnection https

Term Definition

Protection Domain A set ofAllowed andUser permissions that may be granted to a MIDlet
suite

Permission A named permission defined by an API or function to prevent it from
being used without authorization

Trusted MIDlet Suite A MIDlet suite for which the authentication and the integrity of JAR file
can be trusted by the device and bound to a protection domain
24

Security for MIDP Applications

user

rom

ork

nting
T

fore
curity

tes and
of the

 of
s the

ame as
be used

r APIs
 and the

n the

 not

ssions.

them.

sing

ST be
• The details of how authentication results and configuration settings are presented to the user in the
interface are implementation dependent and are outside the scope of this specification.

• The device must protect the security policy and protection domain information stored in the device f
viewing or modification except by authorized parties.

• If the security policy for a device is static and disallows use of some functions of the security framew
then the implementation of unused and inaccessible security functions may be removed.

• Security policy allows an implementation to restrict access but MUST NOT be used to avoid impleme
functionality. For example, unimplemented protocols under the Generic Connection framework MUS
throwConnectionNotFoundException .

Permissions
Permissions are the means to protect access to APIs or functions which require explicit authorization be
being invoked. Permissions described in this section only refer to those APIs and functions which need se
protection and do not refer to other APIs which can be accessed by both trusted and untrusted MIDlet sui
do not need explicit permission. Permissions are checked by the implementation prior to the invocation
protected function.

The names of permissions have a hierarchical organization similar to Java package names. The names
permissions are case sensitive. All of the permissions for an API MUST use the prefix that is the same a
package name of the API. If the permission is for a function of a specific class in the package then the
permission MUST include the package and classname. The set of valid characters for permissions is the s
that for package and class names. The conventions for use of capitalization in package names SHOULD
for permission names. For example,javax.microedition.io . Following the permission name, whether
by package or class, additional modifiers may be appended with a separator of “.” (Unicode U+002E).

Each API in this specification that provides access to a protected function will define the permissions. Fo
defined outside of MIDP 2.0 there must be a single document that specifies any necessary permissions
behavior of the API when it is implemented on MIDP 2.0.

Permissions for Protected Functions
Each function (or entire API) which was identified as protected must have its permission name defined i
class or package documentation for the API.

Refer to the documentation of thejavax.microedition.io package for permissions on all Generic
Connection schemes defined in this specification. All APIs and functions within this specification that do
explicitly define permissions MUST be made available to all trusted and untrusted MIDlet suites.

Requesting Permissions for a MIDlet Suite
A MIDlet suite that requires access to protected APIs or functions must request the corresponding permi
Permissions requested can be required by listing the permissions in the attributeMIDlet-Permissions .
These permissions are critical to the function of the MIDlet suite and it will not operate correctly without

If the MIDlet suite can function correctly with or without particular permission(s) it should request them u
theMIDlet-Permissions-Opt attribute. The MIDlet suite is able to run with reduced functionality (for
example, as a single player game instead of a net game) without these non-critical permissions and MU
installed and run.

TheMIDlet-Permissions andMIDlet-Permissions-Opt attributes contain a list of one or more
permissions. Multiple permissions are separated by a comma (Unicode U+002C). Leading and trailing
whitespace (Unicode U+0020) and tabs (Unicode U+0009) are ignored.
25

Security for MIDP Applications

ns
nction

nsists

ction

ing
o the

I with

user

tation.
 user
 if it is

ser

nd
Permissions on the Device
Each device that implements this specification and any other Java APIs will have a total set of permissio
referring to protected APIs and functions. It is the union of all permissions defined by every protected fu
or API on the device.

Protection Domain
A protection domain defines a set of permissions and related interaction modes. A protection domain co
of:

• a set of permissions that should be allowed (Allowed)

• a set of permissions that the user may authorize (User); each with its user interaction mode

Within a protection domain each permission may be eitherallowed or user but not both.

TheAllowedpermissions are any permissions which explicitly allow access to a given protected API or fun
on the basis of MIDlet suite being associated with the protection domain.Allowed permissions do not require
any user interaction.

TheUser permissions are any permissions for a protected API or function on the basis of MIDlet suite be
bound to the protection domain and will allow access to protected API or function after the prompt given t
user and explicit user permission being granted.

User Permission Interaction Modes
A User Permission is defined to allow the user to deny permission or to grant permission to a specific AP
one of the following interaction modes:

• “blanket ” is valid for every invocation of an API by a MIDlet suite until it is uninstalled or the
permission is changed by the user.

• “session ” is valid from the invocation of a MIDlet suite until it terminates. “session ” mode MUST
prompt the user on or before the first invocation of the API or function which is protected. When the
re-invokes the MIDlet suite the prompt MUST be repeated.

• “oneshot ” MUST prompt the user on each invocation of the API or function which is protected.

The choice of user permission interaction modes is driven by the security policy and the device implemen
Each user permission has a default interaction mode and a set of other available interaction modes. The
SHOULD be presented with a choice of interaction modes. The default interaction mode may be offered
supplied. The user MUST always be able to deny permission.

If and when prompted, the user SHOULD be provided with a user friendly description of the requested
permissions sufficient to make a well-informed choice.

The range of blanket to oneshot action permission modes represents a tradeoff between usability and u
notification and should behave smoothly and consistently with the human interface of the device.

Granting Permissions to Trusted MIDlet Suites
Authorization of trusted MIDlet suites uses protection domain information, permissions on the device, a
permissions requested in the MIDlet suite. Permissions in the domain areAllowed or User. Permissions
requested by the application are either critical or non-critical.

To establish the permissions granted to a trusted MIDlet suite when it is to be invoked all of the following
MUST be true:

• The MIDlet suite must have been bound to a protection domain.

• The requested critical permissions are retrieved from the attributesMIDlet-Permissions and non-
critical permissions fromMIDlet-Permissions-Opt . If these attributes appear in the application
26

Security for MIDP Applications

l, the

hey are

ite

ient

d and

tion
est.

union

ctions

rators
tation

port

nted
an one
 file.

re
e

descriptor they MUST be identical to corresponding attributes in the manifest. If they are not identica
MIDlet suite MUST NOT be installed or invoked.

• If any of the requested permissions are unknown to the device and are not marked as critical then t
removed from the requested permissions.

• If any of the requested permissions are unknown to the device and marked as critical, the MIDlet su
MUST NOT be installed or invoked.

• If any of the requested permissions are not present in the protection domain (Allowed or User) permission
sets and the requested permission was marked as critical then the MIDlet suite does not have suffic
authorization and MUST NOT be installed or invoked.

• If any of the requested permissions are not present in the protection domain (Allowed or User) permission
sets, and the requested permissions are not marked as critical, the application MUST still be installe
MUST be able to be invoked by the user.

• If any of the requested permissions match theUser permissions of the protection domain then the user
MUST explicitly provide authorization to grant those permissions to the MIDlet suite. The implementa
is responsible for making the request to the user and getting the response to allow or deny the requ

• The permissions granted to the MIDlet suite are the intersection of the requested permissions with the
of the allowed and user granted permissions.

• During execution, any protected APIs MUST check for the appropriate permissions and throw a
SecurityException if the permission has not been granted.

The successful result of authorization is that the MIDlet suite is granted access to protected APIs or fun
for which it requested permissions.

Example External Domain Policy Format
An external representation for protection domains allows clear communication between developers, ope
and manufacturers. This format is provided only as an example. There is no requirement for an implemen
of this specification to use this format. The policy file character set is UTF-8 encoding of Unicode to sup
any language. The policy file syntax is based on the JAR manifest format.

A policy consists of the definitions of domains and aliases. Each domain consists of the definition of gra
permissions and user permissions. Aliases permit groups of named permissions to be reused in more th
domain and helps keep the policy compact. Aliases may only be defined and used within a single policy
References to an alias MUST follow the definition of the alias in the policy file.

A domain is defined with a domain identifier and a sequence of permissions. The domain identifier is
implementation specific. Each permission line begins with “allow ” or user permissions “blanket ”,
“session ”, or “oneshot ” to indicate the interaction level for the list of permissions that follow. User
permissions may also include a default mode. Multiple permission lines are allowed. The permissions a
processed in order and if a permission occurs multiple times within a domain only the last definition of th
permission is used. It is not recommended that permissions appear more than once.

BNF Syntax:
27

Security for MIDP Applications
policy_file = 1*(directive)
directive = (domain_def | alias_def) [newlines]
domain_def = “domain:” *WS domain_id *WS newlines

1*permission
domain_id = 1*<any Unicode char and continuation, but not newline>
permission = permision_level “:” api_names newlines
api_names: *WS alias_or_name *(*WS “,” *WS alias_or_name) *WS
alias_or_name = alias_ref | api_name
alias_ref = <alias_name from a previous alias_def in the same policy_file>
permission_level = allow | user_permission_levels
user_permision_levels = highest_level [“(” default_level “)”]
highest_level = user_permission_level
default_level = user_permision_level ; cannot be greater the highest_level
user_permission_level = blanket | session | oneshot
allow = “allow” ; allow access without asking the user.
blanket = “blanket” ; Allow access, do not ask again.

; Include session and oneshot when asking.
session = “session” ; Allow access, ask again at next MIDlet suite startup.

; Include oneshot when asking.
oneshot = “oneshot” ; Allow access, ask again at next use.

; If no default provided, default is to deny access.
alias_def = “alias:” *WS alias_name 1*WS alias_api_names
alias_api_names = api_name

*(*WS “,” *WS api_name) *WS newlines
alias_name = java_name
api_name = java_class_name
WS = continuation | SP | HT
continuation = newline SP
newlines = 1*newline ; allow blank lines to be ignored
newline = CR LF | LF | CR <not followed by LF>
CR = <Unicode carriage return (U+000D)>
LF = <Unicode linefeed (U+000A)>
SP = <Unicode space (U+0020)>
HT = <Unicode horizontal-tab (U+0009)>
java_name = 1*<characters allowed in a java_class_name except for “.”>
java_class_name = 1*<characters allowed in a Java class name>

Example policy file:

domain: O=“MIDlet Underwriters, Inc.”, C=US
allow: javax.microedition.io.HttpConnection
oneshot(oneshot): javax.microedition.io.CommConnection
alias: client_connections javax.microedition.io.SocketConnection,

javax.microedition.io.SecureConnection,
javax.microedition.io.HttpConnection,
javax.microedition.io.HttpsConnection

domain: O=Acme Wireless, OU=Software Assurance
allow: client_connections
allow: javax.microedition.io.ServerSocketConnection,
˝ javax.microedition.io.UDPDatagramConnection
oneshot(oneshot): javax.microedition.io.CommConnection
domain: allnet
blanket(session): client_connections
oneshot: javax.microedition.io.CommConnection
28

 to a
ions
let

suite.

tion
tication
mats

s for
et
C H A P T E R 4
Trusted MIDlet Suites using
X.509 PKI

Signed MIDlet suites may become trusted by authenticating the signer of the MIDlet suite and binding it
protection domain that will authorize the MIDlet suite to perform protected functions by granting permiss
allowed in the protection domain. The mechanisms defined here allow signing and authentication of MID
suites based on X.509 Public Key Infrastructure so the device can verify the signer and trust the MIDlet

If an implementation of this specification will recognize MIDlet suites signed using PKI as trusted MIDlet
suites they MUST be signed and verified according to the formats and processes below.

The MIDlet suite is protected by signing the JAR. The signature and certificates are added to the applica
descriptor as attributes. The device uses them to verify the signature. The device completes the authen
using a root certificate bound to a protection domain on the device. The details of the processes and for
follow.

References
MIDP 2.0 devices are expected to operate using standard Internet and wireless protocols and technique
transport and security. The current mechanisms for securing Internet content is based on existing Intern
standards for public key cryptography:

• [RFC2437] - PKCS #1 RSA Encryption Version 2.0 (http://www.ietf.org/rfc/rfc2437)

• [RFC2459] - Internet X.509 Public Key Infrastructure (http://www.ietf.org/rfc/rfc2459)

• [RFC2560] - Online Certificate Status Protocol (http://www.ietf.org/rfc/rfc2560)

• [WAPCERT] - WAP-211-WAPCert-20010522-a - WAP Certificate Profile Specification (http://
www.wapforum.org/what/technical.htm)

Definition of Terms
The termsTrusted MIDlet suite, Permission, andProtection Domain are defined by Security for MIDP
Applications.

The following additional term is defined:

Term Definition
29

Trusted MIDlet Suites using X.509 PKI

ro or
vable

e
 the
ation

 the

riptor
NOT
e

 MIDP

te
lic key

e

ot

er for

s

5

he
Signing a MIDlet Suite
The security model involves the MIDlet suite, a signer, and public key certificates. As with any public key
system authentication is based on a set of root certificates which are used to verify other certificates. Ze
more root certificates will need to be on the device. Additionally, root certificates may be present in remo
media such as SIM(WIM) card/USIM module. Implementations MUST support X.509 Certificates and
corresponding algorithms. Devices MAY support additional signing mechanisms and certificate formats.

The signer of the MIDlet suite may be the developer or some entity that is responsible for distributing,
supporting, and perhaps billing for its use. The signer will need to have a public key certificate that can b
validated to one of the protection domain root certificates on the device. The public key is used to verify
signature on the MIDlet suite. The public key is provided as a RSA X.509 certificate included in the applic
descriptor.

Attributes defined within the manifest of the JAR are protected by the signature. Attributes defined within
application descriptor are not secured. When an attribute appears in the manifest itMUST NOTbe overridden by
a different value from the application descriptor. For trusted MIDlet suites the value in the application desc
must be equal to the value of the corresponding attribute in the manifest. If not, the MIDlet suite MUST
be installed. TheMIDlet.getAppProperty method must return the attribute value from the manifest if on
is defined. If not, the value from the application descriptor (if any) is returned.

Note that the requirement that attributes values be equal differs from MIDP 1.0 and must be used for
applications that are signed and verified by these procedures. For untrusted application descriptors, the
1.0 rule giving priority to application descriptor attributes over manifest attributes must be followed.

Creating the Signing Certificate
1. The signer will need to be aware of the authorization policy for the device and contact the appropria

certificate authority. For example, the signer may need to send its distinguished name (DN) and pub
(normally, packaged in a certificate request) to a certificate authority.

2. The CA creates a RSA X.509 (version 3) certificate and returns it to the signer.

3. If multiple CA’s are used then all the signer certificates in the application descriptor MUST contain th
same public key.

Insert Certificates into the application descriptor
1. The certificate path includes the signer certificate and any necessary certificates but omitting the ro

certificate. The root certificate will be found on the device.

2. Each certificate in the path is encoded (using base64 but without line breaks) and inserted into the
application descriptor as:

MIDlet-Certificate-<n>-<m>: <base64 encoding of a certificate>
<n>:= a number equal to 1 for first certification path in the descriptor or 1 greater than the previous numb
additional certification paths. This defines the sequence in which the certificates are tested to see if the
corresponding root certificate is on the device. See the Authenticating a MIDlet suite section below.
<m>:= a number equal to 1 for the signer’s certificate in a certification path or 1 greater than the previou
number for any subsequent intermediate certificates.

Creating the RSA SHA-1 signature of the JAR
1. The signature of the JAR is created with the signers private key according to the EMSA-PKCS1-v1_

encoding method of PKCS #1 version 2.0 standard[RFC2437].

Protection Domain Root Certificate A certificate associated with a protection domain that t
device implicitly trusts to verify and authorize downloaded
MIDlet suites
30

Trusted MIDlet Suites using X.509 PKI

e

te
rcise

ship
MIDlet

e
by

d

es as

 the
d and

 the
suite
ain

 of

tion

ion
2. The signature is base64 encoded, formatted as a single MIDlet-Jar-RSA-SHA1 attribute without lin
breaks and inserted in the application descriptor.

MIDlet-Jar-RSA-SHA1: <base64 encoding of Jar signature>

It should be noted that the signer of the MIDlet suite is responsible to its protection domain root certifica
owner for protecting the protection domain stake holder’s assets and capabilities and, as such, must exe
due-diligence in checking the MIDlet suite before signing it. In the case where there is a trusted relation
(possibly bound by legal agreements), a protection domain root certificate owner may delegate signing
suites to a third-party and in some circumstances, the author of the MIDlet.

Authenticating a MIDlet Suite
When an MIDlet suite is downloaded, the device MUST check if authentication is required. If the attribut
MIDlet-Jar-RSA-SHA1 is present in the application descriptor then the JAR MUST be authenticated
verifying the signer certificates and JAR signature as below.

Application descriptors without theMIDlet-Jar-RSA-SHA1 attribute are not authenticated but are installe
and invoked as untrusted MIDlet suites.

Verify Signer Certificate
The certification path consists of the signer certificate from the application descriptor and other certificat
needed up to but not including the root certificate.

1. Get the certification path for the signer certificate from the application descriptor attributesMIDlet-
Certificate-1-<m> where <m> starts at 1 and is incremented by 1 until there is no attribute with
given name. The value of each attribute is a base64 encoded certificate that will need to be decode
parsed.

2. Validate the certification path using the basic path validation processes described in RFC2459 using
protection domains as the authoritative source of protection domain root certificates. Bind the MIDlet
to the protection domain that contains the protection domain root certificate that validates the first ch
from signer to root and proceed with installation.

3. If attributesMIDlet-Certificate-<n>-<m> with <n> greater than 1 are present and full
certification path could not be established after verifying MIDlet-Certificate-<1>-<m> certificates,
repeatedly perform steps 1 and 2 for the value <n> greater by 1 than the previous value. The results
certificate verification are gathered into the Table 1.

Table 1. Actions upon completion of signer certificate verification.

Result Action

Attempted to validate <n> paths. No public keys of the
issuer for the certificate can be found or none of the
certification paths can be validated

Authentication fails, JAR Installation is not allowed.

More than one full certificate path established and validated Implementation proceeds with the signature verifica
using the first successfully verified certificate path is used
for authentication and authorization.

Only one full certificate path established and validated Implementation proceeds with the signature verificat
31

Trusted MIDlet Suites using X.509 PKI

ature

 the
e

f of the
he
ed for

or
erwise

uite is
ight be

.

n is
Verify the MIDlet Suite JAR
1. Get the public key from the verified signer certificate (above).

2. Get theMIDlet-Jar-RSA-SHA1 attribute from the application descriptor.

3. Decode the attribute value from base64 yielding a PKCS #1 signature [RFC2437].

4. Use the signer’s public key, signature, and SHA-1 digest of the JAR, to verify the signature. If the sign
verification fails, reject the application descriptor and MIDlet suite. The implementation MUST NOT
install the JAR on failure or allow MIDlets from the MIDlet suite to be invoked.

Once the steps of verifying the certificate, verifying the signature and verifying the JAR all succeed then
MIDlet suite contents are known to be intact and the identity of the signer is known. This process must b
performed during installation.

Summary of MIDlet suite source verification results
It is essential that the steps performed to verify the digital signature as described above lead to the proo
identity of the MIDlet suite signer. The results of the verification have a direct impact on authorization. T
following, Table 2, summarizes the states to which the signature verification led and which are further us
authorization at install time.

Table 2. Summary of MIDlet suite source verification

Caching of Authentication and Authorization Results
The implementation of the authentication and authorization process may store and transfer the results f
subsequent use and MUST ensure that the cached information practically can not be tampered with or oth
compromised between the time it is computed from the JAR, application descriptor, and authentication
information and the authorization information is used.

It is essential that the MIDlet suite and security information used to authenticate and authorize a MIDlet s
not compromised, for example, by use of removable media or other access to MIDlet suite storage that m
corrupted.

Initial state Verification result

JAD not present, JAR downloaded Authentication can not be performed, may install JAR.
MIDlet suite is treated as untrusted

JAD present but is JAR is unsigned Authentication can not be performed, may install JAR
MIDlet suite is treated as untrusted

JAR signed but no root certificate present in the keystore to
validate the certificate chain

Authentication can not be performed, JAR installation is
not allowed

JAR signed, a certificate on the path is expired Authentication can not be completed, JAR installatio
not allowed

JAR signed, a certificate rejected for reasons other than
expiration

JAD rejected, JAR installation is not allowed

JAR signed, certificate path validated but signature
verification fails

JAD rejected, JAR installation is not allowed

JAR signed, certificate path validated, signature verified JAR installation is allowed
32

Trusted MIDlet Suites using X.509 PKI

nism
hile

 of the
rity is
twork
ure
based
ting
table
ion of

ed on
ernet
ation

hen

hain.
hain

cally
is an

sion is
anism is
orm a

col
cols
 as

. These
ways

rts
Security in Split-VM Implementations
In environments that make use of a split VM (CLDC 5.4.6), it is possible to implement the security mecha
using JARs but this relies on converting the JAR to the device format when the JAR enters the network w
faithfully preserving the semantics of the MIDlet. Once the conversion has happened, the device format
application must be secured against tampering and retain its authorized permissions. This network secu
often based on similar digital signature techniques to MIDlet security and it may be the case that this ne
security infrastructure is already present and active. If and only if this kind of network security infrastruct
already exists and it can support all forms of protection required by this specification (and any future JSRs
on this specification), a permissible implementation of MIDlet Suite Security can be based on authentica
and authorizing the device format of the MIDlet since these implementation formats are the actual execu
content that will be used on the device. The details of authenticating and authorizing a device format vers
a MIDlet suite are implementation specific and thus not covered by this specification.

MIDP X.509 Certificate Profile for Trusted MIDlet Suites
Secured trusted MIDlet suites utilize the same base certificate profile as does HTTPS. The profile is bas
the WAP Certificate Profile, WAP-211-WAPCert-20010522-a [WAPCert] which is based on RFC2459 Int
X.509 Public Key Infrastructure Certificate and CRL Profile [RFC2459]. Refer to the package document
for javax.microedition.pki for details.

Certificate Processing for OTA
Devices MUST recognize the key usage extension and when present verify that the extension has the
digitalSignature bit set. Devices MUST recognize the critical extended key usage extension and w
present verify that the extension contains theid-kp-codeSigning object identifier (see RFC2459 sec.
4.2.1.13).

The application descriptor SHOULD NOT include a self-issued root certificate in a descriptor certificate c
However MIDP devices SHOULD treat the certificate as any other in a chain and NOT explicitly reject a c
with a X.509v3 self-issued CA certificate in its chain.

Certificate Expiration and Revocation
Expiration and revocation of certificates supplied in the application descriptor is checked during the
authorization procedure, specifically during certificate path validation. Certificate expiration is checked lo
on the device as such information is retrievable from the certificate itself. Certificate expiration verification
intrinsic and mandatory part of certificate path validation.

Certificate revocation is a more complex check as it requires sending a request to a server and the deci
made based on the received response. Certificate revocation can be performed if the appropriate mech
implemented on the device. Such mechanisms are not part of MIDP implementation and hence do not f
part of MIDP 2.0 security framework.

If certificate revocation is implemented in the device, it SHOULD support Online Certificate Status proto
(OCSP) [RFC2560]. If other certificate revocation protocols are supported, support for these other proto
may indicate that a certificate has been revoked; in this case, it is permissible to consider the certificate
revoked regardless of the result returned by the OCSP protocol.

Examples of MIDlet Suite Signing
There are many ways to structure protection domain root certificates and their associated signing policies
examples are provided to illustrate some of the concepts in this specification and are not meant to limit the
MIDlet PKI signing can be used. The examples allow MIDlets to be revoked (provided the device suppo
certificate revocation) but at differing granularities.
33

Trusted MIDlet Suites using X.509 PKI

by one

with

d, all

 the

with
Example 1 - Developer Owns Signing Certificate
This encodes the origin of the MIDlet suite into the JAD (via the identity of the signer). If the certificate is
revoked, all of the developer’s signed MIDlets on every device for every user will have their execution
permissions revoked.

1. Developer creates MIDlet network application

2. Developer encodes permissions into JAR manifest and creates final MIDlet JAR

3. Developer generates a private-public key pair with a signing certificate and has the certificate signed
or more protection domain root certificates

4. The developer’s certificate is used to sign the MIDlet JAR and create the associated JAD entries

5. MIDlet JAR can be distributed with a suitably populated JAD and run on a MIDP 2.0 compliant device
the appropriate protection domain root certificate

Example - Protection Domain Stakeholder Owns Signing Certificate
This encodes the signers identity (not the MIDlet suite developer) into the JAD. If the certificate is revoke
MIDlets signed with this particular certificate will have their execution permissions revoked.

1. Developer creates MIDlet network application

2. Developer encodes permissions into JAR manifest and creates final MIDlet JAR

3. The protection domain stakeholder’s signing certificate (not necessarily the root cert) is used to sign
MIDlet JAR and create the associated JAD entries

4. MIDlet JAR can be distributed with a suitably populated JAD and run on a MIDP 2.0 compliant device
the appropriate protection domain root certificate
34

the

C are

that

try
 1.0

ci.edu/

ie.fu-
C H A P T E R 5
Package

java.lang
Description
MID Profile Language Classes included from Java 2 Standard Edition. In addition to thejava.lang classes
specified in the Connected Limited Device Configuration the Mobile Information Device Profile includes
following class from Java 2 Standard Edition.

• java.lang.IllegalStateException.java

IllegalStateException s are thrown when illegal transitions are requested, such as scheduling a
TimerTask or in the containment of user interface components.

System Functions
The MIDP is based on the Connected, Limited Device Configuration (CLDC). Some features of the CLD
modified or extended by the MIDP.

System Properties
The MIDP defines the following property values (in addition to those defined in the CLDC specification)
MUST be made available to the application usingjava.lang.System.getProperty :

System Properties Defined by MIDP

Other properties may be available from other profiles or the implementation.

Property microedition.locale

The locale property, if notnull , MUST consist of the language and MAY optionally also contain the coun
code, and variant separated by “-” (Unicode U+002D). For example, “fr-FR” or “en-US.” (Note: the MIDP
specification used the HTTP formatting of language tags as defined in RFC3066 (http://www.ietf.org/rfc/
rfc3066.txt)Tags for the Identification of Languages. This is different from the J2SE definition forLocale
printed strings where fields are separated by “_” (Unicode U+005F).)

The language codes MUST be the lower-case, two-letter codes as defined by ISO-639 (http://www.ics.u
pub/ietf/http/related/iso639.txt).

The country code MUST be the upper-case, two-letter codes as defined by ISO-3166 (http://www.chem
berlin.de/diverse/doc/ISO_3166.html).

System Property Description

microedition.locale The current locale of the device, may benull

microedition.profiles is a blank (Unicode U+0020) separated list of the J2ME profiles that this
device supports. For MIDP 2.0 devices, this property MUST contain at
least “MIDP-2.0”
35

java.lang

/” are

age
m by

r “..”
Application Resource Files
Application resource files are accessed usinggetResourceAsStream(String name) in
java.lang.Class . In the MIDP specification,getResourceAsStream is used to allow resource files
to be retrieved from the MIDlet Suite’s JAR file.

Resource names refer to the contents of the MIDlet Suite JAR file. Absolute pathnames, beginning with “
fully qualified file names within the jar file.

Relative pathnames, not beginning with “/” are relative to the class upon whichgetResourceAsStream is
called. Relative names are converted to absolute by prepending a “/” followed by the fully qualified pack
with “.” characters converted to “/” and a separator of “/”. The resulting string is reduced to canonical for
applying as many times as possible the following:

• All occurences of “/./” are replaced with “/”.

• All occurences of “/segment/../” are replaced with “/” where segment does not contain “/”.

The canonical resource name is the absolute pathname of the resource within the JAR.

In no case can the path extend outside the JAR file, and resources outside the JAR file MUST NOT be
accessible. For example, using “../../” does NOT point outside the JAR file. If there are any remaining “.” o
characters they are treated literally in locating the resource. No resource can exist with that name sonull is
returned fromClass.getResourceAsStream . Also, devices MUST NOT allow classfiles to be read from
the JAR file as resources, but all other files MUST be accessible.

System.exit
The behavior ofjava.lang.System.exit MUST throw ajava.lang.SecurityException when
invoked by a MIDlet. The only way a MIDlet can indicate that it is complete is by calling
MIDlet.notifyDestroyed .

Runtime.exit
The behavior ofjava.lang.Runtime.exit MUST throw ajava.lang.SecurityException
when invoked by a MIDlet. The only way a MIDlet can indicate that it is complete is by calling
MIDlet.notifyDestroyed .

Since: MIDP 1.0

Class Summary

Interfaces

Classes

Exceptions

IllegalStateException 3

7

Signals that a method has been invoked at an illegal or inappropriate time.

Errors
36

java.lang IllegalStateException

IllegalStateException()

nment
java.lang

IllegalStateException
Declaration
public class IllegalStateException extends RuntimeException

Object
|
+--Throwable

|
+--Exception

|
+--RuntimeException

|
+-- IllegalStateException

Description
Signals that a method has been invoked at an illegal or inappropriate time. In other words, the Java enviro
or Java application is not in an appropriate state for the requested operation.

Since: MIDP 1.0

Constructors

IllegalStateException()

Declaration:
public IllegalStateException ()

Member Summary

Constructors
IllegalStateException() 37

IllegalStateException(String s) 38

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Methods inherited from classThrowable

getMessage(), printStackTrace(), toString()
37

IllegalStateException java.lang

IllegalStateException(String)

that
Description:
Constructs an IllegalStateException with no detail message.

IllegalStateException(String)

Declaration:
public IllegalStateException (String s)

Description:
Constructs an IllegalStateException with the specified detail message. A detail message is a String
describes this particular exception.

Parameters:
s - the String that contains a detailed message
38

the

.

C H A P T E R 6
Package

java.util
Description
MID Profile Utility Classes included from Java 2 Standard Edition. In addition to thejava.util classes
specified in the Connected Limited Device Configuration the Mobile Information Device Profile includes
following classes from Java 2 Standard Edition.

• java.util.Timer

• java.util.TimerTask

Timers provide facility for an application to schedule task for future execution in a background thread.
TimerTasks may be scheduled using Timers for one-time execution, or for repeated execution at regular
intervals.

Since: MIDP 1.0

Class Summary

Interfaces

Classes

Timer 40 A facility for threads to schedule tasks for future execution in a background thread

TimerTask 46 A task that can be scheduled for one-time or repeated execution by aTimer .

Exceptions
39

Timer java.util

led for

s
e, it
ch may

,
wever,

ution

e timer

o

java.util

Timer
Declaration
public class Timer

Object
|
+-- java.util.Timer

Description
A facility for threads to schedule tasks for future execution in a background thread. Tasks may be schedu
one-time execution, or for repeated execution at regular intervals.

Corresponding to eachTimer object is a single background thread that is used to execute all of the timer’
tasks, sequentially. Timer tasks should complete quickly. If a timer task takes excessive time to complet
“hogs” the timer’s task execution thread. This can, in turn, delay the execution of subsequent tasks, whi
“bunch up” and execute in rapid succession when (and if) the offending task finally completes.

After the last live reference to aTimer object goes awayand all outstanding tasks have completed execution
the timer’s task execution thread terminates gracefully (and becomes subject to garbage collection). Ho
this can take arbitrarily long to occur. By default, the task execution thread does not run as adaemon thread, so
it is capable of keeping an application from terminating. If a caller wants to terminate a timer’s task exec
thread rapidly, the caller should invoke the timer’scancel method.

If the timer’s task execution thread terminates unexpectedly, any further attempt to schedule a task on th
will result in anIllegalStateException , as if the timer’scancel method had been invoked.

This class is thread-safe: multiple threads can share a singleTimer object without the need for external
synchronization.

This class doesnot offer real-time guarantees: it schedules tasks using theObject.wait(long) method.
The resolution of the Timer is implementation and device dependent.

Timers function only within a single VM and are cancelled when the VM exits. When the VM is started n
timers exist, they are created only by application request.

Since: MIDP 1.0

See Also: TimerTask 46, Object.wait(long)

Member Summary

Constructors
Timer() 41

Methods
 void cancel() 41

 void schedule(TimerTask task, Date time) 41

 void schedule(TimerTask task, Date firstTime, long period) 42

 void schedule(TimerTask task, long delay) 42

 void schedule(TimerTask task, long delay, long period) 43
40

java.util Timer

Timer()

fully,

er
formed
Constructors

Timer()

Declaration:
public Timer ()

Description:
Creates a new timer. The associated thread doesnot run as a daemon thread, which may prevent an
application from terminating.

See Also:Thread , cancel() 41

Methods

cancel()

Declaration:
public void cancel ()

Description:
Terminates this timer, discarding any currently scheduled tasks. Does not interfere with a currently
executing task (if it exists). Once a timer has been terminated, its execution thread terminates grace
and no more tasks may be scheduled on it.

Note that calling this method from within the run method of a timer task that was invoked by this tim
absolutely guarantees that the ongoing task execution is the last task execution that will ever be per
by this timer.

This method may be called repeatedly; the second and subsequent calls have no effect.

schedule(TimerTask, Date)

Declaration:
public void schedule (java.util.TimerTask 46 task, java.util.Date time)

 void scheduleAtFixedRate(TimerTask task, Date firstTime, long
period) 43

 void scheduleAtFixedRate(TimerTask task, long delay, long period) 44

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
41

Timer java.util

schedule(TimerTask, Date, long)

, or

t

vious
d
will

, it is
han in
o
lly

, or
Description:
Schedules the specified task for execution at the specified time. If the time is in the past, the task is
scheduled for immediate execution.

Parameters:
task - task to be scheduled.

time - time at which task is to be executed.

Throws:
IllegalArgumentException - if time.getTime() is negative.

IllegalStateException 37 - if task was already scheduled or cancelled, timer was cancelled
timer thread terminated.

schedule(TimerTask, Date, long)

Declaration:
public void schedule (java.util.TimerTask 46 task, java.util.Date firstTime, long period)

Description:
Schedules the specified task for repeatedfixed-delay execution, beginning at the specified time. Subsequen
executions take place at approximately regular intervals, separated by the specified period.

In fixed-delay execution, each execution is scheduled relative to the actual execution time of the pre
execution. If an execution is delayed for any reason (such as garbage collection or other backgroun
activity), subsequent executions will be delayed as well. In the long run, the frequency of execution
generally be slightly lower than the reciprocal of the specified period (assuming the system clock
underlyingObject.wait(long) is accurate).

Fixed-delay execution is appropriate for recurring activities that require “smoothness.” In other words
appropriate for activities where it is more important to keep the frequency accurate in the short run t
the long run. This includes most animation tasks, such as blinking a cursor at regular intervals. It als
includes tasks wherein regular activity is performed in response to human input, such as automatica
repeating a character as long as a key is held down.

Parameters:
task - task to be scheduled.

firstTime - First time at which task is to be executed.

period - time in milliseconds between successive task executions.

Throws:
IllegalArgumentException - if time.getTime() is negative.

IllegalStateException 37 - if task was already scheduled or cancelled, timer was cancelled
timer thread terminated.

schedule(TimerTask, long)

Declaration:
public void schedule (java.util.TimerTask 46 task, long delay)

Description:
Schedules the specified task for execution after the specified delay.

Parameters:
task - task to be scheduled.
42

java.util Timer

schedule(TimerTask, long, long)

erent
ndent.

lled.

d. Note

vious
d
will

, it is
han in
o
lly

erent
ndent.

, or

t

delay - delay in milliseconds before task is to be executed. Note that the actual delay may be diff
than the amount requested since the resolution of the Timer is implementation and device depe

Throws:
IllegalArgumentException - if delay is negative, ordelay +
System.currentTimeMillis() is negative.

IllegalStateException 37 - if task was already scheduled or cancelled, or timer was cance

schedule(TimerTask, long, long)

Declaration:
public void schedule (java.util.TimerTask 46 task, long delay, long period)

Description:
Schedules the specified task for repeatedfixed-delay execution, beginning after the specified delay.
Subsequent executions take place at approximately regular intervals separated by the specified perio
that the actual delay may be different than the amount requested since the resolution of the Timer is
implementation and device dependent.

In fixed-delay execution, each execution is scheduled relative to the actual execution time of the pre
execution. If an execution is delayed for any reason (such as garbage collection or other backgroun
activity), subsequent executions will be delayed as well. In the long run, the frequency of execution
generally be slightly lower than the reciprocal of the specified period (assuming the system clock
underlyingObject.wait(long) is accurate).

Fixed-delay execution is appropriate for recurring activities that require “smoothness.” In other words
appropriate for activities where it is more important to keep the frequency accurate in the short run t
the long run. This includes most animation tasks, such as blinking a cursor at regular intervals. It als
includes tasks wherein regular activity is performed in response to human input, such as automatica
repeating a character as long as a key is held down.

Parameters:
task - task to be scheduled.

delay - delay in milliseconds before task is to be executed. Note that the actual delay may be diff
than the amount requested since the resolution of the Timer is implementation and device depe

period - time in milliseconds between successive task executions.

Throws:
IllegalArgumentException - if delay is negative, ordelay +
System.currentTimeMillis() is negative.

IllegalStateException 37 - if task was already scheduled or cancelled, timer was cancelled
timer thread terminated.

scheduleAtFixedRate(TimerTask, Date, long)

Declaration:
public void scheduleAtFixedRate (java.util.TimerTask 46 task, java.util.Date firstTime,

long period)

Description:
Schedules the specified task for repeatedfixed-rate execution, beginning at the specified time. Subsequen
executions take place at approximately regular intervals, separated by the specified period.
43

Timer java.util

scheduleAtFixedRate(TimerTask, long, long)

initial
d
ncy

ying

ime. It
tions
rate
d with

, or

riod.

initial
d
ncy

ying

ime. It
tions
rate
d with

erent
ndent.
In fixed-rate execution, each execution is scheduled relative to the scheduled execution time of the
execution. If an execution is delayed for any reason (such as garbage collection or other backgroun
activity), two or more executions will occur in rapid succession to “catch up.” In the long run, the freque
of execution will be exactly the reciprocal of the specified period (assuming the system clock underl
Object.wait(long) is accurate).

Fixed-rate execution is appropriate for recurring activities that are sensitive toabsolute time, such as
ringing a chime every hour on the hour, or running scheduled maintenance every day at a particular t
is also appropriate for for recurring activities where the total time to perform a fixed number of execu
is important, such as a countdown timer that ticks once every second for ten seconds. Finally, fixed-
execution is appropriate for scheduling multiple repeating timer tasks that must remain synchronize
respect to one another.

Parameters:
task - task to be scheduled.

firstTime - First time at which task is to be executed.

period - time in milliseconds between successive task executions.

Throws:
IllegalArgumentException - if time.getTime() is negative.

IllegalStateException 37 - if task was already scheduled or cancelled, timer was cancelled
timer thread terminated.

scheduleAtFixedRate(TimerTask, long, long)

Declaration:
public void scheduleAtFixedRate (java.util.TimerTask 46 task, long delay, long period)

Description:
Schedules the specified task for repeatedfixed-rate execution, beginning after the specified delay.
Subsequent executions take place at approximately regular intervals, separated by the specified pe

In fixed-rate execution, each execution is scheduled relative to the scheduled execution time of the
execution. If an execution is delayed for any reason (such as garbage collection or other backgroun
activity), two or more executions will occur in rapid succession to “catch up.” In the long run, the freque
of execution will be exactly the reciprocal of the specified period (assuming the system clock underl
Object.wait(long) is accurate).

Fixed-rate execution is appropriate for recurring activities that are sensitive toabsolute time, such as
ringing a chime every hour on the hour, or running scheduled maintenance every day at a particular t
is also appropriate for for recurring activities where the total time to perform a fixed number of execu
is important, such as a countdown timer that ticks once every second for ten seconds. Finally, fixed-
execution is appropriate for scheduling multiple repeating timer tasks that must remain synchronize
respect to one another.

Parameters:
task - task to be scheduled.

delay - delay in milliseconds before task is to be executed. Note that the actual delay may be diff
than the amount requested since the resolution of the Timer is implementation and device depe

period - time in milliseconds between successive task executions.
44

java.util Timer

scheduleAtFixedRate(TimerTask, long, long)

, or
Throws:
IllegalArgumentException - if delay is negative, ordelay +
System.currentTimeMillis() is negative.

IllegalStateException 37 - if task was already scheduled or cancelled, timer was cancelled
timer thread terminated.
45

TimerTask java.util

TimerTask()
java.util

TimerTask
Declaration
public abstract class TimerTask implements Runnable

Object
|
+-- java.util.TimerTask

All Implemented Interfaces: Runnable

Description
A task that can be scheduled for one-time or repeated execution by aTimer .

Since: MIDP 1.0

See Also: Timer 40

Constructors

TimerTask()

Declaration:
protected TimerTask ()

Member Summary

Constructors
protected TimerTask() 46

Methods
 boolean cancel() 47

abstract void run() 47

 long scheduledExecutionTime() 47

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
46

java.util TimerTask

cancel()

has not
er run
ain.)

es

duled
already
 this

going
Description:
Creates a new timer task.

Methods

cancel()

Declaration:
public boolean cancel ()

Description:
Cancels this timer task. If the task has been scheduled for one-time execution and has not yet run, or
yet been scheduled, it will never run. If the task has been scheduled for repeated execution, it will nev
again. (If the task is running when this call occurs, the task will run to completion, but will never run ag

Note that calling this method from within therun method of a repeating timer task absolutely guarante
that the timer task will not run again.

This method may be called repeatedly; the second and subsequent calls have no effect.

Returns: true if this task is scheduled for one-time execution and has not yet run, or this task is sche
for repeated execution. Returns false if the task was scheduled for one-time execution and has
run, or if the task was never scheduled, or if the task was already cancelled. (Loosely speaking,
method returnstrue if it prevents one or more scheduled executions from taking place.)

run()

Declaration:
public abstract void run ()

Description:
The action to be performed by this timer task.

Specified By: run in interfaceRunnable

scheduledExecutionTime()

Declaration:
public long scheduledExecutionTime ()

Description:
Returns thescheduled execution time of the most recentactual execution of this task. (If this method is
invoked while task execution is in progress, the return value is the scheduled execution time of the on
task execution.)

This method is typically invoked from within a task’s run method, to determine whether the current
execution of the task is sufficiently timely to warrant performing the scheduled activity:

public void run() {
if (System.currentTimeMillis() - scheduledExecutionTime() >=

MAX_TARDINESS)
return; // Too late; skip this execution.

// Perform the task
}

This method is typicallynot used in conjunction withfixed-delay execution repeating tasks, as their
scheduled execution times are allowed to drift over time, and so are not terribly significant.
47

TimerTask java.util

scheduledExecutionTime()

at
st
Returns: the time at which the most recent execution of this task was scheduled to occur, in the form
returned by Date.getTime(). The return value is undefined if the task has yet to commence its fir
execution.

See Also:Date.getTime()
48

n

DC)

s WAP

e
ns

UST
ose

ilize
S name
ccess
C H A P T E R 7
Package

javax.microedition.io
Description
 MID Profile includes networking support based on theGeneric Connection framework from the
Connected, Limited Device Configuration.

HTTP Networking
In addition to thejavax.microedition.io classes specified in theConnected Limited Device
Configuration theMobile Information Device Profile includes the following interface for the HTTP access. A
HttpConnection is returned fromConnector.open() when an“http://” connection string is
accessed.

• javax.microedition.io.HttpConnection

The MIDP extends the connectivity support provided by the Connected, Limited Device Configuration (CL
with specific functionality for theGenericConnection framework. The MIDP supports a subset of the HTTP
protocol, which can be implemented using both IP protocols such as TCP/IP and non-IP protocols such a
and i-Mode, utilizing a gateway to provide access to HTTP servers on the Internet.

TheGenericConnection framework is used to support client-server and datagram networks. Using only th
protocols specified by the MIDP will allow the application to be portable to all MIDs. MIDP implementatio
MUST provide support for accessing HTTP 1.1 servers and services.

There are wide variations in wireless networks. It is the joint responsibility of the device and the wireless
network to provide the application service. It may require agateway that can bridge between the wireless
transports specific to the network and the wired Internet. The client application and the Internet server M
NOT need to be required to know either that non-IP networks are being used or the characteristics of th
networks. While the client and server MAY both take advantage of such knowledge to optimize their
transmissions, they MUST NOT be required to do so.

For example, a MID MAY have no in-device support for the Internet Protocol (IP). In this case, it would ut
a gateway to access the Internet, and the gateway would be responsible for some services, such as DN
resolution for Internet URLs. The device and network may define and implement security and network a
policies that restrict access.
49

javax.microedition.io

nse

es

as
 the
e and

g any

transport

on to
ication

16,
ber.
HTTP Network Connection

TheGenericConnection framework from the CLDC provides the base stream and content interfaces. The
interfaceHttpConnection provides the additional functionality needed to set request headers, parse respo
headers, and perform other HTTP specific functions.

The interface MUST support:

HTTP 1.1

Each device implementing the MIDP MUST support opening connections using the following URL schem
(RFC2396 Uniform Resource Identifiers (URI): Generic Syntax)

“http” as defined by RFC2616Hypertext Transfer Protocol —- HTTP/1.1

Each device implementing the MIDP MUST support the full specification of RFC2616
 HEAD, GET and POST requests. The implementation MUST also support the absolute forms of URIs.

The implementation MUST pass all request headers supplied by the application and response headers
supplied by the network server. The ordering of request and response headers MAY be changed. While
headers may be transformed in transit, they MUST be reconstructed as equivalent headers on the devic
server. Any transformations MUST be transparent to the application and origin server. The HTTP
implementation does not automatically include any headers. The application itself is responsible for settin
request headers that it needs.

Connections may be implemented with any suitable protocol providing the ability to reliably transport the
HTTP headers and data.(RFC2616 takes great care to not to mandate TCP streams as the only required
mechanism.)

HTTP Request Headers
The HTTP 1.1 specification provides a rich set of request and response headers that allow the applicati
negotiate the form, format, language, and other attributes of the content retrieved. In the MIDP, the appl
is responsible for selection and processing of request and response headers. Only theUser-Agent header is
described in detail. Any other header that is mutually agreed upon with the server may be used.

User-Agent and Accept-Language Request Headers
For the MIDP, a simpleUser-Agent field may be used to identify the current device. As specified by RFC26
the field contains blank separated features where the feature contains a name and optional version num

The application is responsible for formatting and requesting that theUser-Agent field be included in HTTP
requests via thesetRequestPropertymethod in the interfacejavax.microedition.io.HttpConnection. It can supply
50

javax.microedition.io

ader

nto the

m
d

lt in

ny

en the

twork
efer to
any application-specific features that are appropriate, in addition to any of the profile-specific request he
values listed below.

Applications are not required to be loaded onto the device using HTTP. But if they are, then theUser-Agent
request header should be included in requests to load an application descriptor or application JAR file o
device. This will allow the server to provide the most appropriate application for the device.

The user-agent and accept-language fields SHOULD contain the following features as defined by syste
properties using java.lang.System.getProperty. If multiple values are present they will need to be reformatte
into individual fields in the request header.

System Properties Used for User-Agent and Accept-Language Request Headers

HTTP Request Header Example
User-Agent: Profile/MIDP-2.0 Configuration/CLDC-1.0
 Accept-Language: en-US

StreamConnection Behavior
All MIDP StreamConnections have one underlyingInputStream and oneOutputStream . Opening
aDataInputStream counts as opening anInputStream and opening aDataOutputStream counts as
opening anOutputStream . Trying to open anotherInputStream or anotherOutputStream from a
StreamConnections causes anIOException . Trying to openInputStream or OutputStream
after they have been closed causes anIOException .

After calling theclose method, regardless of open streams, further method calls to connection will resu
IOExceptions for those methods that are declared to throwIOExceptions . For the methods that do not
throw exceptions, unknown results may be returned.

The methods ofStreamConnections are not synchronized. The only stream method that can be called
safely in another thread isclose . Whenclose is invoked on a stream that is excuting in another thread, a
pending I/O method MUST throw anInterruptedIOException . In the above case implementations
SHOULD try to throw the exception in a timely manner. When all open streams have been closed, and wh
StreamConnections is closed, any pending I/O operations MUST be interrupted in a timely manner.

Secure Networking
Since the MIDP 2.0 release additional interfaces are available for secure communication with WWW ne
services. Secure interfaces are provided by HTTPS and SSL/TLS protocol access over the IP network. R
the package documentation ofjavax.microedition.pki for the details of certificate profile that applies
to secure connections. AnHttpsConnection is returned fromConnector.open() when an“https:/

System Property Description

microedition.profiles A blank (Unicode U+0020) separated list of the J2ME profiles that this
device supports. For MIDP 2.0 devices, this property MUST contain at
least “MIDP-2.0”.

microedition.configuration The J2ME configuration supported by this device.
For example, “CLDC-1.0.”

microedition.locale The name of the current locale on this device.
For example, “en-US.”
51

javax.microedition.io

P

v4
to

rotocols.

the

ring

r by
/” connection string is accessed. ASecureConnection is returned fromConnector.open() when an
“ssl://” connection string is accessed.

• javax.microedition.io.HttpsConnection

• javax.microedition.io.SecureConnection

• javax.microedition.io.SecurityInfo

• javax.microedition.pki.Certificate

• javax.microedition.pki.CertificateException

Low Level IP Networking
Since the MIDP 2.0 release, the MIDP specification also includes optional networking support for TCP/I
sockets and UDP/IP datagrams. For each of the following schemes, a host is specified for an outbound
connection and the host is omitted for an inbound connection. The host can be a host name, a literal IP
address or a literal IPv6 addresss (according to RFC2732 square bracket characters ’[’ ’]’ may be used
designate an IPv6 address in URL strings). Implementations MUST be able to parse the URL string and
recognize the address format used, but are not required to support all address formats and associated p

When the host and port number are both omitted from thesocket or datagram connection, the system will
allocate an available port. The host and port numbers allocated in this fashion can be discovered using
getLocalAddress andgetLocalPort methods. The colon (:) may be omitted when the connection
string does not include the port parameter.

A SocketConnection is returned fromConnector.open() when a“socket://host:port”
connection string is accessed. AServerSocketConnection is returned fromConnector.open()
when a“socket://:port” connection string is accessed. AUDPDatagramConnection is returned
from Connector.open() when a“datagram://host:port” connection string is accessed.

• javax.microedition.io.SocketConnection

• javax.microedition.io.ServerSocketConnection

• javax.microedition.io.DatagramConnection

• javax.microedition.io.Datagram

• javax.microedition.io.UDPDatagramConnection

Push Applications
A PushRegistry is available in the MIDP 2.0 release which provides a MIDlet with a means of registe
for network connection events, which may be delivered when the application is not currently running.

• javax.microedition.io.PushRegistry

Serial Port Communications
A CommConnection is available in the MIDP 2.0 release which provides a MIDlet with a means of
registering for network accessing a local serial port as a stream connection.

• javax.microedition.io.CommConnection

Security of Networking Functions
The security model is found in the packagejavax.microedition.midlet and provides a framework
that allows APIs and functions to be restricted to MIDlet suites that have been granted permissions eithe
52

javax.microedition.io

sions

 and to
ork in
d been

ery
ing to
The API

have
ter

ion
ction

nd for

before
en a
signing or explicitly by the user. (See Security for MIDlet suites for details about granting specific permis
to aMIDlet suite.)

The risks associated with a MIDlet suite’s use of the network are related the potential for network abuse
costs to the device owner since network use may result in charges. MIDP 2.0 provides a security framew
which network functions can be protected and allowed only to those applications that have requested an
granted appropriate permissions.

Each protocol is accessed by invokingjavax.microedition.io.Connector.open with a URI
including the protocol and arguments. The permissions below allow access to be granted individually to
protocols. The functionality of the protocols is specified by subclasses ofConnection interface that defines
the syntax of the URI and any protocol specific methods. Devices are NOT REQUIRED to implement ev
protocol. If a protocol is implemented, the security framework specifies the naming of permissions accord
the package and class name of the APIs used to access the protocol extended with the protocol name.
providing access isjavax.microedition.io.Connector.open . The table below defines the
corresponding permissions for the protocols defined within this specification.

Security of PushRegistry
ThePushRegistry is protected using the security framework and permissions. The MIDlet suite must
the javax.microedition.io.PushRegistry permission to register an alarm based launch, to regis
dynamically using thePushRegistry , to make a static registration in the application descriptor and to
determine if the user needs to be prompted prior to invoking MIDlet suite in response to a Push connect
event or alarm. The protection domain defines the general behavior for user permissions with the intera
modes of “oneshot”, “session”, and “blanket”. For thePushRegistry and the AMS, launching behavior is
specialized:

• Oneshot: The user is prompted before the MIDlet suite is invoked to handle a push event or alarm a
each PushRegistry request; for example to register an alarm or a connection.

• Session: The user is prompted before the MIDlet suite is invoked to handle a push event or alarm, or
the firstPushRegistry request; for example to register an alarm or a connection. Subsequently, wh
MIDlet uses thePushRegistry the user is not prompted.

• Blanket: The user is prompted only once during installation, before the first time the MIDlet suite is
invoked to handle a push event or alarm, or uses thePushRegistry .

Permission Protocol

javax.microedition.io.Connector.http http

javax.microedition.io.Connector.https https

javax.microedition.io.Connector.datagram datagram

javax.microedition.io.Connector.datagramreceive
r

datagram server (without host)

javax.microedition.io.Connector.socket socket

javax.microedition.io.Connector.serversocket server socket (without host)

javax.microedition.io.Connector.ssl ssl

javax.microedition.io.Connector.comm comm
53

javax.microedition.io

ccepted
ion to
se the

ion.

ress.
The push mechanism uses protocols in which the device is acting as the server and connections can be a
from other elements of the network. To use the push mechanisms the MIDlet suite will need the permiss
use the server connection. For example, to register a chat program that can be started via push might u
following attributes in the manifest:

MIDlet-Push-1: socket://:79, com.sun.example.SampleChat, *
MIDlet-
Permissions: javax.microedition.io.PushRegistry, javax.microedition.io.Connector.servers
ocket

Since: MIDP 1.0

Class Summary

Interfaces

CommConnection 55 This interface defines a logical serial port connection.

HttpConnection 65 This interface defines the necessary methods and constants for an HTTP connect

HttpsConnection 85 This interface defines the necessary methods and constants to establish a secure
network connection.

SecureConnection 100 This interface defines the secure socket stream connection.

SecurityInfo 103 This interface defines methods to access information about a secure network
connection.

ServerSocketConnection

105

This interface defines the server socket stream connection.

SocketConnection 108 This interface defines the socket stream connection.

UDPDatagramConnection 1

13

This interface defines a datagram connection which knows it’s local end point add

Classes

Connector 60 Factory class for creating new Connection objects.

PushRegistry 89 ThePushRegistry maintains a list of inbound connections.

Exceptions
54

javax.microedition.io CommConnection

ction
ating
ports

gical”

d

) must

likely

ng. If a
ort

ters
 be

f
overed
javax.microedition.io

CommConnection
Declaration
public interface CommConnection extends StreamConnection

All Superinterfaces: Connection , InputConnection , OutputConnection ,
StreamConnection

Description
This interface defines a logical serial port connection. A “logical” serial port is defined as a logical conne
through which bytes are transferring serially. The logical serial port is defined within the underlying oper
system and may not necessarily correspond to a physical RS-232 serial port. For instance, IrDA IRCOMM
can commonly be configured as a logical serial port within the operating system so that it can act as a “lo
serial port.

A comm port is accessed using a Generic Connection Framework string with an explicit port identifier an
embedded configuration parameters, each separated with a semi-colon (;).

Only one application may be connected to a particular serial port at a given time. An
java.io.IOException is thrown, if an attempt is made to open the serial port with
Connector.open() and the connection is already open.

A URI with the type and parameters is used to open the connection. The scheme (defined in RFC 2396
be:
comm:<port identifier>[<optional parameters>]

The first parameter must be a port identifier, which is a logical device name. These identifiers are most
device specific and should be used with care.

The valid identifiers for a particular device and OS can be queried through the method
System.getProperty() using the key“microedition.commports”. A comma separated list of ports is
returned which can be combined with acomm: prefix as the URL string to be used to open a serial port
connection. (See port naming convention below.)

Any additional parameters must be separated by a semi-colon (;) and spaces are not allowed in the stri
particular optional parameter is not applicable to a particular port, the parameter MAY be ignored. The p
identifier MUST NOT contain a semi-colon (;).

Legal parameters are defined by the definition of the parameters below. Illegal or unrecognized parame
cause anIllegalArgumentException . If the value of a parameter is supported by the device, it must
honored. If the value of a parameter is not supported ajava.io.IOException is thrown. If abaudrate
parameter is requested, it is treated in the same way that thesetBaudRate method handles baudrates. e.g., i
the baudrate requested is not supported the system MAY substitute a valid baudrate, which can be disc
using thegetBaudRate method.

Optional Parameters
55

CommConnection javax.microedition.io
BNF Format for Connector.open() string

The URI must conform to the BNF syntax specified below. If the URI does not conform to this syntax, an
IllegalArgumentException is thrown.

Parameter Default Description

baudrate platform dependent The speed of the port.

bitsperchar 8 The number bits per character(7 or 8).

stopbits 1 The number of stop bits per char(1 or 2)

parity none The parity can beodd , even , ornone .

blocking on If on , wait for a full buffer when reading.

autocts on If on , wait for the CTS line to be on before writing.

autorts on If on , turn on the RTS line when the input buffer is not full. Ifoff , the
RTS line is always on.

<comm_connection_string> ::= “comm:”<port_id>[<options_list>] ;

<port_id> ::=string of alphanumeric characters

<options_list> ::= *(<baud_rate_string>| <bitsperchar>| <stopbits>| <parity>|
<blocking>| <autocts>| <autorts>) ;
; if an option duplicates a previous option in the
; option list, that option overrides the previous
; option

<baud_rate_string> ::= “;baudrate=”<baud_rate>

<baud_rate> ::=string of digits

<bitsperchar> ::= “;bitsperchar=”<bit_value>

<bit_value> ::= “7” | “8”

<stopbits> ::= “;stopbits=”<stop_value>

<stop_value> ::= “1” | “2”

<parity> ::= “;parity= ”<parity_value>

<parity_value> ::= “even” | “odd” | “none”

<blocking> ::= “;blocking=”<on_off>

<autocts> ::= “;autocts=”<on_off>

<autorts> ::= “;autorts=”<on_off>

<on_off> ::= “on” | “off”
56

javax.microedition.io CommConnection

model
pplied

m.

e

port.
Security

Access to serial ports is restricted to prevent unauthorized transmission or reception of data. The security
applied to the serial port connection is defined in the implementing profile. The security model may be a
on the invocation of theConnector.open() method with a valid serial port connection string. Should the
application not be granted access to the serial port through the profile authorization scheme, a
java.lang.SecurityException will be thrown from theConnector.open() method. The security
model MAY also be applied during execution, specifically when the methodsopenInputStream() ,
openDataInputStream() , openOutputStream() , andopenDataOutputStream() are invoked.

Examples

The following example shows how aCommConnection would be used to access a simple loopback progra

CommConnection cc = (CommConnection)
Connector.open(“comm:com0;baudrate=19200”);

int baudrate = cc.getBaudRate();
InputStream is = cc.openInputStream();
OutputStream os = cc.openOutputStream();
int ch = 0;
while(ch != 'Z') {

os.write(ch);
ch = is.read();
ch++;

}
is.close();
os.close();
cc.close();

The following example shows how aCommConnection would be used to discover available comm ports.

String port1;
String ports = System.getProperty(“microedition.commports”);
int comma = ports.indexOf(',');
if (comma > 0) {

// Parse the first port from the available ports list.
port1 = ports.substring(0, comma);

} else {
// Only one serial port available.
port1 =ports;

}

Recommended Port Naming Convention

Logical port names can be defined to match platform naming conventions using any combination of
alphanumeric characters. However, it is recommended that ports be named consistently among the
implementations of this class according to a proposed convention. VM implementations should follow th
following convention:
Port names contain a text abbreviation indicating port capabilities followed by a sequential number for the
The following device name types should be used:

• COM#, where COM is for RS-232 ports and # is a number assigned to the port

• IR#, where IR is for IrDA IRCOMM ports and # is a number assigned to the port
57

CommConnection javax.microedition.io

getBaudRate()

. For
 the

ing the
This naming scheme allows API users to generally determine the type of port that they would like to use
instance, if a application desires to “beam” a piece of data, the app could look for “IR#” ports for opening
connection. The alternative is a trial and error approach with all available ports.

Since: MIDP 2.0

Methods

getBaudRate()

Declaration:
public int getBaudRate ()

Description:
Gets the baudrate for the serial port connection.

Returns: the baudrate of the connection

See Also:setBaudRate(int) 58

setBaudRate(int)

Declaration:
public int setBaudRate (int baudrate)

Description:
Sets the baudrate for the serial port connection. If the requestedbaudrate is not supported on the
platform, then the system MAY use an alternate valid setting. The alternate value can be accessed us
getBaudRate method.

Member Summary

Methods
 int getBaudRate() 58

 int setBaudRate(int baudrate) 58

Inherited Member Summary

Methods inherited from interface Connection

close()

Methods inherited from interface InputConnection

openDataInputStream(), openInputStream()

Methods inherited from interface OutputConnection

openDataOutputStream(), openOutputStream()
58

javax.microedition.io CommConnection

setBaudRate(int)
Parameters:
baudrate - the baudrate for the connection

Returns: the previous baudrate of the connection

See Also:getBaudRate() 58
59

Connector javax.microedition.io

setBaudRate(int)

ose
uested
r string
eneral

to the
read

nt.

ns. If
out
 will

r

javax.microedition.io

Connector
Declaration
public class Connector

Object
|
+-- javax.microedition.io.Connector

Description
Factory class for creating new Connection objects.

The creation of Connections is performed dynamically by looking up a protocol implementation class wh
name is formed from the platform name (read from a system property) and the protocol name of the req
connection (extracted from the parameter string supplied by the application programmer.) The paramete
that describes the target should conform to the URL format as described in RFC 2396. This takes the g
form:

{scheme}:[{target}][{parms}]

where{scheme} is the name of a protocol such ashttp.

The{target} is normally some kind of network address.

Any {parms} are formed as a series of equates of the form “;x=y”. Example: “;type=a”.

An optional second parameter may be specified to the open function. This is a mode flag that indicates
protocol handler the intentions of the calling code. The options here specify if the connection is going to be
(READ), written (WRITE), or both (READ_WRITE). The validity of these flag settings is protocol depende
For instance, a connection for a printer would not allow read access, and would throw an
IllegalArgumentException. If the mode parameter is not specified, READ_WRITE is used by default.

An optional third parameter is a boolean flag that indicates if the calling code can handle timeout exceptio
this flag is set, the protocol implementation may throw an InterruptedIOException when it detects a time
condition. This flag is only a hint to the protocol handler, and it does not guarantee that such exceptions
actually be thrown. If this parameter is not set, no timeout exceptions will be thrown.

Because connections are frequently opened just to gain access to a specific input or output stream, fou
convenience functions are provided for this purpose. See also:DatagramConnection for information
relating to datagram addressing

Since: CLDC 1.0

Member Summary

Fields
static int READ61

static int READ_WRITE61

static int WRITE61

Methods
static Connection open(String name) 62
60

javax.microedition.io Connector

READ
Fields

READ

Declaration:
public static final int READ

Description:
Access mode READ.

The value1 is assigned toREAD.

READ_WRITE

Declaration:
public static final int READ_WRITE

Description:
Access mode READ_WRITE.

The value3 is assigned toREAD_WRITE.

WRITE

Declaration:
public static final int WRITE

Description:
Access mode WRITE.

The value2 is assigned toWRITE.

static Connection open(String name, int mode) 62

static Connection open(String name, int mode, boolean timeouts) 62

static
java.io.DataInputStrea

m

openDataInputStream(String name) 63

static
java.io.DataOutputStre

am

openDataOutputStream(String name) 63

static
java.io.InputStream

openInputStream(String name) 64

static
java.io.OutputStream

openOutputStream(String name) 64

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
61

Connector javax.microedition.io

open(String)

col

col
Methods

open(String)

Declaration:
public static javax.microedition.io.Connection open (String name)

throws IOException

Description:
Create and open a Connection.

Parameters:
name - The URL for the connection.

Returns: A new Connection object.

Throws:
IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the requested connection cannot be made, or the proto
type does not exist.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If a requested protocol handler is not permitted.

open(String, int)

Declaration:
public static javax.microedition.io.Connection open (String name, int mode)

throws IOException

Description:
Create and open a Connection.

Parameters:
name - The URL for the connection.

mode - The access mode.

Returns: A new Connection object.

Throws:
IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the requested connection cannot be made, or the proto
type does not exist.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If a requested protocol handler is not permitted.

open(String, int, boolean)

Declaration:
public static javax.microedition.io.Connection open (String name, int mode,

boolean timeouts)

throws IOException

Description:
Create and open a Connection.
62

javax.microedition.io Connector

openDataInputStream(String)

col
Parameters:
name - The URL for the connection

mode - The access mode

timeouts - A flag to indicate that the caller wants timeout exceptions

Returns: A new Connection object

Throws:
IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - if the requested connection cannot be made, or the proto
type does not exist.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If a requested protocol handler is not permitted.

openDataInputStream(String)

Declaration:
public static java.io.DataInputStream openDataInputStream (String name)

throws IOException

Description:
Create and open a connection input stream.

Parameters:
name - The URL for the connection.

Returns: A DataInputStream.

Throws:
IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If access to the requested stream is not permitted.

openDataOutputStream(String)

Declaration:
public static java.io.DataOutputStream openDataOutputStream (String name)

throws IOException

Description:
Create and open a connection output stream.

Parameters:
name - The URL for the connection.

Returns: A DataOutputStream.

Throws:
IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If access to the requested stream is not permitted.
63

Connector javax.microedition.io

openInputStream(String)
openInputStream(String)

Declaration:
public static java.io.InputStream openInputStream (String name)

throws IOException

Description:
Create and open a connection input stream.

Parameters:
name - The URL for the connection.

Returns: An InputStream.

Throws:
IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If access to the requested stream is not permitted.

openOutputStream(String)

Declaration:
public static java.io.OutputStream openOutputStream (String name)

throws IOException

Description:
Create and open a connection output stream.

Parameters:
name - The URL for the connection.

Returns: An OutputStream.

Throws:
IllegalArgumentException - If a parameter is invalid.

ConnectionNotFoundException - If the connection cannot be found.

java.io.IOException - If some other kind of I/O error occurs.

SecurityException - If access to the requested stream is not permitted.
64

javax.microedition.io HttpConnection

openOutputStream(String)

t is sent.

ed from

e.
javax.microedition.io

HttpConnection
Declaration
public interface HttpConnection extends ContentConnection

All Superinterfaces: Connection , ContentConnection , InputConnection ,
OutputConnection , StreamConnection

All Known Subinterfaces: HttpsConnection 85

Description
This interface defines the necessary methods and constants for an HTTP connection.

HTTP is a request-response protocol in which the parameters of request must be set before the reques
The connection exists in one of three states:

• Setup, in which the request parameters can be set

• Connected, in which request parameters have been sent and the response is expected

• Closed, the final state, in which the HTTP connection as been terminated

The following methods may be invoked only in the Setup state:

• setRequestMethod

• setRequestProperty

The transition from Setup to Connected is caused by any method that requires data to be sent to or receiv
the server.

The following methods cause the transition to the Connected state when the connection is in Setup stat

• openInputStream

• openDataInputStream

• getLength

• getType

• getEncoding

• getHeaderField

• getResponseCode

• getResponseMessage

• getHeaderFieldInt

• getHeaderFieldDate

• getExpiration

• getDate

• getLastModified

• getHeaderField
65

HttpConnection javax.microedition.io

openOutputStream(String)

 throw

ream

y have

If
• getHeaderFieldKey

The following methods may be invoked while the connection is in Setup or Connected state.

• close

• getRequestMethod

• getRequestProperty

• getURL

• getProtocol

• getHost

• getFile

• getRef

• getPort

• getQuery

After an output stream has been opened by theopenOutputStream or openDataOutputStream
methods, attempts to change the request parameters viasetRequestMethod or the
setRequestProperty are ignored. Once the request parameters have been sent, these methods will
anIOException . When an output stream is closed via theOutputStream.close or
DataOutputStream.close methods, the connection enters the Connected state. When the output st
is flushed via theOutputStream.flush or DataOutputStream.flush methods, the request
parameters MUST be sent along with any data written to the stream.

The transition to Closed state from any other state is caused by theclose method and the closing all of the
streams that were opened from the connection.

Example using StreamConnection

Simple read of a URL usingStreamConnection . No HTTP specific behavior is needed or used. (Note: this
example ignores all HTTP response headers and the HTTP response code. Since a proxy or server ma
sent an error response page, an application can not distinquish which data is retreived in theInputStream .)

Connector.open is used to open URL and aStreamConnection is returned. From the
StreamConnection theInputStream is opened. It is used to read every character until end of file (-1).
an exception is thrown the connection and stream are closed.

void getViaStreamConnection(String url) throws IOException {
StreamConnectio n c = null;
InputStrea m s = null;
try {

c = (StreamConnection)Connector.open(url);
s = c.openInputStream();
int ch;
while ((ch = s.read()) != -1) {

...
}

} finally {
if (s != null)

s.close();
if (c != null)

c.close();
}

}

Example using ContentConnection

Simple read of a URL usingContentConnection . No HTTP specific behavior is needed or used.
66

javax.microedition.io HttpConnection

openOutputStream(String)

data

d

n the
Connector.open is used to open url and aContentConnection is returned. The
ContentConnection may be able to provide the length. If the length is available, it is used to read the
in bulk. From theContentConnection theInputStream is opened. It is used to read every character
until end of file (-1). If an exception is thrown the connection and stream are closed.

void getViaContentConnection(String url) throws IOException {
ContentConnectio n c = null;
DataInputStream is = null;
try {

c = (ContentConnection)Connector.open(url);
int len = (int)c.getLength();
dis = c.openDataInputStream();
if (len > 0) {

byte[] data = new byte[len];
dis.readFully(data);

} else {
int ch;
while ((ch = dis.read()) != -1) {

...
}

}
} finally {

if (dis != null)
dis.close();

if (c != null)
c.close();

}
}

Example using HttpConnection

Read the HTTP headers and the data usingHttpConnection .

Connector.open is used to open url and aHttpConnection is returned. The HTTP headers are read an
processed. If the length is available, it is used to read the data in bulk. From theHttpConnection the
InputStream is opened. It is used to read every character until end of file (-1). If an exception is throw
connection and stream are closed.
67

HttpConnection javax.microedition.io

openOutputStream(String)

 and

n the
void getViaHttpConnection(String url) throws IOException {
HttpConnectio n c = null;
InputStream is = null;
int rc;
try {

c = (HttpConnection)Connector.open(url);
// Getting the response code will open the connection,
// send the request, and read the HTTP response headers.
// The headers are stored until requested.
rc = c.getResponseCode();
if (rc != HttpConnection.HTTP_OK) {

throw new IOException(“HTTP response code : ” + rc);
}
is = c.openInputStream();
// Get the ContentType
String type = c.getType();
// Get the length and process the data
int len = (int)c.getLength();
if (len > 0) {

int actual = 0;
int bytesrea d = 0 ;
byte[] data = new byte[len];
while ((bytesread != len) && (actual != -1)) {

actual = is.read(data, bytesread, len - bytesread);
bytesread += actual;

}
} else {

int ch;
while ((ch = is.read()) != -1) {

...
}

}
} catch (ClassCastException e) {

throw new IllegalArgumentException(“Not an HTTP URL”);
} finally {

if (is != null)
is.close();

if (c != null)
c.close();

}
}

Example using POST with HttpConnection

Post a request with some headers and content to the server and process the headers and content.

Connector.open is used to open url and aHttpConnection is returned. The request method is set to
POST and request headers set. A simple command is written and flushed. The HTTP headers are read
processed. If the length is available, it is used to read the data in bulk. From theHttpConnection the
InputStream is opened. It is used to read every character until end of file (-1). If an exception is throw
connection and stream is closed.
68

javax.microedition.io HttpConnection

openOutputStream(String)

 an
void postViaHttpConnection(String url) throws IOException {
HttpConnectio n c = null;
InputStream is = null;
OutputStream os = null;
int rc;
try {

c = (HttpConnection)Connector.open(url);
// Set the request method and headers
c.setRequestMethod(HttpConnection.POST);
c.setRequestProperty(“If-Modified-Since”,

“29 Oct 1999 19:43:31 GMT”);
c.setRequestProperty(“User-Agent”,

“Profile/MIDP-2.0 Configuration/CLDC-1.0”);
c.setRequestProperty(“Content-Language”, “en-US”);
// Getting the output stream may flush the headers
os = c.openOutputStream();
os.write(“LIST games\n”.getBytes());
os.flush(); // Optional, getResponseCode will flush
// Getting the response code will open the connection,
// send the request, and read the HTTP response headers.
// The headers are stored until requested.
rc = c.getResponseCode();
if (rc != HttpConnection.HTTP_OK) {

throw new IOException(“HTTP response code : ” + rc);
}
is = c.openInputStream();
// Get the ContentType
String type = c.getType();
processType(type);
// Get the length and process the data
int len = (int)c.getLength();
if (len > 0) {

int actual = 0;
int bytesrea d = 0 ;
byte[] data = new byte[len];
while ((bytesread != len) && (actual != -1)) {

actual = is.read(data, bytesread, len - bytesread);
bytesread += actual;

}
process(data);

} else {
int ch;
while ((ch = is.read()) != -1) {

process((byte)ch);
}

}
} catch (ClassCastException e) {

throw new IllegalArgumentException(“Not an HTTP URL”);
} finally {

if (is != null)
is.close();

if (os != null)
os.close();

if (c != null)
c.close();

}
}

Simplified Stream Methods on Connector

Please note the following: TheConnector class defines the following convenience methods for retrieving
input or output stream directly for a specified URL:

• InputStream openInputStream(String url)

• DataInputStream openDataInputStream(String url)

• OutputStream openOutputStream(String url)
69

HttpConnection javax.microedition.io

openOutputStream(String)

e actual
ence to
rn
• DataOutputStream openDataOutputStream(String url)

Please be aware that using these methods implies certain restrictions. You will not get a reference to th
connection, but rather just references to the input or output stream of the connection. Not having a refer
the connection means that you will not be able to manipulate or query the connection directly. This in tu
means that you will not be able to call any of the following methods:

• getRequestMethod()

• setRequestMethod()

• getRequestProperty()

• setRequestProperty()

• getLength()

• getType()

• getEncoding()

• getHeaderField()

• getResponseCode()

• getResponseMessage()

• getHeaderFieldInt

• getHeaderFieldDate

• getExpiration

• getDate

• getLastModified

• getHeaderField

• getHeaderFieldKey

Since: MIDP 1.0

Member Summary

Fields
static

java.lang.String
GET72

static
java.lang.String

HEAD72

static int HTTP_ACCEPTED72

static int HTTP_BAD_GATEWAY72

static int HTTP_BAD_METHOD73

static int HTTP_BAD_REQUEST73

static int HTTP_CLIENT_TIMEOUT73

static int HTTP_CONFLICT73

static int HTTP_CREATED73

static int HTTP_ENTITY_TOO_LARGE73

static int HTTP_EXPECT_FAILED73

static int HTTP_FORBIDDEN74
70

javax.microedition.io HttpConnection

openOutputStream(String)
static int HTTP_GATEWAY_TIMEOUT74

static int HTTP_GONE74

static int HTTP_INTERNAL_ERROR74

static int HTTP_LENGTH_REQUIRED74

static int HTTP_MOVED_PERM74

static int HTTP_MOVED_TEMP75

static int HTTP_MULT_CHOICE75

static int HTTP_NO_CONTENT75

static int HTTP_NOT_ACCEPTABLE75

static int HTTP_NOT_AUTHORITATIVE75

static int HTTP_NOT_FOUND75

static int HTTP_NOT_IMPLEMENTED76

static int HTTP_NOT_MODIFIED76

static int HTTP_OK76

static int HTTP_PARTIAL76

static int HTTP_PAYMENT_REQUIRED76

static int HTTP_PRECON_FAILED76

static int HTTP_PROXY_AUTH76

static int HTTP_REQ_TOO_LONG77

static int HTTP_RESET77

static int HTTP_SEE_OTHER77

static int HTTP_TEMP_REDIRECT77

static int HTTP_UNAUTHORIZED77

static int HTTP_UNAVAILABLE77

static int HTTP_UNSUPPORTED_RANGE77

static int HTTP_UNSUPPORTED_TYPE78

static int HTTP_USE_PROXY78

static int HTTP_VERSION78

static
java.lang.String

POST78

Methods
 long getDate() 78

 long getExpiration() 79

 java.lang.String getFile() 79

 java.lang.String getHeaderField(int n) 79

 java.lang.String getHeaderField(String name) 79

 long getHeaderFieldDate(String name, long def) 80

 int getHeaderFieldInt(String name, int def) 80

 java.lang.String getHeaderFieldKey(int n) 80

 java.lang.String getHost() 81

 long getLastModified() 81

 int getPort() 81

 java.lang.String getProtocol() 81

 java.lang.String getQuery() 81

 java.lang.String getRef() 82

 java.lang.String getRequestMethod() 82

 java.lang.String getRequestProperty(String key) 82

 int getResponseCode() 82

 java.lang.String getResponseMessage() 83

 java.lang.String getURL() 83

 void setRequestMethod(String method) 83

 void setRequestProperty(String key, String value) 84

Member Summary
71

HttpConnection javax.microedition.io

GET

 server
Fields

GET

Declaration:
public static final String GET

Description:
HTTP Get method.

HEAD

Declaration:
public static final String HEAD

Description:
HTTP Head method.

HTTP_ACCEPTED

Declaration:
public static final int HTTP_ACCEPTED

Description:
202: The request has been accepted for processing, but the processing has not been completed.

HTTP_BAD_GATEWAY

Declaration:
public static final int HTTP_BAD_GATEWAY

Description:
502: The server, while acting as a gateway or proxy, received an invalid response from the upstream
it accessed in attempting to fulfill the request.

Inherited Member Summary

Methods inherited from interface Connection

close()

Methods inherited from interface ContentConnection

getEncoding(), getLength(), getType()

Methods inherited from interface InputConnection

openDataInputStream(), openInputStream()

Methods inherited from interface OutputConnection

openDataOutputStream(), openOutputStream()
72

javax.microedition.io HttpConnection

HTTP_BAD_METHOD

uest-

lient

willing
HTTP_BAD_METHOD

Declaration:
public static final int HTTP_BAD_METHOD

Description:
405: The method specified in the Request-Line is not allowed for the resource identified by the Req
URI.

HTTP_BAD_REQUEST

Declaration:
public static final int HTTP_BAD_REQUEST

Description:
400: The request could not be understood by the server due to malformed syntax.

HTTP_CLIENT_TIMEOUT

Declaration:
public static final int HTTP_CLIENT_TIMEOUT

Description:
408: The client did not produce a request within the time that the server was prepared to wait. The c
MAY repeat the request without modifications at any later time.

HTTP_CONFLICT

Declaration:
public static final int HTTP_CONFLICT

Description:
409: The request could not be completed due to a conflict with the current state of the resource.

HTTP_CREATED

Declaration:
public static final int HTTP_CREATED

Description:
201: The request has been fulfilled and resulted in a new resource being created.

HTTP_ENTITY_TOO_LARGE

Declaration:
public static final int HTTP_ENTITY_TOO_LARGE

Description:
413: The server is refusing to process a request because the request entity is larger than the server is
or able to process.

HTTP_EXPECT_FAILED

Declaration:
public static final int HTTP_EXPECT_FAILED
73

HttpConnection javax.microedition.io

HTTP_FORBIDDEN

he
xt-hop

ream
te the

n.

 this
Description:
417: The expectation given in an Expect request-header field could not be met by this server, or, if t
server is a proxy, the server has unambiguous evidence that the request could not be met by the ne
server.

HTTP_FORBIDDEN

Declaration:
public static final int HTTP_FORBIDDEN

Description:
403: The server understood the request, but is refusing to fulfill it. Authorization will not help and the
request SHOULD NOT be repeated.

HTTP_GATEWAY_TIMEOUT

Declaration:
public static final int HTTP_GATEWAY_TIMEOUT

Description:
504: The server, while acting as a gateway or proxy, did not receive a timely response from the upst
server specified by the URI or some other auxiliary server it needed to access in attempting to comple
request.

HTTP_GONE

Declaration:
public static final int HTTP_GONE

Description:
410: The requested resource is no longer available at the server and no forwarding address is know

HTTP_INTERNAL_ERROR

Declaration:
public static final int HTTP_INTERNAL_ERROR

Description:
500: The server encountered an unexpected condition which prevented it from fulfilling the request.

HTTP_LENGTH_REQUIRED

Declaration:
public static final int HTTP_LENGTH_REQUIRED

Description:
411: The server refuses to accept the request without a defined Content- Length.

HTTP_MOVED_PERM

Declaration:
public static final int HTTP_MOVED_PERM

Description:
301: The requested resource has been assigned a new permanent URI and any future references to
resource SHOULD use one of the returned URIs.
74

javax.microedition.io HttpConnection

HTTP_MOVED_TEMP

ly” to
d

specific
 can

return

ve

rigin

r the
HTTP_MOVED_TEMP

Declaration:
public static final int HTTP_MOVED_TEMP

Description:
302: The requested resource resides temporarily under a different URI. (Note: the name of this status code
reflects the earlier publication of RFC2068, which was changed in RFC2616 from “moved temporali
“found”. The semantics were not changed. TheLocation header indicates where the application shoul
resend the request.)

HTTP_MULT_CHOICE

Declaration:
public static final int HTTP_MULT_CHOICE

Description:
300: The requested resource corresponds to any one of a set of representations, each with its own
location, and agent- driven negotiation information is being provided so that the user (or user agent)
select a preferred representation and redirect its request to that location.

HTTP_NO_CONTENT

Declaration:
public static final int HTTP_NO_CONTENT

Description:
204: The server has fulfilled the request but does not need to return an entity-body, and might want to
updated meta-information.

HTTP_NOT_ACCEPTABLE

Declaration:
public static final int HTTP_NOT_ACCEPTABLE

Description:
406: The resource identified by the request is only capable of generating response entities which ha
content characteristics not acceptable according to the accept headers sent in the request.

HTTP_NOT_AUTHORITATIVE

Declaration:
public static final int HTTP_NOT_AUTHORITATIVE

Description:
203: The returned meta-information in the entity-header is not the definitive set as available from the o
server.

HTTP_NOT_FOUND

Declaration:
public static final int HTTP_NOT_FOUND

Description:
404: The server has not found anything matching the Request-URI. No indication is given of whethe
condition is temporary or permanent.
75

HttpConnection javax.microedition.io

HTTP_NOT_IMPLEMENTED

as not

as

self
HTTP_NOT_IMPLEMENTED

Declaration:
public static final int HTTP_NOT_IMPLEMENTED

Description:
501: The server does not support the functionality required to fulfill the request.

HTTP_NOT_MODIFIED

Declaration:
public static final int HTTP_NOT_MODIFIED

Description:
304: If the client has performed a conditional GET request and access is allowed, but the document h
been modified, the server SHOULD respond with this status code.

HTTP_OK

Declaration:
public static final int HTTP_OK

Description:
200: The request has succeeded.

HTTP_PARTIAL

Declaration:
public static final int HTTP_PARTIAL

Description:
206: The server has fulfilled the partial GET request for the resource.

HTTP_PAYMENT_REQUIRED

Declaration:
public static final int HTTP_PAYMENT_REQUIRED

Description:
402: This code is reserved for future use.

HTTP_PRECON_FAILED

Declaration:
public static final int HTTP_PRECON_FAILED

Description:
412: The precondition given in one or more of the request-header fields evaluated to false when it w
tested on the server.

HTTP_PROXY_AUTH

Declaration:
public static final int HTTP_PROXY_AUTH

Description:
407: This code is similar to 401 (Unauthorized), but indicates that the client must first authenticate it
with the proxy.
76

javax.microedition.io HttpConnection

HTTP_REQ_TOO_LONG

r is

h

ng a

eader

nce of
HTTP_REQ_TOO_LONG

Declaration:
public static final int HTTP_REQ_TOO_LONG

Description:
414: The server is refusing to service the request because the Request-URI is longer than the serve
willing to interpret.

HTTP_RESET

Declaration:
public static final int HTTP_RESET

Description:
205: The server has fulfilled the request and the user agent SHOULD reset the document view whic
caused the request to be sent.

HTTP_SEE_OTHER

Declaration:
public static final int HTTP_SEE_OTHER

Description:
303: The response to the request can be found under a different URI and SHOULD be retrieved usi
GET method on that resource.

HTTP_TEMP_REDIRECT

Declaration:
public static final int HTTP_TEMP_REDIRECT

Description:
307: The requested resource resides temporarily under a different URI.

HTTP_UNAUTHORIZED

Declaration:
public static final int HTTP_UNAUTHORIZED

Description:
401: The request requires user authentication. The response MUST include a WWW-Authenticate h
field containing a challenge applicable to the requested resource.

HTTP_UNAVAILABLE

Declaration:
public static final int HTTP_UNAVAILABLE

Description:
503: The server is currently unable to handle the request due to a temporary overloading or maintena
the server.

HTTP_UNSUPPORTED_RANGE

Declaration:
public static final int HTTP_UNSUPPORTED_RANGE
77

HttpConnection javax.microedition.io

HTTP_UNSUPPORTED_TYPE

header
ource,

t

 the
Description:
416: A server SHOULD return a response with this status code if a request included a Range request-
field , and none of the range-specifier values in this field overlap the current extent of the selected res
and the request did not include an If-Range request-header field.

HTTP_UNSUPPORTED_TYPE

Declaration:
public static final int HTTP_UNSUPPORTED_TYPE

Description:
415: The server is refusing to service the request because the entity of the request is in a format no
supported by the requested resource for the requested method.

HTTP_USE_PROXY

Declaration:
public static final int HTTP_USE_PROXY

Description:
305: The requested resource MUST be accessed through the proxy given by the Location field.

HTTP_VERSION

Declaration:
public static final int HTTP_VERSION

Description:
505: The server does not support, or refuses to support, the HTTP protocol version that was used in
request message.

POST

Declaration:
public static final String POST

Description:
HTTP Post method.

Methods

getDate()

Declaration:
public long getDate ()

throws IOException

Description:
Returns the value of thedate header field.

Returns: the sending date of the resource that the URL references, or0 if not known. The value returned is
the number of milliseconds since January 1, 1970 GMT.

Throws:
java.io.IOException - if an error occurred connecting to the server.
78

javax.microedition.io HttpConnection

getExpiration()

s the
getExpiration()

Declaration:
public long getExpiration ()

throws IOException

Description:
Returns the value of theexpires header field.

Returns: the expiration date of the resource that this URL references, or 0 if not known. The value i
number of milliseconds since January 1, 1970 GMT.

Throws:
java.io.IOException - if an error occurred connecting to the server.

getFile()

Declaration:
public String getFile ()

Description:
Returns the file portion of the URL of thisHttpConnection .

Returns: the file portion of the URL of thisHttpConnection . null is returned if there is no file.

getHeaderField(int)

Declaration:
public String getHeaderField (int n)

throws IOException

Description:
Gets a header field value by index.

Parameters:
n - the index of the header field

Returns: the value of the nth header field ornull if the array index is out of range. An empty String is
returned if the field does not have a value.

Throws:
java.io.IOException - if an error occurred connecting to the server.

getHeaderField(String)

Declaration:
public String getHeaderField (String name)

throws IOException

Description:
Returns the value of the named header field.

Parameters:
name - of a header field.

Returns: the value of the named header field, ornull if there is no such field in the header.

Throws:
java.io.IOException - if an error occurred connecting to the server.
79

HttpConnection javax.microedition.io

getHeaderFieldDate(String, long)

 January
getHeaderFieldDate(String, long)

Declaration:
public long getHeaderFieldDate (String name, long def)

throws IOException

Description:
Returns the value of the named field parsed as date. The result is the number of milliseconds since
1, 1970 GMT represented by the named field.

This form ofgetHeaderField exists because some connection types (e.g.,http-ng) have pre-parsed
headers. Classes for that connection type can override this method and short-circuit the parsing.

Parameters:
name - the name of the header field.

def - a default value.

Returns: the value of the field, parsed as a date. The value of thedef argument is returned if the field is
missing or malformed.

Throws:
java.io.IOException - if an error occurred connecting to the server.

getHeaderFieldInt(String, int)

Declaration:
public int getHeaderFieldInt (String name, int def)

throws IOException

Description:
Returns the value of the named field parsed as a number.

This form ofgetHeaderField exists because some connection types (e.g.,http-ng) have pre-parsed
headers. Classes for that connection type can override this method and short-circuit the parsing.

Parameters:
name - the name of the header field.

def - the default value.

Returns: the value of the named field, parsed as an integer. Thedef value is returned if the field is
missing or malformed.

Throws:
java.io.IOException - if an error occurred connecting to the server.

getHeaderFieldKey(int)

Declaration:
public String getHeaderFieldKey (int n)

throws IOException

Description:
Gets a header field key by index.

Parameters:
n - the index of the header field

Returns: the key of the nth header field ornull if the array index is out of range.
80

javax.microedition.io HttpConnection

getHost()

t

Throws:
java.io.IOException - if an error occurred connecting to the server.

getHost()

Declaration:
public String getHost ()

Description:
Returns the host information of the URL of thisHttpConnection . e.g. host name or IPv4 address

Returns: the host information of the URL of thisHttpConnection .

getLastModified()

Declaration:
public long getLastModified ()

throws IOException

Description:
Returns the value of thelast-modified header field. The result is the number of milliseconds since
January 1, 1970 GMT.

Returns: the date the resource referenced by thisHttpConnection was last modified, or 0 if not
known.

Throws:
java.io.IOException - if an error occurred connecting to the server.

getPort()

Declaration:
public int getPort ()

Description:
Returns the network port number of the URL for thisHttpConnection .

Returns: the network port number of the URL for thisHttpConnection . The default HTTP port
number (80) is returned if there was no port number in the string passed toConnector.open .

getProtocol()

Declaration:
public String getProtocol ()

Description:
Returns the protocol name of the URL of thisHttpConnection . e.g., http or https

Returns: the protocol of the URL of thisHttpConnection .

getQuery()

Declaration:
public String getQuery ()

Description:
Returns the query portion of the URL of thisHttpConnection . RFC2396 defines the query componen
as the text after the first question-mark (?) character in the URL.
81

HttpConnection javax.microedition.io

getRef()

y the
at and

 the

TP).
Returns: the query portion of the URL of thisHttpConnection . null is returned if there is no value.

getRef()

Declaration:
public String getRef ()

Description:
Returns the ref portion of the URL of thisHttpConnection . RFC2396 specifies the optional fragment
identifier as the the text after the crosshatch (#) character in the URL. This information may be used b
user agent as additional reference information after the resource is successfully retrieved. The form
interpretation of the fragment identifier is dependent on the media type[RFC2046] of the retrieved
information.

Returns: the ref portion of the URL of thisHttpConnection . null is returned if there is no value.

getRequestMethod()

Declaration:
public String getRequestMethod ()

Description:
Get the current request method. e.g. HEAD, GET, POST The default value is GET.

Returns: the HTTP request method

See Also:setRequestMethod(String) 83

getRequestProperty(String)

Declaration:
public String getRequestProperty (String key)

Description:
Returns the value of the named general request property for this connection.

Parameters:
key - the keyword by which the request property is known (e.g., “accept”).

Returns: the value of the named general request property for this connection. If there is no key with
specified name thennull is returned.

See Also:setRequestProperty(String, String) 84

getResponseCode()

Declaration:
public int getResponseCode ()

throws IOException

Description:
Returns the HTTP response status code. It parses responses like:

HTTP/1.0 200 OK
HTTP/1.0 401 Unauthorized

and extracts the ints 200 and 401 respectively. from the response (i.e., the response is not valid HT

Returns: the HTTP Status-Code or -1 if no status code can be discerned.
82

javax.microedition.io HttpConnection

getResponseMessage()

m

 the

or
Throws:
java.io.IOException - if an error occurred connecting to the server.

getResponseMessage()

Declaration:
public String getResponseMessage ()

throws IOException

Description:
Gets the HTTP response message, if any, returned along with the response code from a server. Fro
responses like:

HTTP/1.0 200 OK
HTTP/1.0 404 Not Found

Extracts the Strings “OK” and “Not Found” respectively. Returns null if none could be discerned from
responses (the result was not valid HTTP).

Returns: the HTTP response message, ornull

Throws:
java.io.IOException - if an error occurred connecting to the server.

getURL()

Declaration:
public String getURL ()

Description:
Return a string representation of the URL for this connection.

Returns: the string representation of the URL for this connection.

setRequestMethod(String)

Declaration:
public void setRequestMethod (String method)

throws IOException

Description:
Set the method for the URL request, one of:

• GET

• POST

• HEAD

are legal, subject to protocol restrictions. The default method is GET.

Parameters:
method - the HTTP method

Throws:
java.io.IOException - if the method cannot be reset or if the requested method isn’t valid f
HTTP.

See Also:getRequestMethod() 82
83

HttpConnection javax.microedition.io

setRequestProperty(String, String)

new

key to
roperty.
setRequestProperty(String, String)

Declaration:
public void setRequestProperty (String key, String value)

throws IOException

Description:
Sets the general request property. If a property with the key already exists, overwrite its value with the
value.

Note: HTTP requires all request properties which can legally have multiple instances with the same
use a comma-separated list syntax which enables multiple properties to be appended into a single p

Parameters:
key - the keyword by which the request is known (e.g., “accept ”).

value - the value associated with it.

Throws:
java.io.IOException - is thrown if the connection is in the connected state.

See Also:getRequestProperty(String) 82
84

javax.microedition.io HttpsConnection

setRequestProperty(String, String)

The URI

xt)

://
199.

/

ters of

se

 the
 the
e

rown
javax.microedition.io

HttpsConnection
Declaration
public interface HttpsConnection extends HttpConnection 65

All Superinterfaces: Connection , ContentConnection , HttpConnection 65,
InputConnection , OutputConnection , StreamConnection

Description
This interface defines the necessary methods and constants to establish a secure network connection.
format with schemehttps when passed toConnector.open will return aHttpsConnection . RFC
2818 (http://www.ietf.org/rfc/rfc2818.txt) defines the scheme.

A secure connection MUST be implemented by one or more of the following specifications:

• HTTP over TLS as documented in RFC 2818 (http://www.ietf.org/rfc/rfc2818.txt) and TLS Protocol
Version 1.0 as specified in RFC 2246 (http://www.ietf.org/rfc/rfc2246.txt).

• SSL V3 as specified in The SSL Protocol Version 3.0 (http://home.netscape.com/eng/ssl3/draft302.t

• WTLS as specified in WAP Forum Specifications June 2000 (WAP 1.2.1) conformance release (http
www.wapforum.org/what/technical_1_2_1.htm) - Wireless Transport Layer Security document WAP-

• WAP(TM) TLS Profile and Tunneling Specification as specified in WAP-219-TLS-20010411-a (http:/
www.wapforum.com/what/technical.htm)

HTTPS is the secure version of HTTP (IETF RFC2616), a request-response protocol in which the parame
the request must be set before the request is sent.

In addition to the normalIOExceptions that may occur during invocation of the various methods that cau
a transition to the Connected state,CertificateException (a subtype ofIOException) may be
thrown to indicate various failures related to establishing the secure link. The secure link is necessary in
Connected state so the headers can be sent securely. The secure link may be established as early as
invocation ofConnector.open() and related methods for opening input and output streams and failur
related to certificate exceptions may be reported.

Example

Open a HTTPS connection, set its parameters, then read the HTTP response.

Connector.open is used to open the URL and anHttpsConnection is returned. The HTTP headers are
read and processed. If the length is available, it is used to read the data in bulk. From theHttpsConnection
theInputStream is opened. It is used to read every character until end of file (-1). If an exception is th
the connection and stream are closed.
85

HttpsConnection javax.microedition.io

setRequestProperty(String, String)
void getViaHttpsConnection(String url)
throws CertificateException, IOException {

HttpsConnectio n c = null;
InputStream is = null;
try {

c = (HttpsConnection)Connector.open(url);
// Getting the InputStream ensures that the connection
// is opened (if it was not already handled by
// Connector.open()) and the SSL handshake is exchanged,
// and the HTTP response headers are read.
// These are stored until requested.
is = c.openDataInputStream();
if c.getResponseCode() == HttpConnection.HTTP_OK) {

// Get the length and process the data
int len = (int)c.getLength();
if (len > 0) {

byte[] data = new byte[len];
int actual = is.readFully(data);
...

} else {
int ch;
while ((ch = is.read()) != -1) {

...
}

}
} else {

...
}

} finally {
if (is != null)

is.close();
if (c != null)

c.close();
}

}

Since: MIDP 2.0

See Also: javax.microedition.pki.CertificateException 458

Member Summary

Methods
 int getPort() 87

 SecurityInfo getSecurityInfo() 88

Inherited Member Summary

Fields inherited from interface HttpConnection 65
86

javax.microedition.io HttpsConnection

getPort()
Methods

getPort()

Declaration:
public int getPort ()

Description:
Returns the network port number of the URL for thisHttpsConnection .

Overrides: getPort 81 in interfaceHttpConnection 65

Returns: the network port number of the URL for thisHttpsConnection . The default HTTPS port
number (443) is returned if there was no port number in the string passed toConnector.open .

GET72, HEAD72, HTTP_ACCEPTED72, HTTP_BAD_GATEWAY72, HTTP_BAD_METHOD73,
HTTP_BAD_REQUEST73, HTTP_CLIENT_TIMEOUT73, HTTP_CONFLICT73, HTTP_CREATED73,
HTTP_ENTITY_TOO_LARGE73, HTTP_EXPECT_FAILED73, HTTP_FORBIDDEN74,
HTTP_GATEWAY_TIMEOUT74, HTTP_GONE74, HTTP_INTERNAL_ERROR74, HTTP_LENGTH_REQUIRED74,
HTTP_MOVED_PERM74, HTTP_MOVED_TEMP75, HTTP_MULT_CHOICE75, HTTP_NOT_ACCEPTABLE75,
HTTP_NOT_AUTHORITATIVE75, HTTP_NOT_FOUND75, HTTP_NOT_IMPLEMENTED76,
HTTP_NOT_MODIFIED76, HTTP_NO_CONTENT75, HTTP_OK76, HTTP_PARTIAL76,
HTTP_PAYMENT_REQUIRED76, HTTP_PRECON_FAILED76, HTTP_PROXY_AUTH76, HTTP_REQ_TOO_LONG77,
HTTP_RESET77, HTTP_SEE_OTHER77, HTTP_TEMP_REDIRECT77, HTTP_UNAUTHORIZED77,
HTTP_UNAVAILABLE77, HTTP_UNSUPPORTED_RANGE77, HTTP_UNSUPPORTED_TYPE78,
HTTP_USE_PROXY78, HTTP_VERSION78, POST78

Methods inherited from interface Connection

close()

Methods inherited from interface ContentConnection

getEncoding(), getLength(), getType()

Methods inherited from interface HttpConnection 65

getDate() 78, getExpiration() 79, getFile() 79, getHeaderField(int) 79,
getHeaderField(int) 79, getHeaderFieldDate(String, long) 80, getHeaderFieldInt(String,
int) 80, getHeaderFieldKey(int) 80, getHost() 81, getLastModified() 81, getProtocol() 81,
getQuery() 81, getRef() 82, getRequestMethod() 82, getRequestProperty(String) 82,
getResponseCode() 82, getResponseMessage() 83, getURL() 83, setRequestMethod(String) 83,
setRequestProperty(String, String) 84

Methods inherited from interface InputConnection

openDataInputStream(), openInputStream()

Methods inherited from interface OutputConnection

openDataOutputStream(), openOutputStream()

Inherited Member Summary
87

HttpsConnection javax.microedition.io

getSecurityInfo()

on is
he
getSecurityInfo()

Declaration:
public javax.microedition.io.SecurityInfo 103 getSecurityInfo ()

throws IOException

Description:
Return the security information associated with this successfully opened connection. If the connecti
still in Setup state then the connection is initiated to establish the secure connection to the server. T
method returns when the connection is established and theCertificate supplied by the server has been
validated. TheSecurityInfo is only returned if the connection has been successfully made to the
server.

Returns: the security information associated with this open connection.

Throws:
java.io.IOException - if an arbitrary connection failure occurs
88

javax.microedition.io PushRegistry

getSecurityInfo()

ction.

tion

ot be
mber)
e, and

T

ns will

oth
stall

ided
bers
javax.microedition.io

PushRegistry
Declaration
public class PushRegistry

Object
|
+-- javax.microedition.io.PushRegistry

Description
ThePushRegistry maintains a list of inbound connections. An application can register the inbound
connections with an entry in the application descriptor file or dynamically by calling the
registerConnection method.

While an application is running, it is responsible for all I/O operations associated with the inbound conne
When the application is not running, the application management software(AMS) listens for inbound
notification requests. When a notification arrives for a registeredMIDlet , the AMS will start theMIDlet via
the normal invocation ofMIDlet.startApp method.

Installation Handling of Declared Connections
To avoid collisions on inbound generic connections, the application descriptor file MUST include informa
about static connections that are needed by theMIDlet suite. If all the static Push declarations in the
application descriptor can not be fulfilled during the installation, the user MUST be notified that there are
conflicts and the MIDlet suite MUST NOT be installed. (SeeOver The Air User Initiated Provisioning
Specification section for errors reported in the event of conflicts.) Conditions when the declarations can n
fulfilled include: syntax errors in the Push attributes, declaration for a connection end point (e.g. port nu
that is already reserved in the device, declaration for a protocol that is not supported for Push in the devic
declaration referencing aMIDlet class that is not listed in theMIDlet-<n> attributes of the same application
descriptor. If theMIDlet suite can function meaningfully even if a Push registration can’t be fulfilled, it MUS
register the Push connections using the dynamic registration methods in thePushRegistry .

A conflict-free installation reserves each requested connection for the exclusive use of theMIDlets in the
suite. While the suite is installed, any attempt by other applications to open one of the reserved connectio
fail with an IOException . A call from aMIDlet to Connector.open() on a connection reserved for its
suite will always succeed, assuming the suite does not already have the connection open.

If two MIDlet suites have a static push connection in common, they cannot be installed together and b
function correctly. The end user would typically have to uninstall one before being able to successfully in
the other.

Push Registration Attribute
Each push registration entry contains the following information :

MIDlet-Push- <n>: <ConnectionURL>, <MIDletClassName>, <AllowedSender>

where :

• MIDlet-Push-<n> = the Push registration attribute name. Multiple push registrations can be prov
in aMIDlet suite. The numeric value for <n> starts from 1 and MUST use consecutive ordinal num
for additional entries. The first missing entry terminates the list. Any additional entries are ignored.

• ConnectionURL = the connection string used inConnector.open()
89

PushRegistry javax.microedition.io

getSecurityInfo()

ected, or

sted
d
 and

ting

v6

 filter

tax for

ram
 and

 a
am that

 be

s

• MIDletClassName = theMIDlet that is responsible for the connection. The namedMIDlet MUST be
registered in the descriptor file or the jar file manifest with aMIDlet-<n> record. (This information is
needed when displaying messages to the user about the application when push connections are det
when the user grants/revokes priveleges for the application.) If the namedMIDlet appears more than once
in the suite, the first matching entry is used.

• AllowedSender = a designated filter that restricts which senders are valid for launching the reque
MIDlet . The syntax and semantics of theAllowedSender field depend on the addressing format use
for the protocol. However, every syntax for this field MUST support using the wildcard characters “*”
“?”. The semantics of those wildcard are:

• “*” matches any string, including an empty string

• “?” matches any single character

When the value of this field is just the wildcard character “*”, connections will be accepted from any origina
source. For Push attributes using thedatagram andsocket URLs (if supported by the platform), this field
contains a numeric IP address in the same format for IPv4 and IPv6 as used in the respective URLs (IP
address including the square brackets as in the URL). It is possible to use the wildcards also in these IP
addresses, e.g. “129.70.40.*” would allow subnet resolution. Note that the port number is not part of the
for datagram andsocket connections.

The MIDP 2.0 specification defines the syntax fordatagram andsocket inbound connections. When other
specifications define push semantics for additional connection types, they must define the expected syn
the filter field, as well as the expected format for the connection URL string.

Example Descriptor File Declarative Notation
The following is a sample descriptor file entry that would reserve a stream socket at port 79 and a datag
connection at port 50000. (Port numbers are maintained by IANA and cover well-known, user-registered
dynamic port numbers) [See IANA Port Number Registry (http://www.iana.org/numbers.html#P)]

MIDlet-Push-1: socket://:79, com.sun.example.SampleChat, *
MIDlet-Push-2: datagram://:50000, com.sun.example.SampleChat, *

Buffered Messages
The requirements for buffering of messages are specific to each protocol used for Push and are defined
separately for each protocol. There is no general requirement related to buffering that would apply to all
protocols. If the implementation buffers messages, these messages MUST be provided to theMIDlet when the
MIDlet is started and it opens the relatedConnection that it has registered for Push.

When datagram connections are supported with Push, the implementation MUST guarantee that when
MIDlet registered for datagram Push is started in response to an incoming datagram, at least the datagr
caused the startup of theMIDlet is buffered by the implementation and will be available to theMIDlet when
theMIDlet opens theUDPDatagramConnection after startup.

When socket connections are supported with Push, the implementation MUST guarantee that when aMIDlet
registered for socket Push is started in response to an incoming socket connection, this connection can
accepted by theMIDlet by opening theServerSocketConnection after startup, provided that the
connection hasn’t timed out meanwhile.

Connection vs Push Registration Support
Not all generic connections will be appropriate for use as push application transport. Even if a protocol i
supported on the device as an inbound connection type, it is not required to be enabled as a valid push
mechanism. e.g. a platform might support server socket connections in aMIDlet , but might not support
inbound socket connections for push launch capability. AConnectionNotFoundException is thrown
90

javax.microedition.io PushRegistry

getSecurityInfo()

 for all

ing
gistry

on of

r
e a
nection
n. The

uld be

.

 push
 it is
nd user

tions

nd to
n be

lling

tions

he
iptor
 when
.)
from theregisterConnection and from theregisterAlarm methods, when the platform does not
support that optional capability.

AMS Connection Handoff
Responsibility for registered push connections is shared between the AMS and theMIDlet that handles the I/O
operations on the inbound connection. To prevent any data from being lost, an application is responsible
I/O operations on the connection from the time it callsConnector.open() until it calls
Connection.close() .

The AMS listens for inbound connection notifications. This MAY be handled via a native callback or poll
mechanism looking for new inbound data. The AMS is responsible for enforcing the Security of PushRe
and presenting notifications (if any) to the user before invoking the MIDlet suite.

The AMS is responsible for the shutdown of any running applications (if necessary) prior to the invocati
the pushMIDlet method.

After the AMS has started the push application, theMIDlet is responsible for opening the connections and fo
all subsequent I/O operations. An application that needs to perform blocking I/O operations SHOULD us
separate thread to allow for interactive user operations. Once the application has been started and the con
has been opened, the AMS is no longer responsible for listening for push notifications for that connectio
application is responsible for reading all inbound data.

If an application has finished with all inbound data it MAYclose() the connection. If the connection is
closed, then neither the AMS nor the application will be listening for push notifications. Inbound data co
lost, if the application closes the connection before all data has been received.

When the application is destroyed, the AMS resumes its responsiblity to watch for inbound connections

A push application SHOULD behave in a predictable manner when handling asynchronous data via the
mechanism. A well behaved application SHOULD inform the user that data has been processed. (While
possible to write applications that do not use any user visible interfaces, this could lead to a confused e
experience to launch an application that only performs a background function.)

Dynamic Connections Registered from a Running MIDlet
There are cases when defining a well known port registered with IANA is not necessary. Simple applica
may just wish to exchange data using a private protocol between aMIDlet and server application.

To accomodate this type of application, a mechanism is provided to dynamically allocate a connection a
register that information, as if it was known, when the application was installed. This information can the
sent to an agent on the network to use as the mechanism to communicate with the registeredMIDlet .

For instance, if aUDPDatagramConnection is opened and a port number, was not specified, then the
application is requesting a dynamic port to be allocated from the ports that are currently available. By ca
PushRegistry.registerConnection() theMIDlet informs the AMS that it is the target for inbound
communication, even after theMIDlet has been destroyed (SeeMIDlet life cycle for definition of
“destroyed” state). If the application is deleted from the phone, then its dynamic communication connec
are unregistered automatically.

AMS Runtime Handling - Implementation Notes
During installation eachMIDlet that is expecting inbound communication on a well known address has t
information recorded with the AMS from the push registration attribute in the manifest or application descr
file. Once the installation has been successfully completed, (e.g. For the OTA recommended practices -
theInstallation notification message has been successfully transmitted, the application is officially installed
theMIDlet MAY then receive inbound communication. e.g. the push notification event.
91

PushRegistry javax.microedition.io

getSecurityInfo()

 to the
 the

ent
n

action

tion
ecurity

es.
When the AMS is started, it checks the list of registered connections and begins listening for inbound
communication. When a notification arrives the AMS starts the registeredMIDlet . TheMIDlet then opens
the connection withConnector.open() method to perform whatever I/O operations are needed for the
particular connection type. e.g. for a server socket the application usesacceptAndOpen() to get the socket
connected and for a datagram connection the application usesreceive() to read the delivered message.

For message oriented transports the inbound message MAY be read by the AMS and saved for delivery
MIDlet when it requests to read the data. For stream oriented transports the connection MAY be lost if
connection is not accepted before the server end of the connection request timeouts.

When aMIDlet is started in response to a registered push connection notification, it is platform depend
what happens to the current running application. TheMIDlet life cycle defines the expected behaviors that a
interruptedMIDlet could see from a call topauseApp() or fromdestroyApp() .

Sample Usage Scenarios
Usage scenario 1: The suite includes aMIDlet with a well known port for communication. During the
startApp processing a thread is launched to handle the incoming data. Using a separate thread is the
recommended practice for avoiding conflicts between blocking I/O operations and the normal user inter
events. The thread continues to receive messages until theMIDlet is destroyed.

Sample Chat Descriptor File -
In this sample, the descriptor file includes a static push connection registration. It also includes an indica
that thisMIDlet requires permission to use a datagram connection for inbound push messages. (See S
of Push Functions in the package overview for details aboutMIDlet permissions.)Note: this sample is
appropriate for bursts of datagrams. It is written to loop on the connection, processing received messag
92

javax.microedition.io PushRegistry

getSecurityInfo()
MIDlet-Name: SunNetwork - Chat Demo
MIDlet-Version: 1.0
MIDlet-Vendor: Sun Microsystems, Inc.
MIDlet-Description: Network demonstration programs for MIDP
MicroEdition-Profile: MIDP-2.0
MicroEdition-Configuration: CLDC-1.0
MIDlet-1: InstantMessage, /icons/Chat.png, example.chat.SampleChat, *
MIDlet-Push-1: datagram://:79, example.chat.SampleChat, *
MIDlet-Permissions: javax.microedition.io.PushRegistry, \\

javax.microedition.io.Connector.datagramreceiver

Sample Chat MIDlet Processing -
public class SampleChat extends MIDlet {

// Current inbound message connection.
DatagramConnection conn;
// Flag to terminate the message reading thread.
boolean done_reading;
public void startApp() {

// List of active connections.
String connections[];
// Check to see if this session was started due to
// inbound connection notification.
connections = PushRegistry.listConnections(true);
// Start an inbound message thread for available
// inbound messages for the statically configured
// connection in the descriptor file.
for (int i=0 ; i < connections.length; i++) {

Threa d t = new Thread (new MessageHandler(
connections[i]));

t.start();
}
...

}
}
// Stop reading inbound messages and release the push
// connection to the AMS listener.
public void destroyApp(boolean conditional) {

done_reading = true;
if (conn != null)

conn.close();
// Optionally, notify network service that we're
// done with the current session.
...

}
// Optionally, notify network service.
public void pauseApp() {

...
}

// Inner class to handle inbound messages on a separate thread.
class MessageHandler implements Runnable {

String connUrl ;
MessageHandler(String url) {

connUrl = url ;
}
// Fetch messages in a blocking receive loop.
public void run() {

try {
// Get a connection handle for inbound messages
// and a buffer to hold the inbound message.
DatagramConnection conn = (DatagramConnection)

Connector.open(connUrl);
Datagram data = conn.newDatagram(conn.getMaximumLength());
// Read the inbound messages
while (!done_reading) {

conn.receive(data);
...
93

PushRegistry javax.microedition.io

getSecurityInfo()

 use
ctor the
session
}
} catch (IOException ioe) {
...

}
...

Usage scenario 2: The suite includes aMIDlet that dynamically allocates port the first time it is started.

Sample Ping Descriptor File -
In this sample, the descriptor file includes an entry indicating that the application will need permission to
the datagram connection for inbound push messages. The dynamic connection is allocated in the constru
first time it is run. The open connection is used during this session and can be reopened in a subsequent
in response to a inbound connection notification.
94

javax.microedition.io PushRegistry

getSecurityInfo()
MIDlet-Name: SunNetwork - Demos
MIDlet-Version: 1.0
MIDlet-Vendor: Sun Microsystems, Inc.
MIDlet-Description: Network demonstration programs for MIDP
MicroEdition-Profile: MIDP-2.0
MicroEdition-Configuration: CLDC-1.0
MIDlet-1: JustCallMe, /icons/Ping.png, example.ping.SamplePingMe, *
MIDlet-Permissions: javax.microedition.io.PushRegistry, \\

javax.microedition.io.Connector.datagramreceiver

Sample Ping MIDlet Processing -
public class SamplePingMe extends MIDlet {

// Name of the current application for push registration.
String myName = “example.chat.SamplePingMe”;
// List of registered push connections.
String connections[];
// Inbound datagram connection
UDPDatagramConnection dconn;
public SamplePingMe() {

// Check to see if the ping connection has been registered.
// This is a dynamic connection allocated on first
// time execution of this MIDlet.
connections = PushRegistry.listConnections(false);
if (connections.length == 0) {

// Request a dynamic port for out-of-band notices.
// (Omitting the port number let's the system allocate
// an available port number.)
try {

dconn = (UDPDatagramConnection)
Connector.open(“datagram://”);

String dport = “datagram://:” + dconn.getLocalPort();
// Register the port so the MIDlet will wake up, if messages
// are posted after the MIDlet exits.
PushRegistry.registerConnection(dport, myName, “*”);
// Post my datagram address to the network

...
} catch (IOException ioe) {

...
} catch (ClassNotFoundException cnfe) {

...
}

}
public void startApp() {

// Open the connection if it's not already open.
if (dconn == null) {

// This is not the first time this is run, because the
// dconn hasn't been opened by the constructor.

// Check if the startup has been due to an incoming
// datagram.
connections = PushRegistry.listConnections(true);
if (connections.length > 0) {

// There is a pending datagram that can be received.
dconn = (UDPDatagramConnection)

Connector.open(connections[0]);
// Read the datagram
Datagra m d = dconn.newDatagram(dconn.getMaximumLength());
dconn.receive(d);

} else {
// There are not any pending datagrams, but open
// the connection for later use.
connections = PushRegistry.listConnections(false);
if (connections.length > 0) {

dconn = (UDPDatagramConnection)
Connector.open(connections[0]);

}
}

95

PushRegistry javax.microedition.io

getFilter(String)
}
public void destroyApp(boolean unconditional) {

// Close the connection before exiting
if(dconn != null){

dconn.close()
dconn = null

}
}
...

Since: MIDP 2.0

Methods

getFilter(String)

Declaration:
public static String getFilter (String connection)

Description:
Retrieve the registered filter for a requested connection.

Parameters:
connection - generic connectionprotocol, host andport number (optional parameters may be
included separated with semi-colons (;))

Member Summary

Methods
static

java.lang.String
getFilter(String connection) 96

static
java.lang.String

getMIDlet(String connection) 97

static
java.lang.String[]

listConnections(boolean available) 97

static long registerAlarm(String midlet, long time) 97

static void registerConnection(String connection, String midlet, String
filter) 98

static boolean unregisterConnection(String connection) 99

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
96

javax.microedition.io PushRegistry

getMIDlet(String)

e

ic

ed the
Returns: a filter string indicating which senders are allowed to cause theMIDlet to be launched or
null , if the connection was not registered by the currentMIDlet suite or if the connection argument
wasnull

See Also: registerConnection(String, String, String) 98

getMIDlet(String)

Declaration:
public static String getMIDlet (String connection)

Description:
Retrieve the registeredMIDlet for a requested connection.

Parameters:
connection - generic connectionprotocol, host andport number (optional parameters may be
included separated with semi-colons (;))

Returns: class name of theMIDlet to be launched, when new external data is available, ornull if the
connection was not registered by the currentMIDlet suite or if the connection argument wasnull

See Also: registerConnection(String, String, String) 98

listConnections(boolean)

Declaration:
public static String[] listConnections (boolean available)

Description:
Return a list of registered connections for the currentMIDlet suite.

Parameters:
available - if true , only return the list of connections with input available, otherwise return th
complete list of registered connections for the currentMIDlet suite

Returns: array of registered connection strings, where each connection is represented by the gener
connectionprotocol, host andport number identification

registerAlarm(String, long)

Declaration:
public static long registerAlarm (String midlet, long time)

throws ClassNotFoundException, ConnectionNotFoundException

Description:
Register a time to launch the specified application. ThePushRegistry supports one outstanding wake
up time perMIDlet in the current suite. An application is expected to use aTimerTask for notification
of time based events while the application is running.

If a wakeup time is already registered, the previous value will be returned, otherwise a zero is return
first time the alarm is registered.

Parameters:
midlet - class name of theMIDlet within the current runningMIDlet suite to be launched, when
the alarm time has been reached. The namedMIDlet MUST be registered in the descriptor file or the
jar file manifest with a MIDlet-<n> record. This parameter has the same semantics as the
MIDletClassName in the Push registration attribute defined above in the class description.

time - time at which theMIDlet is to be executed in the format returned byDate.getTime()
97

PushRegistry javax.microedition.io

registerConnection(String, String, String)

file

amic

te used

ed
d.
ute

he

file
Returns: the time at which the most recent execution of thisMIDlet was scheduled to occur, in the
format returned byDate.getTime()

Throws:
ConnectionNotFoundException - if the runtime system does not support alarm based
application launch

ClassNotFoundException - if the MIDlet class name can not be found in the currentMIDlet
suite or if this class is not included in any of the MIDlet-<n> records in the descriptor file or the jar
manifest or if themidlet argument isnull

SecurityException - if theMIDlet does not have permission to register an alarm

See Also: java.util.Date.getTime() , java.util.Timer 40, java.util.TimerTask 46

registerConnection(String, String, String)

Declaration:
public static void registerConnection (String connection, String midlet, String filter)

throws ClassNotFoundException, IOException

Description:
Register a dynamic connection with the application management software. Once registered, the dyn
connection acts just like a connection preallocated from the descriptor file.

The arguments for the dynamic connection registration are the same as the Push Registration Attribu
for static registrations.

If the connection or filter arguments arenull , then anIllegalArgumentException will be
thrown. If themidlet argument isnull aClassNotFoundException will be thrown.

Parameters:
connection - generic connectionprotocol, host andport number (optional parameters may be
included separated with semi-colons (;))

midlet - class name of theMIDlet to be launched, when new external data is available. The nam
MIDlet MUST be registered in the descriptor file or the jar file manifest with a MIDlet-<n> recor
This parameter has the same semantics as the MIDletClassName in the Push registration attrib
defined above in the class description.

filter - a connection URL string indicating which senders are allowed to cause theMIDlet to be
launched

Throws:
IllegalArgumentException - if the connection string is not valid, or if the filter string is not
valid

ConnectionNotFoundException - if the runtime system does not support push delivery for t
requested connection protocol

java.io.IOException - if the connection is already registered or if there are insufficient
resources to handle the registration request

ClassNotFoundException - if the MIDlet class name can not be found in the currentMIDlet
suite or if this class is not included in any of the MIDlet-<n> records in the descriptor file or the jar
manifest

SecurityException - if theMIDlet does not have permission to register a connection

See Also:unregisterConnection(String) 99
98

javax.microedition.io PushRegistry

unregisterConnection(String)
unregisterConnection(String)

Declaration:
public static boolean unregisterConnection (String connection)

Description:
Remove a dynamic connection registration.

Parameters:
connection - generic connectionprotocol, host andport number

Returns: true if the unregistration was successful,false if the connection was not registered or if the
connection argument wasnull

Throws:
SecurityException - if the connection was registered by anotherMIDlet suite

See Also: registerConnection(String, String, String) 98
99

SecureConnection javax.microedition.io

unregisterConnection(String)

e host

of IP

xt)

/

javax.microedition.io

SecureConnection
Declaration
public interface SecureConnection extends SocketConnection 108

All Superinterfaces: Connection , InputConnection , OutputConnection ,
SocketConnection 108 , StreamConnection

Description
This interface defines the secure socket stream connection. A secure connection is established using
Connector.open with the scheme “ssl” and the secure connection is established beforeopen returns. If the
secure connection cannot be established due to errors related to certificates aCertificateException is
thrown.

A secure socket is accessed using a generic connection string with an explicit host and port number. Th
may be specified as a fully qualified host name or IPv4 number. e.g.ssl://host.com:79 defines a target
socket on thehost.com system at port79 .

Note that RFC1900 recommends the use of names rather than IP numbers for best results in the event
number reassignment.

A secure connection MUST be implemented by one or more of the following specifications:

• TLS Protocol Version 1.0 as specified in RFC 2246 (http://www.ietf.org/rfc/rfc2246.txt).

• SSL V3 as specified in The SSL Protocol Version 3.0 (http://home.netscape.com/eng/ssl3/draft302.t

• WAP(TM) TLS Profile and Tunneling Specification as specified in WAP-219-TLS-20010411-a (http:/
www.wapforum.com/what/technical.htm)

BNF Format for Connector.open() string

The URI must conform to the BNF syntax specified below. If the URI does not conform to this syntax, an
IllegalArgumentException is thrown.

Examples

The following examples show how aSecureConnection would be used to access a sample loopback
program.

<socket_connection_string> ::= “ssl://”<hostport>

<hostport> ::=host “:” port

<host> ::=host name or IP address

<port> ::=numeric port number
100

javax.microedition.io SecureConnection

unregisterConnection(String)
SecureConnection sc = (SecureConnection)
Connector.open(“ssl://host.com:79”);

SecurityInfo info = sc.getSecurityInfo();
boolean isTLS = (info.getProtocolName().equals(“TLS”));

sc.setSocketOption(SocketConnection.LINGER, 5);
InputStream is = sc.openInputStream();
OutputStream os = sc.openOutputStream();
os.write(“\r\n”.getBytes());
int ch = 0;
while(ch != -1) {

ch = is.read();
}
is.close();
os.close();
sc.close();

Since: MIDP 2.0

Member Summary

Methods
 SecurityInfo getSecurityInfo() 102

Inherited Member Summary

Fields inherited from interface SocketConnection 108

DELAY110, KEEPALIVE110, LINGER110, RCVBUF110, SNDBUF110

Methods inherited from interface Connection

close()

Methods inherited from interface InputConnection

openDataInputStream(), openInputStream()

Methods inherited from interface OutputConnection

openDataOutputStream(), openOutputStream()

Methods inherited from interface SocketConnection 108

getAddress() 110, getLocalAddress() 111, getLocalPort() 111, getPort() 111,
getSocketOption(byte) 112, setSocketOption(byte, int) 112
101

SecureConnection javax.microedition.io

getSecurityInfo()
Methods

getSecurityInfo()

Declaration:
public javax.microedition.io.SecurityInfo 103 getSecurityInfo ()

throws IOException

Description:
Return the security information associated with this connection when it was opened.

Returns: the security information associated with this open connection.

Throws:
java.io.IOException - if an arbitrary connection failure occurs
102

javax.microedition.io SecurityInfo

getCipherSuite()

t
n.

rSuite

ntions

ses SSL
name.
javax.microedition.io

SecurityInfo
Declaration
public interface SecurityInfo

Description
This interface defines methods to access information about a secure network connection. Protocols tha
implement secure connections may use this interface to report the security parameters of the connectio

It provides the certificate, protocol, version, and cipher suite, etc. in use.

Since: MIDP 2.0

See Also: javax.microedition.pki.CertificateException 458 , SecureConnection 100 ,
HttpsConnection 85

Methods

getCipherSuite()

Declaration:
public String getCipherSuite ()

Description:
Returns the name of the cipher suite in use for the connection. The name returned is from the Ciphe
column of the CipherSuite definitions table in Appendix C of RFC 2246. If the cipher suite is not in
Appendix C, the name returned is non-null and its contents are not specified. For non-TLS impleme
the cipher suite name should be selected according to the actual key exchange, cipher, and hash
combination used to establish the connection, so that regardless of whether the secure connection u
V3 or TLS 1.0 or WTLS or WAP TLS Profile and Tunneling, equivalent cipher suites have the same

Returns: aString containing the name of the cipher suite in use.

Member Summary

Methods
 java.lang.String getCipherSuite() 103

 java.lang.String getProtocolName() 104

 java.lang.String getProtocolVersion() 104

javax.microedition.pki
.Certificate

getServerCertificate() 104
103

SecurityInfo javax.microedition.io

getProtocolName()

nd
SL
s

tocol
getProtocolName()

Declaration:
public String getProtocolName ()

Description:
Returns the secure protocol name.

Returns: aString containing the secure protocol identifier; if TLS (RFC 2246) or WAP TLS Profile a
Tunneling (WAP-219-TLS) is used for the connection the return value is “TLS”; if SSL V3 (The S
Protocol Version 3.0) is used for the connection; the return value is “SSL”); if WTLS (WAP 199) i
used for the connection the return value is “WTLS”.

getProtocolVersion()

Declaration:
public String getProtocolVersion ()

Description:
Returns the protocol version. If appropriate, it should contain the major and minor versions for the pro
separated with a “.” (Unicode U+002E).

For SSL V3 it MUST return “3.0”
For TLS 1.0 it MUST return “3.1”
For WTLS (WAP-199) it MUST return “1”
For WAP TLS Profile and Tunneling Specification it MUST return “3.1”

Returns: a String containing the version of the protocol; the return value MUST NOT benull .

getServerCertificate()

Declaration:
public javax.microedition.pki.Certificate 455 getServerCertificate ()

Description:
Returns theCertificate used to establish the secure connection with the server.

Returns: theCertificate used to establish the secure connection with the server.
104

javax.microedition.io ServerSocketConnection

getServerCertificate()

of
 with

rt
rt
javax.microedition.io

ServerSocketConnection
Declaration
public interface ServerSocketConnection extends StreamConnectionNotifier

All Superinterfaces: Connection , StreamConnectionNotifier

Description
This interface defines the server socket stream connection.

A server socket is accessed using a generic connection string with the host omitted. For example,socket://
:79 defines an inbound server socket on port79 . The host can be discovered using thegetLocalAddress
method.

TheacceptAndOpen() method returns aSocketConnection instance. In addition to the normal
StreamConnection behavior, theSocketConnection supports accessing the IP end point addresses
the live connection and access to socket options that control the buffering and timing delays associated
specific application usage of the connection.

Access to server socket connections may be restricted by the security policy of the device.Connector.open
MUST check access for the initial server socket connection andacceptAndOpen MUST check before
returning each newSocketConnection .

A server socket can be used to dynamically select an available port by omitting both the host and the po
parameters in the connection URL string. For example,socket:// defines an inbound server socket on a po
which is allocated by the system. To discover the assigned port number use thegetLocalPort method.

BNF Format for Connector.open() string

The URI must conform to the BNF syntax specified below. If the URI does not conform to this syntax, an
IllegalArgumentException is thrown.

Examples

The following examples show how aServerSocketConnection would be used to access a sample
loopback program.

<socket_connection_string> ::= “socket://” | “socket://”<hostport>

<hostport> ::=host “:” port

<host> ::= omitted for inbound connections, See SocketConnection

<port> ::=numeric port number(omitted for system assigned port)
105

ServerSocketConnection javax.microedition.io

getLocalAddress()
// Create the server listening socket for port 1234
ServerSocketConnection scn = (ServerSocketConnection)

Connector.open(“socket://:1234”);
// Wait for a connection.
SocketConnection sc = (SocketConnection) scn.acceptAndOpen();
// Set application specific hints on the socket.
sc.setSocketOption(DELAY, 0);
sc.setSocketOption(LINGER, 0);
sc.setSocketOption(KEEPALIVE, 0);
sc.setSocketOption(RCVBUF, 128);
sc.setSocketOption(SNDBUF, 128);
// Get the input stream of the connection.
DataInputStream is = sc.openDataInputStream();
// Get the output stream of the connection.
DataOutputStream os = sc.openDataOutputStream();
// Read the input data.
String result = is.readUTF();
// Echo the data back to the sender.
os.writeUTF(result);
// Close everything.
is.close();
os.close();
sc.close();
scn.close();
..

Since: MIDP 2.0

Methods

getLocalAddress()

Declaration:
public String getLocalAddress ()

throws IOException

Member Summary

Methods
 java.lang.String getLocalAddress() 106

 int getLocalPort() 107

Inherited Member Summary

Methods inherited from interface Connection

close()

Methods inherited from interface StreamConnectionNotifier

acceptAndOpen()
106

javax.microedition.io ServerSocketConnection

getLocalPort()

 an
o be
Description:
Gets the local address to which the socket is bound.

The host address(IP number) that can be used to connect to this end of the socket connection from
external system. Since IP addresses may be dynamically assigned, a remote application will need t
robust in the face of IP number reasssignment.

The local hostname (if available) can be accessed from
System.getProperty(“microedition.hostname”)

Returns: the local address to which the socket is bound.

Throws:
java.io.IOException - if the connection was closed

See Also:SocketConnection 108

getLocalPort()

Declaration:
public int getLocalPort ()

throws IOException

Description:
Returns the local port to which this socket is bound.

Returns: the local port number to which this socket is connected.

Throws:
java.io.IOException - if the connection was closed

See Also:SocketConnection 108
107

SocketConnection javax.microedition.io

getLocalPort()

may be

of IP

of the
javax.microedition.io

SocketConnection
Declaration
public interface SocketConnection extends StreamConnection

All Superinterfaces: Connection , InputConnection , OutputConnection ,
StreamConnection

All Known Subinterfaces: SecureConnection 100

Description
This interface defines the socket stream connection.

A socket is accessed using a generic connection string with an explicit host and port number. The host
specified as a fully qualified host name or IPv4 number. e.g.socket://host.com:79 defines a target
socket on thehost.com system at port79 .

Note that RFC1900 recommends the use of names rather than IP numbers for best results in the event
number reassignment.

Closing Streams

EveryStreamConnection provides aConnection object as well as anInputStream and
OutputStream to handle the I/O associated with the connection. Each of these interfaces has its own
close() method. For systems that support duplex communication over the socket connection, closing
input or output stream SHOULD shutdown just that side of the connection. e.g. closing theInputStream
will permit theOutputStream to continue sending data.

Once the input or output stream has been closed, it can only be reopened with a call toConnector.open() .
The application will receive anIOException if an attempt is made to reopen the stream.

BNF Format for Connector.open() string

The URI must conform to the BNF syntax specified below. If the URI does not conform to this syntax, an
IllegalArgumentException is thrown.

<socket_connection_string> ::= “socket://”<hostport>

<hostport> ::=host “:” port

<host> ::=host name or IP address (omitted for inbound connections, See
ServerSocketConnection)

<port> ::=numeric port number
108

javax.microedition.io SocketConnection

getLocalPort()
Examples

The following examples show how aSocketConnection would be used to access a sample loopback
program.

SocketConnection sc = (SocketConnection)
Connector.open(“socket://host.com:79”);

sc.setSocketOption(SocketConnection.LINGER, 5);
InputStream is = sc.openInputStream();
OutputStream os = sc.openOutputStream();
os.write(“\r\n”.getBytes());
int ch = 0;
while(ch != -1) {

ch = is.read();
}
is.close();
os.close();
sc.close();

Since: MIDP 2.0

Member Summary

Fields
static byte DELAY110

static byte KEEPALIVE110

static byte LINGER110

static byte RCVBUF110

static byte SNDBUF110

Methods
 java.lang.String getAddress() 110

 java.lang.String getLocalAddress() 111

 int getLocalPort() 111

 int getPort() 111

 int getSocketOption(byte option) 112

 void setSocketOption(byte option, int value) 112

Inherited Member Summary

Methods inherited from interface Connection

close()

Methods inherited from interface InputConnection

openDataInputStream(), openInputStream()

Methods inherited from interface OutputConnection

openDataOutputStream(), openOutputStream()
109

SocketConnection javax.microedition.io

DELAY

er

ut
Fields

DELAY

Declaration:
public static final byte DELAY

Description:
Socket option for the small bufferwriting delay (0). Set to zero to disable Nagle algorithm for small buff
operations. Set to a non-zero value to enable.

KEEPALIVE

Declaration:
public static final byte KEEPALIVE

Description:
Socket option for thekeep alive feature (2). Setting KEEPALIVE to zero will disable the feature. Setting
KEEPALIVE to a non-zero value will enable the feature.

LINGER

Declaration:
public static final byte LINGER

Description:
Socket option for thelinger time to wait in seconds before closing a connection with pending data outp
(1). Setting the linger time to zero disables the linger wait interval.

RCVBUF

Declaration:
public static final byte RCVBUF

Description:
Socket option for the size of thereceiving buffer (3).

SNDBUF

Declaration:
public static final byte SNDBUF

Description:
Socket option for the size of thesending buffer (4).

Methods

getAddress()

Declaration:
public String getAddress ()

throws IOException
110

javax.microedition.io SocketConnection

getLocalAddress()

e or the

 an
o be
Description:
Gets the remote address to which the socket is bound. The address can be either the remote host nam
IP address(if available).

Returns: the remote address to which the socket is bound.

Throws:
java.io.IOException - if the connection was closed.

getLocalAddress()

Declaration:
public String getLocalAddress ()

throws IOException

Description:
Gets the local address to which the socket is bound.

The host address(IP number) that can be used to connect to this end of the socket connection from
external system. Since IP addresses may be dynamically assigned, a remote application will need t
robust in the face of IP number reasssignment.

The local hostname (if available) can be accessed from
System.getProperty(“microedition.hostname”)

Returns: the local address to which the socket is bound.

Throws:
java.io.IOException - if the connection was closed.

See Also:ServerSocketConnection 105

getLocalPort()

Declaration:
public int getLocalPort ()

throws IOException

Description:
Returns the local port to which this socket is bound.

Returns: the local port number to which this socket is connected.

Throws:
java.io.IOException - if the connection was closed.

See Also:ServerSocketConnection 105

getPort()

Declaration:
public int getPort ()

throws IOException

Description:
Returns the remote port to which this socket is bound.

Returns: the remote port number to which this socket is connected.

Throws:
java.io.IOException - if the connection was closed.
111

SocketConnection javax.microedition.io

getSocketOption(byte)

se in

 is
um
getSocketOption(byte)

Declaration:
public int getSocketOption (byte option)

throws IllegalArgumentException, IOException

Description:
Get a socket option for the connection.

Parameters:
option - socket option identifier (KEEPALIVE, LINGER, SNDBUF, RCVBUF, or DELAY)

Returns: numeric value for specified option or -1 if the value is not available.

Throws:
IllegalArgumentException - if the option identifier is not valid

java.io.IOException - if the connection was closed

See Also:setSocketOption(byte, int) 112

setSocketOption(byte, int)

Declaration:
public void setSocketOption (byte option, int value)

throws IllegalArgumentException, IOException

Description:
Set a socket option for the connection.

Options inform the low level networking code about intended usage patterns that the application will u
dealing with the socket connection.

CallingsetSocketOption to assign buffer sizes is a hint to the platform of the sizes to set the
underlying network I/O buffers. CallinggetSocketOption can be used to see what sizes the system
using. The system MAY adjust the buffer sizes to account for better throughput available from Maxim
Transmission Unit (MTU) and Maximum Segment Size (MSS) data available from current network
information.

Parameters:
option - socket option identifier (KEEPALIVE, LINGER, SNDBUF, RCVBUF, or DELAY)

value - numeric value for specified option

Throws:
IllegalArgumentException - if the value is not valid (e.g. negative value) or if the option
identifier is not valid

java.io.IOException - if the connection was closed

See Also:getSocketOption(byte) 112
112

javax.microedition.io UDPDatagramConnection

setSocketOption(byte, int)

dered
javax.microedition.io

UDPDatagramConnection
Declaration
public interface UDPDatagramConnection extends DatagramConnection

All Superinterfaces: Connection , DatagramConnection

Description
This interface defines a datagram connection which knows it’s local end point address. The protocol is
transaction oriented, and delivery and duplicate protection are not guaranteed. Applications requiring or
reliable delivery of streams of data should use theSocketConnection .

A UDPDatagramConnection is returned fromConnector.open() in response to a request to open a
datagram:// URL connection string. If the connection string omits both thehost andport fields in the
URL string, then the system will allocate an available port. The local address and the local port can be
discovered using the accessor methods within this interface.

The syntax described here for the datagram URL connection string is also valid for the
Datagram.setAddress() method used to assign a destination address to aDatagram to be sent. e.g.,
datagram:// host:port

BNF Format for Connector.open() string

The URI must conform to the BNF syntax specified below. If the URI does not conform to this syntax, an
IllegalArgumentException is thrown.

Since: MIDP 2.0

<datagram_connection_string> ::= “datagram://” | “datagram://”<hostport>

<hostport> ::=host “:” port

<host> ::=host name or IP address (omitted for inbound connections)

<port> ::=numeric port number(omitted for system assigned port)

Member Summary

Methods
 java.lang.String getLocalAddress() 114

 int getLocalPort() 114
113

UDPDatagramConnection javax.microedition.io

getLocalAddress()

om an
o be
Methods

getLocalAddress()

Declaration:
public String getLocalAddress ()

throws IOException

Description:
Gets the local address to which the datagram connection is bound.

The host address(IP number) that can be used to connect to this end of the datagram connection fr
external system. Since IP addresses may be dynamically assigned, a remote application will need t
robust in the face of IP number reassignment.

The local hostname (if available) can be accessed from
System.getProperty(“microedition.hostname”)

Returns: the local address to which the datagram connection is bound.

Throws:
java.io.IOException - if the connection was closed.

See Also:ServerSocketConnection 105

getLocalPort()

Declaration:
public int getLocalPort ()

throws IOException

Description:
Returns the local port to which this datagram connection is bound.

Returns: the local port number to which this datagram connection is connected.

Throws:
java.io.IOException - if the connection was closed.

See Also:ServerSocketConnection 105

Inherited Member Summary

Methods inherited from interface Connection

close()

Methods inherited from interface DatagramConnection

getMaximumLength(), getNominalLength(), newDatagram(byte[], int, String),
newDatagram(byte[], int, String), newDatagram(byte[], int, String),
newDatagram(byte[], int, String), receive(Datagram), send(Datagram)
114

nes
s with

puters.

 to the

ems.
ices.

e user

s for

rom

d and
omes

nd on
s,
ping
 and

ith a
small

tions,
l of
C H A P T E R 8
Package

javax.microedition.lcdui
Description
The UI API provides a set of features for implementation of user interfaces for MIDP applications.

User Interface
The main criteria for the MIDP have been drafted with mobile information devices in mind (i.e., mobile pho
and pagers). These devices differ from desktop systems in many ways, especially how the user interact
them. The following UI-related requirements are important when designing the user interface API:

• The devices and applications should be useful to users who are not necessarily experts in using com

• The devices and applications should be useful in situations where the user cannot pay full attention
application. For example, many phone-type devices will be operated with one hand.

• The form factors and UI concepts of the device differ between devices, especially from desktop syst
For example, the display sizes are smaller, and the input devices do not always include pointing dev

• The applications run on MIDs should have UIs that are compatible to the native applications so that th
finds them easy to use.

Given the capabilities of devices that will implement the MIDP and the above requirements, the MIDPEG
decided not to simply subset the existing Java UI, which is the Abstract Windowing Toolkit (AWT). Reason
this decision include:

• Although AWT was designed for desktop computers and optimized to these devices, it also suffers f
assumptions based on this heritage.

• When a user interacts with AWT, event objects are created dynamically. These objects are short-live
exist only until each associated event is processed by the system. At this point, the event object bec
garbage and must be reclaimed by the system’s garbage collector. The limited CPU and memory
subsystems of a MID typically cannot handle this behavior.

• AWT has a rich but desktop-based feature set. This feature set includes support for features not fou
MIDs. For example, AWT has extensive support for window management (e.g., overlapping window
window resize, etc.). MIDs have small displays which are not large enough to display multiple overlap
windows. The limited display size also makes resizing a window impractical. As such, the windowing
layout manager support within AWT is not required for MIDs.

• AWT assumes certain user interaction models. The component set of AWT was designed to work w
pointer device (e.g., a mouse or pen input). As mentioned earlier, this assumption is valid for only a
subset of MIDs since many of these devices have only a keypad for user input.

Structure of the MIDP UI API
The MIDP UI is logically composed of two APIs: the high-level and the low-level.

The high-level API is designed for business applications whose client parts run on MIDs. For these applica
portability across devices is important. To achieve this portability, the high-level API employs a high leve
115

javax.microedition.lcdui

e

ne

he
el API

that
me

tion

I
e these

of the
nce of
e.
and the

ee

r
nly

ices.

ld be
ser

 screens.

r

abstraction and provides very little control over look and feel. This abstraction is further manifested in th
following ways:

• The actual drawing to the MID’s display is performed by the implementation. Applications do not defi
the visual appearance (e.g., shape, color, font, etc.) of the components.

• Navigation, scrolling, and other primitive interaction is encapsulated by the implementation, and the
application is not aware of these interactions.

• Applications cannot access concrete input devices like specific individual keys.

In other words, when using the high-level API, it is assumed that the underlying implementation will do t
necessary adaptation to the device’s hardware and native UI style. The classes that provide the high-lev
are the subclasses ofScreen 315 .

The low-level API, on the other hand, provides very little abstraction. This API is designed for applications
need precise placement and control of graphic elements, as well as access to low-level input events. So
applications also need to access special, device-specific features. A typical example of such an applica
would be a game.

Using the low-level API, an application can:

• Have full control of what is drawn on the display.

• Listen for primitive events like key presses and releases.

• Access concrete keys and other input devices.

The classes that provide the low-level API areCanvas 139 andGraphics 247 .

Applications that program to the low-level API are not guaranteed to be portable, since the low-level AP
provides the means to access details that are specific to a particular device. If the application does not us
features, it will be portable. It is recommended that applications use only the platform-independent part
low-level API whenever possible. This means that the applications should not directly assume the existe
any keys other than those defined in theCanvas class, and they should not depend on a specific screen siz
Rather, the application game-key event mapping mechanism should be used instead of concrete keys,
application should inquire about the size of the display and adjust itself accordingly.

Class Hierarchy
The central abstraction of the MIDP’s UI is aDisplayable object, which encapsulates device-specific
graphics rendering with user input. Only oneDisplayable may be visible at a time, and and the user can s
and interact with only contents of thatDisplayable .

TheScreen class is a subclass ofDisplayable that takes care of all user interaction with high-level use
interface component. TheScreen subclasses handle rendering, interaction, traversal, and scrolling, with o
higher-level events being passed on to the application.

The rationale behind this design is based on the different display and input solutions found in MIDP dev
These differences imply that the component layout, scrolling, and focus traversal will be implemented
differently on different devices. If an application were required to be aware of these issues, portability wou
compromised. Simple screenfuls also organize the user interface into manageable pieces, resulting in u
interfaces that are easy to use and learn.

There are three categories ofDisplayable objects:

• Screens that encapsulate a complex user interface component (e.g., classesList or TextBox). The
structure of these screens is predefined, and the application cannot add other components to these

• Generic screens (instances of theForm class) that can containItem objects to represent user interface
components. The application can populateForm objects with an arbitrary number of text, image, and othe
116

javax.microedition.lcdui

to

r

eep

classes

on may
reen or

DP
tware:

,

er
components; however, it is recommended thatForm objects be kept simple and that they should be used
contain only a few, closely-related user interface components.

• Screens that are used in context of the low-level API (i.e., subclasses of classCanvas).

EachDisplayable can have a title, aTicker and a set ofCommands attached to it.

The classDisplay acts as the display manager that is instantiated for each activeMIDlet and provides
methods to retrieve information about the device’s display capabilities. ADisplayable is made visible by
calling thesetCurrent() method ofDisplay . When aDisplayable is made current, it replaces the
previousDisplayable .

Class Overview
It is anticipated that most applications will utilize screens with predefined structures likeList , TextBox ,
andAlert . These classes are used in the following ways:

• List is used when the user should select from a predefined set of choices.

• TextBox is used when asking textual input.

• Alert is used to display temporary messages containing text and images.

A special classForm is defined for cases where screens with a predefined structure are not sufficient. Fo
example, an application may have twoTextFields , or aTextField and a simpleChoiceGroup .
Although this class (Form) allows creation of arbitrary combinations of components, developers should k
the limited display size in mind and create only simpleForms .

Form is designed to contain a small number of closely related UI elements. These elements are the sub
of Item : ImageItem , StringItem , TextField , ChoiceGroup , Gauge, andCustomItem . The
classesImageItem andStringItem are convenience classes that make certain operations withForm and
Alert easier. By subclassingCustomItem application developers can introduceItems with a new visual
representation and interactive elements. If the components do not all fit on the screen, the implementati
either make the form scrollable or implement some components so that they can either popup in a new sc
expand when the user edits the element.

Interplay with Application Manager
The user interface, like any other resource in the API, is to be controlled according to the principle of MI
application management. The UI expects the following conditions from the application management sof

• getDisplay() is callable starting fromMIDlet ’s constructor untildestroyApp() has returned.

• TheDisplay object is the same untildestroyApp() is called.

• TheDisplayable object set bysetCurrent() is not changed by the application manager.

The application manager assumes that the application behaves as follows with respect to theMIDlet events:

• startApp - The application may callsetCurrent() for the first screen. The application manager
makesDisplayable really visible when startApp() returns. Note thatstartApp() can be called
several times ifpauseApp() is called in between. This means that initialization should not take place
and the application should not accidentally switch to another screen withsetCurrent() .

• pauseApp - The application should release as many threads as possible. Also, if starting with anoth
screen when the application is re-activated, the new screen should be set withsetCurrent() .

• destroyApp - The application may delete created objects.
117

javax.microedition.lcdui

ailable)

call

 If
eturns.
Event Handling
User interaction causes events, and the implementation notifies the application of the events by making
corresponding callbacks. There are four kinds of UI callbacks:

• Abstract commands that are part of the high-level API

• Low-level events that represent single key presses and releases (and pointer events, if a pointer is av

• Calls to thepaint() method of aCanvas class

• Calls to aRunnable object’srun() method requested by a call tocallSerially() of class
Display

All UI callbacks are serialized, so they will never occur in parallel. That is, the implementation will never
an callback before a prior call toany other callback has returned. This property enables applications to be
assured that processing of a previous user event will have completed before the next event is delivered.
multiple UI callbacks are pending, the next is called as soon as possible after the previous UI callback r
The implementation also guarantees that the call torun() requested by a call tocallSerially() is made
after any pending repaint requests have been satisfied.

There is one exception to the callback serialization rule, which occurs when the
Canvas.serviceRepaints 153 method is called. This method causes the theCanvas.paint method to
be called and waits for it to complete. This occurs even if the caller ofserviceRepaints is itself within an
active callback. There is further discussion of this issue below.

The following callbacks are all serialized with respect to each other:

• Canvas.hideNotify 149

• Canvas.keyPressed 150

• Canvas.keyRepeated 150

• Canvas.keyReleased 150

• Canvas.paint 151

• Canvas.pointerDragged 152

• Canvas.pointerPressed 152

• Canvas.pointerReleased 152

• Canvas.showNotify 154

• Canvas.sizeChanged 154

• CommandListener.commandAction 183

• CustomItem.getMinContentHeight 191

• CustomItem.getMinContentWidth 191

• CustomItem.getPrefContentHeight 191

• CustomItem.getPrefContentWidth 192

• CustomItem.hideNotify 192

• CustomItem.keyPressed 193

• CustomItem.keyRepeated 193
118

javax.microedition.lcdui

vent

ds and

t

ns or
IDP

s, or

es. For

appings

e
mple,
• CustomItem.keyReleased 193

• CustomItem.paint 193

• CustomItem.pointerDragged 194

• CustomItem.pointerPressed 194

• CustomItem.pointerReleased 195

• CustomItem.showNotify 195

• CustomItem.sizeChanged 196

• CustomItem.traverse 196

• CustomItem.traverseOut 199

• Displayable.sizeChanged 222

• ItemCommandListener.commandAction 300

• ItemStateListener.itemStateChanged 301

• Runnable.run resulting from a call toDisplay.callSerially 210

Note thatTimer 40 events are not considered UI events. Timer callbacks may run concurrently with UI e
callbacks, althoughTimerTask 46 callbacks scheduled on the sameTimer are serialized with each other.
Applications that use timers must guard their data structures against concurrent access from timer threa
UI event callbacks. Alternatively, applications may have their timer callbacks use
Display.callSerially 210 so that work triggered by timer events can be serialized with the UI even
callbacks.

Abstract Commands
Since MIDP UI is highly abstract, it does not dictate any concrete user interaction technique like soft butto
menus. Also, low-level user interactions such as traversal or scrolling are not visible to the application. M
applications defineCommands , and the implementation may manifest these via either soft buttons, menu
whatever mechanisms are appropriate for that device.

Commands are installed to aDisplayable (Canvas or Screen) with a methodaddCommand of class
Displayable .

The native style of the device may assume that certain types of commands are placed on standard plac
example, the “go-back” operation may always be mapped to the right soft button. TheCommand class allows
the application to communicate such a semantic meaning to the implementation so that these standard m
can be effected.

The implementation does not actually implement any of the semantics of theCommand. The attributes of a
Commandare used only for mapping it onto the user interface. The actual semantics of aCommandare always
implemented by the application in aCommandListener .

Command objects have attributes:

• Label: Shown to the user as a hint. A singleCommandcan have two versions of labels: short and long. Th
implementation decides whether the short or long version is appropriate for a given situation. For exa
an implementaion can choose to use a short version of a givenCommand near a soft button and the long
version of theCommand in a menu.

• Type: The purpose of a command. The implementation will use the command type for placing the
command appropriately within the device’s user interface.Commandswith similar types may, for example,
119

javax.microedition.lcdui

icy for
might
on a

is type

portant

he

he user
ITU-T

e
 not

 text

y from

be used

d must

t have
ing is
 will
s likely
 select-

ration
be found near each other in certain dedicated place in the user interface. Often, devices will have pol
placement and presentation of certain operations. For example, a “backward navigation” command
be always placed on the right soft key on a particular device, but it might be placed on the left soft key
different device. TheCommand class provides fixed set of command types that provideMIDlet the
capability to tell the device implementation the intent of aCommand. The application can use theBACK
command type for commands that perform backward navigation. On the devices mentioned above, th
information would be used to assign the command to the appropriate soft key.

• Priority: Defines the relative importance betweenCommands of the same type. A command with a lower
priority value is more important than a command of the same type but with a higher priority value. If
possible, a more important command is presented before, or is more easily accessible, than a less im
one.

Device-Provided Operations
In many high-level UI classes there are also some additional operations available in the user interface. T
additional operations are not visible to applications, only to the end-user. The set of operations available
depends totally on the user interface design of the specific device. For example, an operation that allows t
to change the mode for text input between alphabetic and numeric is needed in devices that have only an
keypad. More complex input systems will require additional operations. Some of operations available ar
presented in the user interface in the same way the application-defined commands are. End-users need
understand which operations are provided by the application and which provided by the system. Not all
operations are available in every implementation. For example, a system that has a word-lookup-based
input scheme will generally provide additional operations within theTextBox class. A system that lacks such
an input scheme will also lack the corresponding operations.

Some operations are available on all devices, but the way the operation is implemented may differ greatl
device to device. Examples of this kind of operation are: the mechanism used to navigate betweenList
elements andForm items, the selection ofList elements, moving an insertion position within a text editor,
and so forth. Some devices do not allow the direct editing of the value of anItem , but instead require the user
to switch to an off-screen editor. In such devices, there must be a dedicated selection operation that can
to invoke the off-screen editor. The selection of aList elements could be, for example, implemented with a
dedicated “Go” or “Select” or some other similar key. Some devices have no dedicated selection key an
select elements using some other means.

On devices where the selection operation is performed using a dedicated select key, this key will often no
a label displayed for it. It is appropriate for the implementation to use this key in situations where its mean
obvious. For example, if the user is presented with a set of mutually exclusive options, the selection key
obviously select one of those options. However, in a device that doesn’t have a dedicated select key, it i
that the selection operation will be performed using a soft key that requires a label. The ability to set the
command for aList of typeIMPLICIT and the ability to set the default command for anItem are provided
so that the application can set the label for this operation and so it can receive notification when this ope
occurs.

High-Level API for Events
The handling of events in the high-level API is based on a listener model.Screens andCanvases may have
listeners for commands. An object willing to be a listener should implement an interfaceCommandListener
that has one method:

void commandAction(Command c, Displayable d);
120

javax.microedition.lcdui

ge.
fore it

ner

t is
ese

ll
ect key
.,

he API

nd run
The application gets these events if theScreen or Canvas has attachedCommands and if there is a
registered listener. A unicast-version of the listener model is adopted, so theScreen or Canvas can have one
listener at a time.

There is also a listener interface for state changes of theItems in aForm . The method

defined in interfaceItemStateListener is called when the value of an interactiveGauge ,
ChoiceGroup , or TextField changes. It is not expected that the listener will be called after every chan
However, if the value of an Item has been changed, the listener will be called for the change sometime be
is called for another item or before a command is delivered to theForm's CommandListener . It is
suggested that the change listener is called at least after focus (or equivalent) is lost from field. The liste
should only be called if the field’s value has actually changed.

Low-Level API for Events
Low-level graphics and events have the following methods to handle low-level key events:

The last call,keyRepeated , is not necessarily available in all devices. The applications can check the
availability of repeat actions by calling the following method of theCanvas :

The API requires that there be standard key codes for the ITU-T keypad (0-9, *, #), but no keypad layou
required by the API. Although an implementation may provide additional keys, applications relying on th
keys are not portable.

In addition, the classCanvas has methods for handling abstract game events. An implementation maps a
these key events to suitable keys on the device. For example, a device with four-way navigation and a sel
in the middle could use those keys, but a simpler device may use certain keys on the numeric keypad (e.g2, 4,
5, 6, 8). These game events allow development of portable applications that use the low-level events. T
defines a set of abstract key-events:UP, DOWN, LEFT, RIGHT, FIRE , GAME_A, GAME_B, GAME_C, and
GAME_D.

An application can get the mapping of the key events to abstract key events by calling:

If the logic of the application is based on the values returned by this method, the application is portable a
regardless of the keypad design.

void itemStateChanged(Item item);

public void keyPressed(int keyCode);
public void keyReleased(int keyCode);
public void keyRepeated(int keyCode);

public static boolean hasRepeatEvents();

public static int getGameAction(int keyCode);
121

javax.microedition.lcdui

to

t be

g in the
It is also possible to map an abstract event to a key with:

wheregameAction is UP,DOWN, LEFT, RIGHT, FIRE , etc. On some devices, more than one key is mapped
the same game action, in which case thegetKeyCode method will return just one of them. Properly-written
applications should map the key code to an abstract key event and make decisions based on the result.

The mapping between keys and abstract events does not change during the execution of the game.

The following is an example of how an application can use game actions to interpret keystrokes.

The low-level API also has support for pointer events, but since the following input mechanisms may no
present in all devices, the following callback methods may never be called in some devices:

The application may check whether the pointer is available by calling the following methods of classCanvas :

Interplay of High-Level Commands and the Low-Level API
The classCanvas , which is used for low-level events and drawing, is a subclass ofDisplayable , and
applications can attachCommands to it. This is useful for jumping to an options setupScreen in the middle
of a game. Another example could be a map-based navigation application where keys are used for movin
map but commands are used for higher-level actions.

public static int getKeyCode(int gameAction);

class MovingBlocksCanvas extends Canvas {
public void keyPressed(int keyCode) {

int action = getGameAction(keyCode);
switch (action) {
case LEFT:

moveBlockLeft();
break;

case RIGHT:
...

}
}

}

public void pointerPressed(int x, int y);
public void pointerReleased(int x, int y);
public void pointerDragged(int x, int y);

public static boolean hasPointerEvents();
public static boolean hasPointerMotionEvents();
122

javax.microedition.lcdui

ck. This

tion
y be
nce of

e
ting by

the event
Some devices may not have the means to invoke commands whenCanvas and the low-level event mechanism
are in use. In that case, the implementation may provide a means to switch to a command mode and ba
command mode might pop up a menu over the contents of theCanvas . In this case, theCanvas methods
hideNotify() andshowNotify() will be called to indicate when theCanvas has been obscured and
unobscured, respectively.

TheCanvas may have a title and aTicker like theScreen objects. However,Canvas also has a full-
screen mode where the title and theTicker are not displayed. Setting this mode indicates that the applica
wishes for theCanvas to occupy as much of the physical display as is possible. In this mode, the title ma
reused by the implementation as the title for pop-up menus. In normal (not full-screen) mode, the appeara
theCanvas should be similar to that ofScreen classes, so that visual continuity is retained when the
application switches between low-levelCanvas objects and high-levelScreen objects.

Graphics and Text in Low-Level API

The Redrawing Scheme
Repainting is done automatically for allScreens , but not forCanvas ; therefore, developers utilizing the
low-level API must ; understand its repainting scheme.

In the low-level API, repainting ofCanvas is done asynchronously so that several repaint requests may b
implemented within a single call as an optimization. This means that the application requests the repain
calling the methodrepaint() of classCanvas . The actual drawing is done in the methodpaint() —-
which is provided by the subclassCanvas —- and does not necessarily happen synchronously to
repaint() . It may happen later, and several repaint requests may cause one single call topaint() . The
application can flush the repaint requests by callingserviceRepaints() .

As an example, assume that an application moves a box of widthwid and heightht from coordinates (x1,y1
) to coordinates (x2,y2), wherex2>x1 andy2>y1 :

The last call causes the repaint thread to be scheduled. The repaint thread finds the two requests from
queue and repaints the region that is a union of the repaint area:

// move coordinates of box
box.x = x2;
box.y = y2;

// ensure old region repainted (with background)
canvas.repaint(x1,y1, wid, ht);

// make new region repainted
canvas.repaint(x2,y2, wid, ht);

// make everything really repainted
canvas.serviceRepaints();

graphics.clipRect(x1,y1, (x2-x1+wid), (y2-y1+ht));
canvas.paint(graphics);
123

javax.microedition.lcdui

uch as
rtial

 all
 the

ir

 of
play is

ces the
ormed

l.
s of

tination

the y-
rtical
of the
d

rst pixel
In this imaginary part of an implementation, the call canvas.paint() causes the application-defined
paint() method to be called.

Drawing Model
The primary drawing operation is pixel replacement, which is used for geometric rendering operations s
lines and rectangles. With offscreen images, support for full transparency is required, and support for pa
transparency (alpha blending) is optional.

A 24-bit color model is provided with 8 bits each for the red, green, and blue components of a color. Not
devices support 24-bit color, so they will map colors requested by the application into colors available on
device. Facilities are provided in the Display class for obtaining device characteristics, such as whether
color is available and how many distinct gray levels are available. This enables applications to adapt the
behavior to a device without compromising device independence.

Graphics may be rendered either directly to the display or to an off-screen image buffer. The destination
rendered graphics depends on the origin of the graphics object. A graphics object for rendering to the dis
passed to theCanvas object’spaint() method. This is the only way to obtain a graphics object whose
destination is the display. Furthermore, applications may draw by using this graphics object only for the
duration of thepaint() method.

A graphics object for rendering to an off-screen image buffer may be obtained by calling the
getGraphics() method on the desired image. These graphics objects may be held indefinitely by the
application, and requests may be issued on these graphics objects at any time.

TheGraphics class has a current color that is set with thesetColor() method. All geometric rendering,
including lines, rectangles, and arcs, uses the current color. The pixel representing the current color repla
destination pixel in these operations. There is no background color. Painting of any background be perf
explicitly by the application using thesetColor() and rendering calls.

Support for full transparency is required, and support for partial transparency (alpha blending) is optiona
Transparency (both full and partial) exists only in off-screen images loaded from PNG files or from array
ARGB data. Images created in such a fashion areimmutable in that the application is precluded from making
any changes to the pixel data contained within the image. Rendering is defined in such a way that the des
of any rendering operation always consists entirely of fully opaque pixels.

Coordinate System
The origin(0,0) of the available drawing area and images is in the upper-left corner of the display. The
numeric values of the x-coordinates monotonically increase from left to right, and the numeric values of
coordinates monotonically increase from top to bottom. Applications may assume that horizontal and ve
distances in the coordinate system represent equal distances on the actual device display. If the shape
pixels of the device is significantly different from square, the implementation of the UI will do the require
coordinate transformation. A facility is provided for translating the origin of the coordinate system. All
coordinates are specified as integers.

The coordinate system represents locations between pixels, not the pixels themselves. Therefore, the fi
in the upper left corner of the display lies in the square bounded by coordinates(0,0), (1,0), (0,1),
(1,1) .

An application may inquire about the available drawing area by calling the following methods ofCanvas :

public static final int getWidth();
public static final int getHeight();
124

javax.microedition.lcdui

tation

ted

a font

bjects
d with
. One

f

r of
d

am.

g

Font Support
An application may request one of the font attributes specified below. However, the underlying implemen
may use a subset of what is specified. So it is up to the implementation to return a font that most closely
resembles the requested font.

Each font in the system is implemented individually. A programmer will call the staticgetFont() method
instead of instantiating newFont objects. This paradigm eliminates the garbage creation normally associa
with the use of fonts.

TheFont class provides calls that access font metrics. The following attributes may be used to request
(from the Font class):

• Size:SMALL, MEDIUM, LARGE.

• Face:PROPORTIONAL, MONOSPACE, SYSTEM.

• Style:PLAIN , BOLD, ITALIC , UNDERLINED.

Concurrency
The UI API has been designed to be thread-safe. The methods may be called from callbacks,TimerTasks , or
other threads created by the application. Also, the implementation generally does not hold any locks on o
visible to the application. This means that the applications’ threads can synchronize with themselves an
the event callbacks by locking any object according to a synchronization policy defined by the application
exception to this rule occurs with theCanvas.serviceRepaints 153 method. This method calls and
awaits completion of thepaint method. Strictly speaking,serviceRepaints might not callpaint
directly, but instead it might cause another thread to callpaint . In either case,serviceRepaints blocks
until paint has returned. This is a significant point because of the following case. Suppose the caller o
serviceRepaints holds a lock that is also needed by thepaint method. Sincepaint might be called
from another thread, that thread will block trying to acquire the lock. However, this lock is held by the calle
serviceRepaints , which is blocked waiting forpaint to return. The result is deadlock. In order to avoi
deadlock, the caller ofserviceRepaints must not hold any locks needed by thepaint method.

The UI API includes also a mechanism similar to other UI toolkits for serializing actions with the event stre
The methodDisplay.callSerially 210 requests that therun method of aRunnable object be called,
serialized with the event stream. Code that usesserviceRepaints() can usually be rewritten to use
callSerially() . The following code illustrates this technique:

The following code is an alternative way of implementing the same functionality:

Implementation Notes
The implementation of aList or ChoiceGroup may include keyboard shortcuts for focusing and selectin
the choice elements, but the use of these shortcuts is not visible to the application program.

class MyCanvas extends Canvas {
void doStuff() {

// <code fragment 1>
serviceRepaints();
// <code fragment 2>

}
}

125

javax.microedition.lcdui

eded

m

 the

e

vel

n

tive
In some implementations the UI components —-Screens andItems —- will be based on native
components. It is up to the implementation to free the used resources when the Java objects are not ne
anymore. One possible implementation scenario is a hook in the garbage collector of KVM.

Since: MIDP 1.0

class MyClass extends Canvas
implements Runnable {
void doStuff() {

// <code fragment 1>
callSerially(this);

}
// called only after all pending repaints served
public void run() {

// <code fragment 2>;
}

}

Class Summary

Interfaces

Choice 155 Choice defines an API for a user interface components implementing selection fro
predefined number of choices.

CommandListener 183 This interface is used by applications which need to receive high-level events from
implementation.

ItemCommandListener 300 A listener type for receiving notification of commands that have been invoked on
Item 287 objects.

ItemStateListener 301 This interface is used by applications which need to receive events that indicate
changes in the internal state of the interactive items within aForm231 screen.

Classes

Alert 128 An alert is a screen that shows data to the user and waits for a certain period of tim
before proceeding to the nextDisplayable .

AlertType 136 TheAlertType provides an indication of the nature of alerts.

Canvas 139 TheCanvas class is a base class for writing applications that need to handle low-le
events and to issue graphics calls for drawing to the display.

ChoiceGroup 166 A ChoiceGroup is a group of selectable elements intended to be placed within a
Form231 .

Command175 TheCommand class is a construct that encapsulates the semantic information of a
action.

CustomItem 184 A CustomItem is customizable by subclassing to introduce new visual and interac
elements intoForms .

DateField 201 A DateField is an editable component for presenting date and time (calendar)
information that may be placed into aForm.

Display 205 Display represents the manager of the display and input devices of the system.
126

javax.microedition.lcdui

tom

y.
Displayable 218 An object that has the capability of being placed on the display.

Font 223 TheFont class represents fonts and font metrics.

Form231 A Form is aScreen that contains an arbitrary mixture of items: images, read-only
text fields, editable text fields, editable date fields, gauges, choice groups, and cus
items.

Gauge240 Implements a graphical display, such as a bar graph, of an integer value.

Graphics 247 Provides simple 2D geometric rendering capability.

Image 270 TheImage class is used to hold graphical image data.

ImageItem 281 An item that can contain an image.

Item 287 A superclass for components that can be added to aForm231 .

List 303 A Screen containing list of choices.

Screen 315 The common superclass of all high-level user interface classes.

Spacer 316 A blank, non-interactive item that has a settable minimum size.

StringItem 319 An item that can contain a string.

TextBox 323 TheTextBox class is aScreen that allows the user to enter and edit text.

TextField 330 A TextField is an editable text component that may be placed into aForm231 .

Ticker 345 Implements a “ticker-tape”, a piece of text that runs continuously across the displa

Class Summary
127

Alert javax.microedition.lcdui

 to the

ss”

,

lt,
javax.microedition.lcdui

Alert
Declaration
public class Alert extends Screen 315

Object
|
+-- javax.microedition.lcdui.Displayable 218

|
+-- javax.microedition.lcdui.Screen 315

|
+-- javax.microedition.lcdui.Alert

Description
An alert is a screen that shows data to the user and waits for a certain period of time before proceeding
nextDisplayable . An alert can contain a text string and an image. The intended use ofAlert is to inform
the user about errors and other exceptional conditions.

The application can set the alert time to be infinity with setTimeout(Alert.FOREVER) in which case
theAlert is considered to bemodaland the implementation provide a feature that allows the user to “dismi
the alert, whereupon the nextDisplayable is displayed as if the timeout had expired immediately.

If an application specifies an alert to be of a timed varietyandgives it too much content such that it must scroll
then it automatically becomes a modal alert.

An alert may have anAlertType associated with it to provide an indication of the nature of the alert. The
implementation may use this type to play an appropriate sound when theAlert is presented to the user. See
AlertType.playSound() 138 .

An alert may contain an optionalImage . TheImage may be mutable or immutable. If theImage is mutable,
the effect is as if a snapshot of its contents is taken at the time theAlert is constructed with thisImage and
whensetImage is called with anImage . This snapshot is used whenever the contents of theAlert are to be
displayed. Even if the application subsequently draws into theImage , the snapshot is not modified until the
next call tosetImage . The snapshot isnot updated when theAlert becomes current or becomes visible on
the display. (This is because the application does not have control over exactly whenDisplayables appear
and disappear from the display.)

Activity Indicators
An alert may contain an optionalGauge240 object that is used as an activity or progress indicator. By defau
anAlert has no activity indicator; one may be set with thesetIndicator(Gauge) 134 method. The
Gauge object used for the activity indicator must conform to all of the following restrictions:

• it must be non-interactive;

• it must not be owned by another container (Alert or Form);

• it must not have anyCommands;

• it must not have anItemCommandListener ;

• it must not have a label (that is, its label must benull ;

• its preferred width and height must both be unlocked; and

• its layout value must beLAYOUT_DEFAULT.
128

javax.microedition.lcdui Alert

the
s if the
It is an error for the application to attempt to use aGauge object that violates any of these restrictions. In
addition, when theGauge object is being used as the indicator within anAlert , the application is prevented
from modifying any of these pieces of theGauge's state.

Commands and Listeners
Like the otherDisplayable classes, anAlert can acceptCommands, which can be delivered to a
CommandListener set by the application. TheAlert class adds some special behavior forCommandsand
listeners.

When it is created, anAlert implicitly has the specialCommandDISMISS_COMMAND130 present on it. If
the application adds any otherCommands to theAlert , DISMISS_COMMAND is implicitly removed. If the
application removes all otherCommands, DISMISS_COMMAND is implicitly restored. Attempts to add or
removeDISMISS_COMMANDexplicitly are ignored. Thus, there is always at least oneCommandpresent on an
Alert .

If there are two or moreCommandspresent on theAlert , it is automatically turned into a modalAlert , and
the timeout value is alwaysFOREVER131 . TheAlert remains on the display until aCommand is invoked. If
the Alert has one Command (whether it is DISMISS_COMMAND or it is one provided by the application),
Alert may have the timed behavior as described above. When a timeout occurs, the effect is the same a
user had invoked theCommand explicitly.

When it is created, anAlert implicitly has aCommandListener called thedefault listenerassociated with
it. This listener may be replaced by an application-provided listener through use of the
setCommandListener(CommandListener) 134 method. If the application removes its listener by
passingnull to thesetCommandListener method, the default listener is implicitly restored.

TheDisplay.setCurrent(Alert, Displayable) 214 method and the
Display.setCurrent(Displayable) 214 method (when called with anAlert) define special
behavior for automatically advancing to anotherDisplayable after theAlert is dismissed. This special
behavior occurs only when the default listener is present on theAlert at the time it is dismissed or when a
command is invoked. If the user invokes aCommand and the default listener is present, the default listener
ignores theCommand and implements the automatic-advance behavior.

If the application has set its ownCommandListener , the automatic-advance behavior is disabled. The
listener code is responsible for advancing to anotherDisplayable . When the application has provided a
listener,Commands are invoked normally by passing them to the listener’scommandAction method. The
Commandpassed will be one of theCommandspresent on theAlert : eitherDISMISS_COMMANDor one of
the application-providedCommands.

The application can restore the default listener by passingnull to thesetCommandListener method.

Note: An application may set aTicker 345 with Displayable.setTicker 221 on anAlert , however
it may not be displayed due to implementation restrictions.

Since: MIDP 1.0

See Also: AlertType 136

Member Summary

Fields
static Command DISMISS_COMMAND130

static int FOREVER131
129

Alert javax.microedition.lcdui

DISMISS_COMMAND
Fields

DISMISS_COMMAND

Declaration:
public static final javax.microedition.lcdui.Command 175 DISMISS_COMMAND

Description:
A Command delivered to a listener to indicate that theAlert has been dismissed. This Command is
implicitly present an onAlert whenever there are no other Commands present. The field values of
DISMISS_COMMAND are as follows:

• label = “” (an empty string)

• type = Command.OK

• priority = 0

Constructors
Alert(String title) 131

Alert(String title, String alertText, Image alertImage,
AlertType alertType) 131

Methods
 void addCommand(Command cmd)132

 int getDefaultTimeout() 132

 Image getImage() 132

 Gauge getIndicator() 132

 java.lang.String getString() 133

 int getTimeout() 133

 AlertType getType() 133

 void removeCommand(Command cmd) 133

 void setCommandListener(CommandListener l) 134

 void setImage(Image img) 134

 void setIndicator(Gauge indicator) 134

 void setString(String str) 135

 void setTimeout(int time) 135

 void setType(AlertType type) 135

Inherited Member Summary

Methods inherited from classDisplayable 218

getHeight() 219, getTicker() 219, getTitle() 220, getWidth() 220, isShown() 220,
setTicker(Ticker) 221, setTitle(String) 221, sizeChanged(int, int) 222

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
130

javax.microedition.lcdui Alert

FOREVER

ay

e

on,

t of
t is

n

The label value visible to the application must be as specified above. However, the implementation m
displayDISMISS_COMMAND to the user using an implementation-specific label.

Attempting to add or removeDISMISS_COMMAND from anAlert has no effect. However,
DISMISS_COMMAND is treated as an ordinaryCommand if it is used with otherDisplayable types.

Since: MIDP 2.0

FOREVER

Declaration:
public static final int FOREVER

Description:
FOREVER indicates that anAlert is kept visible until the user dismisses it. It is used as a value for th
parameter tosetTimeout() 135 to indicate that the alert is modal. Instead of waiting for a specified
period of time, a modalAlert will wait for the user to take some explicit action, such as pressing a butt
before proceeding to the nextDisplayable .

Value-2 is assigned toFOREVER.

Constructors

Alert(String)

Declaration:
public Alert (String title)

Description:
Constructs a new, emptyAlert object with the given title. Ifnull is passed, theAlert will have no title.
Calling this constructor is equivalent to calling

Alert(title, null, null, null)

Parameters:
title - the title string, ornull

See Also:Alert(String, String, Image, AlertType) 131

Alert(String, String, Image, AlertType)

Declaration:
public Alert (String title, String alertText,

javax.microedition.lcdui.Image 270 alertImage,

javax.microedition.lcdui.AlertType 136 alertType)

Description:
Constructs a newAlert object with the given title, content string and image, and alert type. The layou
the contents is implementation dependent. The timeout value of this new alert is the same value tha
returned bygetDefaultTimeout() . TheImage provided may either be mutable or immutable. The
handling and behavior of specificAlertTypes is described inAlertType 136 . null is allowed as the
value of thealertType parameter and indicates that theAlert is not to have a specific alert type.
DISMISS_COMMAND is the onlyCommand present on the newAlert . TheCommandListener
associated with the newAlert is thedefault listener. Its behavior is described in more detail in the sectio
Commands and Listeners.
131

Alert javax.microedition.lcdui

addCommand(Command)
Parameters:
title - the title string, ornull if there is no title

alertText - the string contents, ornull if there is no string

alertImage - the image contents, ornull if there is no image

alertType - the type of theAlert , ornull if theAlert has no specific type

Methods

addCommand(Command)

Declaration:
public void addCommand(javax.microedition.lcdui.Command 175 cmd)

Description:
Similar toDisplayable.addCommand(Command) 219 , however when the application first adds a
command to anAlert , DISMISS_COMMAND130 is implicitly removed. Calling this method with
DISMISS_COMMAND as the parameter has no effect.

Overrides: addCommand219 in classDisplayable 218

Parameters:
cmd - the command to be added

Throws:
NullPointerException - if cmd isnull

getDefaultTimeout()

Declaration:
public int getDefaultTimeout ()

Description:
Gets the default time for showing anAlert . This is either a positive value, which indicates a time in
milliseconds, or the special valueFOREVER131 , which indicates thatAlerts are modal by default. The
value returned will vary across implementations and is presumably tailored to be suitable for each.

Returns: default timeout in milliseconds, orFOREVER

getImage()

Declaration:
public javax.microedition.lcdui.Image 270 getImage ()

Description:
Gets theImage used in theAlert .

Returns: theAlert's image, ornull if there is no image

See Also:setImage(Image) 134

getIndicator()

Declaration:
public javax.microedition.lcdui.Gauge 240 getIndicator ()
132

javax.microedition.lcdui Alert

getString()

gh
Description:
Gets the activity indicator for thisAlert .

Returns: a reference to thisAlert's activity indicator, ornull if there is none

Since: MIDP 2.0

See Also:setIndicator(Gauge) 134

getString()

Declaration:
public String getString ()

Description:
Gets the text string used in theAlert .

Returns: theAlert's text string, ornull if there is no text

See Also:setString(String) 135

getTimeout()

Declaration:
public int getTimeout ()

Description:
Gets the time thisAlert will be shown. This is either a positive value, which indicates a time in
milliseconds, or the special valueFOREVER, which indicates that thisAlert is modal. This value is not
necessarily the same value that might have been set by the application in a call to
setTimeout(int) 135 . In particular, if theAlert is made modal because its contents is large enou
to scroll, the value returned bygetTimeout will be FOREVER.

Returns: timeout in milliseconds, orFOREVER

See Also:setTimeout(int) 135

getType()

Declaration:
public javax.microedition.lcdui.AlertType 136 getType ()

Description:
Gets the type of theAlert .

Returns: a reference to an instance ofAlertType , ornull if theAlert has no specific type

See Also:setType(AlertType) 135

removeCommand(Command)

Declaration:
public void removeCommand(javax.microedition.lcdui.Command 175 cmd)

Description:
Similar toDisplayable.removeCommand(Command) 220 , however when the application removes
the last command from anAlert , DISMISS_COMMAND130 is implicitly added. Calling this method with
DISMISS_COMMAND as the parameter has no effect.

Overrides: removeCommand220 in classDisplayable 218
133

Alert javax.microedition.lcdui

setCommandListener(CommandListener)

so.
Parameters:
cmd - the command to be removed

setCommandListener(CommandListener)

Declaration:
public void setCommandListener (javax.microedition.lcdui.CommandListener 183 l)

Description:
The same asDisplayable.setCommandListener(CommandListener) 221 but with the
following additional semantics. If the listener parameter isnull , thedefault listener is restored. See
Commands and Listeners for the definition of the behavior of the default listener.

Overrides: setCommandListener 221 in classDisplayable 218

Parameters:
l - the new listener, ornull

setImage(Image)

Declaration:
public void setImage (javax.microedition.lcdui.Image 270 img)

Description:
Sets theImage used in theAlert . TheImage may be mutable or immutable. Ifimg is null , specifies
that thisAlert has no image. Ifimg is mutable, the effect is as if a snapshot is taken ofimg's contents
immediately prior to the call tosetImage . This snapshot is used whenever the contents of theAlert are
to be displayed. Ifimg is already theImage of thisAlert , the effect is as if a new snapshot of img’s
contents is taken. Thus, after painting into a mutable image contained by anAlert , the application can call

to refresh theAlert's snapshot of itsImage .

If the Alert is visible on the display when its contents are updated through a call tosetImage , the
display will be updated with the new snapshot as soon as it is feasible for the implementation to do

Parameters:
img - theAlert's image, ornull if there is no image

See Also:getImage() 132

setIndicator(Gauge)

Declaration:
public void setIndicator (javax.microedition.lcdui.Gauge 240 indicator)

Description:
Sets an activity indicator on thisAlert . The activity indicator is aGauge240 object. It must be in a
restricted state in order for it to be used as the activity indicator for anAlert . The restrictions are listed
above. If theGauge object violates any of these restrictions,IllegalArgumentException is
thrown.

If indicator is null , this removes any activity indicator present on thisAlert .

alert.setImage(alert.getImage());
134

javax.microedition.lcdui Alert

setString(String)

o.

s,
Parameters:
indicator - the activity indicator for thisAlert , ornull if there is to be none

Throws:
IllegalArgumentException - if indicator does not meet the restrictions for its use in an
Alert

Since: MIDP 2.0

See Also:getIndicator() 132

setString(String)

Declaration:
public void setString (String str)

Description:
Sets the text string used in theAlert .

If the Alert is visible on the display when its contents are updated through a call tosetString , the
display will be updated with the new contents as soon as it is feasible for the implementation to do s

Parameters:
str - theAlert's text string, ornull if there is no text

See Also:getString() 133

setTimeout(int)

Declaration:
public void setTimeout (int time)

Description:
Set the time for which theAlert is to be shown. This must either be a positive time value in millisecond
or the special valueFOREVER.

Parameters:
time - timeout in milliseconds, orFOREVER

Throws:
IllegalArgumentException - if time is not positive and is notFOREVER

See Also:getTimeout() 133

setType(AlertType)

Declaration:
public void setType (javax.microedition.lcdui.AlertType 136 type)

Description:
Sets the type of theAlert . The handling and behavior of specificAlertTypes is described in
AlertType 136 .

Parameters:
type - anAlertType , ornull if theAlert has no specific type

See Also:getType() 133
135

AlertType javax.microedition.lcdui

setType(AlertType)

t

und
javax.microedition.lcdui

AlertType
Declaration
public class AlertType

Object
|
+-- javax.microedition.lcdui.AlertType

Description
TheAlertType provides an indication of the nature of alerts.Alerts are used by an application to presen
various kinds of information to the user. AnAlertType may be used to directly signal the user without
changing the currentDisplayable . TheplaySound method can be used to spontaneously generate a so
to alert the user. For example, a game using aCanvas can useplaySound to indicate success or progress.
The predefined types areINFO, WARNING, ERROR, ALARM, andCONFIRMATION.

Since: MIDP 1.0

See Also: Alert 128

Member Summary

Fields
static AlertType ALARM137

static AlertType CONFIRMATION137

static AlertType ERROR137

static AlertType INFO137

static AlertType WARNING137

Constructors
protected AlertType() 137

Methods
 boolean playSound(Display display) 138

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
136

javax.microedition.lcdui AlertType

ALARM

d to

n

lert

ple

the
Fields

ALARM

Declaration:
public static final javax.microedition.lcdui.AlertType 136 ALARM

Description:
An ALARM AlertType is a hint to alert the user to an event for which the user has previously requeste
be notified. For example, the message might say, “Staff meeting in five minutes.”

CONFIRMATION

Declaration:
public static final javax.microedition.lcdui.AlertType 136 CONFIRMATION

Description:
A CONFIRMATION AlertType is a hint to confirm user actions. For example, “Saved!” might be show
to indicate that a Save operation has completed.

ERROR

Declaration:
public static final javax.microedition.lcdui.AlertType 136 ERROR

Description:
An ERROR AlertType is a hint to alert the user to an erroneous operation. For example, an error a
might show the message, “There is not enough room to install the application.”

INFO

Declaration:
public static final javax.microedition.lcdui.AlertType 136 INFO

Description:
An INFO AlertType typically provides non-threatening information to the user. For example, a sim
splash screen might be anINFO AlertType .

WARNING

Declaration:
public static final javax.microedition.lcdui.AlertType 136 WARNING

Description:
A WARNING AlertType is a hint to warn the user of a potentially dangerous operation. For example,
warning message may contain the message, “Warning: this operation will erase your data.”

Constructors

AlertType()

Declaration:
protected AlertType ()
137

AlertType javax.microedition.lcdui

playSound(Display)

ignored.
e

Description:
Protected constructor for subclasses.

Methods

playSound(Display)

Declaration:
public boolean playSound (javax.microedition.lcdui.Display 205 display)

Description:
Alert the user by playing the sound for thisAlertType . TheAlertType instance is used as a hint by
the device to generate an appropriate sound. Instances other than those predefined above may be
The actual sound made by the device, if any, is determined by the device. The device may ignore th
request, use the same sound for severalAlertTypes or use any other means suitable to alert the user.

Parameters:
display - to which theAlertType's sound should be played.

Returns: true if the user was alerted,false otherwise.

Throws:
NullPointerException - if display is null
138

javax.microedition.lcdui Canvas

playSound(Display)

ue

st

ts (if
eys to

of key

thods

r

native
y had

unique
g key

t on the
bility,
javax.microedition.lcdui

Canvas
Declaration
public abstract class Canvas extends Displayable 218

Object
|
+-- javax.microedition.lcdui.Displayable 218

|
+-- javax.microedition.lcdui.Canvas

Direct Known Subclasses:javax.microedition.lcdui.game.GameCanvas 349

Description
TheCanvas class is a base class for writing applications that need to handle low-level events and to iss
graphics calls for drawing to the display. Game applications will likely make heavy use of theCanvas class.
From an application development perspective, theCanvas class is interchangeable with standardScreen
classes, so an application may mix and matchCanvas with high-level screens as needed. For example, a Li
screen may be used to select the track for a racing game, and aCanvas subclass would implement the actual
game.

TheCanvas provides the developer with methods to handle game actions, key events, and pointer even
supported by the device). Methods are also provided to identify the device’s capabilities and mapping of k
game actions. The key events are reported with respect tokey codes, which are directly bound to concrete keys
on the device, use of which may hinder portability. Portable applications should use game actions instead
codes.

Like other subclasses ofDisplayable , theCanvas class allows the application to register a listener for
commands. Unlike otherDisplayables , however, theCanvas class requires applications to subclass it in
order to use it. Thepaint() method is declaredabstract , and so the applicationmust provide an
implementation in its subclass. Other event-reporting methods are not declaredabstract, and their default
implementations are empty (that is, they do nothing). This allows the application to override only the me
that report events in which the application has interest.

This is in contrast to theScreen 315 classes, which allow the application to define listeners and to registe
them with instances of theScreen classes. This style is not used for theCanvas class, because several new
listener interfaces would need to be created, one for each kind of event that might be delivered. An alter
would be to have fewer listener interfaces, but this would require listeners to filter out events in which the
no interest.

Key Events
Applications receive keystroke events in which the individual keys are named within a space ofkey codes. Every
key for which events are reported to MIDP applications is assigned a key code. The key code values are
for each hardware key unless two keys are obvious synonyms for each other. MIDP defines the followin
codes:KEY_NUM0144 , KEY_NUM1145 , KEY_NUM2145 , KEY_NUM3145 , KEY_NUM4145 , KEY_NUM5145 ,
KEY_NUM6145 , KEY_NUM7146 , KEY_NUM8146 , KEY_NUM9146 , KEY_STAR146 , andKEY_POUND146 .
(These key codes correspond to keys on a ITU-T standard telephone keypad.) Other keys may be presen
keyboard, and they will generally have key codes distinct from those list above. In order to guarantee porta
applications should use only the standard key codes.
139

Canvas javax.microedition.lcdui

playSound(Display)

y. If the
ode

ode
hus

than one

e

d with

the

tion of

ame

is
 a
The standard key codes’ values are equal to the Unicode encoding for the character that represents the ke
device includes any other keys that have an obvious correspondence to a Unicode character, their key c
values should equal the Unicode encoding for that character. For keys that have no corresponding Unic
character, the implementation must use negative values. Zero is defined to be an invalid key code. It is t
possible for an application to convert a keyCode into a Unicode character using the following code:

This technique is useful only in certain limited cases. In particular, it is not sufficient for full textual input,
because it does not handle upper and lower case, keyboard shift states, and characters that require more
keystroke to enter. For textual input, applications should always useTextBox 323 or TextField 330
objects.

It is sometimes useful to find thename of a key in order to display a message about this key. In this case th
application may use thegetKeyName() 148 method to find a key’s name.

Game Actions
Portable applications that need arrow key events and gaming-related events should usegame actions in
preference to key codes and key names. MIDP defines the following game actions:UP147 , DOWN143 ,
LEFT146 , RIGHT147 , FIRE144 , GAME_A144 , GAME_B144 , GAME_C144 , andGAME_D144 .

Each key code may be mapped to at most one game action. However, a game action may be associate
more than one key code. The application can translate a key code into a game action using the
getGameAction(int keyCode) 147 method, and it can translate a game action into a key code using
getKeyCode(int gameAction) 148 method. There may be multiple keycodes associated with a
particular game action, butgetKeyCode returns only one of them. Supposing thatg is a valid game action and
k is a valid key code for a key associated with a game action, consider the following expressions:

Expression (1) isalways true. However, expression (2) might be true but isnot necessarily true.

The implementation is not allowed to change the mapping of game actions and key codes during execu
the application.

Portable applications that are interested in using game actions should translate every key event into a g
action by calling thegetGameAction() 147 method and then testing the result. For example, on some
devices the game actionsUP, DOWN, LEFT andRIGHTmay be mapped to 4-way navigation arrow keys. In th
case, getKeyCode(UP) would return a device-dependent code for the up-arrow key. On other devices,
possible mapping would be on the number keys2, 4, 6 and8. In this case,getKeyCode(UP) would return
KEY_NUM2. In both cases, thegetGameAction() method would return theLEFT game action when the
user presses the key that is a “natural left” on her device.

if (keyCode > 0) {
char ch = (char)keyCode;
// ...

}

g == getGameAction(getKeyCode(g)) // (1)
k == getKeyCode(getGameAction(k)) // (2)
140

javax.microedition.lcdui Canvas

playSound(Display)

th the

s will

esent or
r
elivery

ces, and
ich the

d

s

ith
age
Commands
It is also possible for the user to issuecommands175 when a canvas is current.Commandsare mapped to keys
and menus in a device-specific fashion. For some devices the keys used for commands may overlap wi
keys that will deliver key code events to the canvas. If this is the case, the device will provide a means
transparent to the application that enables the user to select a mode that determines whether these key
deliver commands or key code events to the application. When theCanvas is in normal mode (see below), the
set of key code events available to a canvas will not change depending upon the number of commands pr
the presence of a command listener. When theCanvas is in full-screen mode, if there is no command listene
present, the device may choose to deliver key code events for keys that would otherwise be reserved for d
of commands. Game developers should be aware that access to commands will vary greatly across devi
that requiring the user to issue commands during game play may have a great impact on the ease with wh
game can be played.

Event Delivery
TheCanvas object defines several methods that are called by the implementation. These methods are
primarily for the purpose of delivering events to the application, and so they are referred to asevent delivery
methods. The set of methods is:

• showNotify()

• hideNotify()

• keyPressed()

• keyRepeated()

• keyReleased()

• pointerPressed()

• pointerDragged()

• pointerReleased()

• paint()

These methods are all called serially. That is, the implementation will never call an event delivery metho
before a prior call toanyof the event delivery methods has returned. TheserviceRepaints() method is an
exception to this rule, as it blocks untilpaint() is called and returns. This will occur even if the application i
in the midst of one of the event delivery methods when it callsserviceRepaints() .

TheDisplay.callSerially() 210 method can be used to serialize some application-defined work w
the event stream. For further information, see the Event Handling and Concurrency sections of the pack
summary.

The key-related, pointer-related, andpaint() methods will only be called while theCanvas is actually
visible on the output device. These methods will therefore only be called on thisCanvas object only after a
call toshowNotify() and before a call tohideNotify() . After hideNotify() has been called, none
of the key, pointer, andpaint methods will be called until after a subsequent call toshowNotify() has
returned. A call to arun() method resulting fromcallSerially() may occur irrespective of calls to
showNotify() andhideNotify() .

TheshowNotify() 154 method is called prior to theCanvas actually being made visible on the display,
and thehideNotify() 149 method is called after theCanvas has been removed from the display. The
visibility state of aCanvas (or any otherDisplayable object) may be queried through the use of the
Displayable.isShown() 220 method. The change in visibility state of aCanvas may be caused by the
application management software movingMIDlets between foreground and background states, or by the
system obscuring theCanvas with system screens. Thus, the calls toshowNotify() andhideNotify()
141

Canvas javax.microedition.lcdui

playSound(Display)

itle

me a

for the

rough

isible
are not under the control of theMIDlet and may occur fairly frequently. Application developers are
encouraged to perform expensive setup and teardown tasks outside theshowNotify() andhideNotify()
methods in order to make them as lightweight as possible.

A Canvas can be in normal mode or in full-screen mode. In normal mode, space on the display may be
occupied by command labels, a title, and a ticker. By setting aCanvas into full-screen mode, the application is
requesting that theCanvas occupy as much of the display space as is possible. In full-screen mode, the t
and ticker are not displayed even if they are present on theCanvas , andCommands may be presented using
some alternative means (such as through a pop-up menu). Note that the implementation may still consu
portion of the display for things like status indicators, even if the displayedCanvas is in full-screen mode. In
full-screen mode, although the title is not displayed, its text may still be used for other purposes, such as
title of a pop-up menu ofCommands.

Canvas objects are in normal mode by default. The normal vs. full-screen mode setting is controlled th
the use of thesetFullScreenMode(boolean) 153 method.

CallingsetFullScreenMode(boolean) 153 may result insizeChanged() 154 being called. The
default implementation of this method does nothing. The application can override this method to handle
changes in size of available drawing area.

Note: As mentioned in the “Specification Requirements” section of the overview, implementations must
provide the user with an indication of network usage. If the indicator is rendered on screen, it must be v
when network activity occurs, even when theCanvas is in full-screen mode.

Since: MIDP 1.0

Member Summary

Fields
static int DOWN143

static int FIRE144

static int GAME_A144

static int GAME_B144

static int GAME_C144

static int GAME_D144

static int KEY_NUM0144

static int KEY_NUM1145

static int KEY_NUM2145

static int KEY_NUM3145

static int KEY_NUM4145

static int KEY_NUM5145

static int KEY_NUM6145

static int KEY_NUM7146

static int KEY_NUM8146

static int KEY_NUM9146

static int KEY_POUND146

static int KEY_STAR146

static int LEFT146

static int RIGHT147

static int UP147

Constructors
protected Canvas() 147
142

javax.microedition.lcdui Canvas

DOWN
Fields

DOWN

Declaration:
public static final int DOWN

Description:
Constant for theDOWN game action.

Methods
 int getGameAction(int keyCode) 147

 int getHeight() 148

 int getKeyCode(int gameAction) 148

 java.lang.String getKeyName(int keyCode) 148

 int getWidth() 149

 boolean hasPointerEvents() 149

 boolean hasPointerMotionEvents() 149

 boolean hasRepeatEvents() 149

protected void hideNotify() 149

 boolean isDoubleBuffered() 150

protected void keyPressed(int keyCode) 150

protected void keyReleased(int keyCode) 150

protected void keyRepeated(int keyCode) 150

protected abstract
void

paint(Graphics g) 151

protected void pointerDragged(int x, int y) 152

protected void pointerPressed(int x, int y) 152

protected void pointerReleased(int x, int y) 152

 void repaint() 152

 void repaint(int x, int y, int width, int height) 153

 void serviceRepaints() 153

 void setFullScreenMode(boolean mode) 153

protected void showNotify() 154

protected void sizeChanged(int w, int h) 154

Inherited Member Summary

Methods inherited from classDisplayable 218

addCommand(Command)219, getTicker() 219, getTitle() 220, isShown() 220,
removeCommand(Command)220, setCommandListener(CommandListener) 221,
setTicker(Ticker) 221, setTitle(String) 221

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
143

Canvas javax.microedition.lcdui

FIRE
Constant value6 is set toDOWN.

FIRE

Declaration:
public static final int FIRE

Description:
Constant for theFIRE game action.

Constant value8 is set toFIRE .

GAME_A

Declaration:
public static final int GAME_A

Description:
Constant for the general purpose “A” game action.

Constant value9 is set toGAME_A.

GAME_B

Declaration:
public static final int GAME_B

Description:
Constant for the general purpose “B” game action.

Constant value10 is set toGAME_B.

GAME_C

Declaration:
public static final int GAME_C

Description:
Constant for the general purpose “C” game action.

Constant value11 is set toGAME_C.

GAME_D

Declaration:
public static final int GAME_D

Description:
Constant for the general purpose “D” game action.

Constant value12 is set toGAME_D.

KEY_NUM0

Declaration:
public static final int KEY_NUM0

Description:
keyCode for ITU-T key0.
144

javax.microedition.lcdui Canvas

KEY_NUM1
Constant value48 is set toKEY_NUM0.

KEY_NUM1

Declaration:
public static final int KEY_NUM1

Description:
keyCode for ITU-T key1.

Constant value49 is set toKEY_NUM1.

KEY_NUM2

Declaration:
public static final int KEY_NUM2

Description:
keyCode for ITU-T key2.

Constant value50 is set toKEY_NUM2.

KEY_NUM3

Declaration:
public static final int KEY_NUM3

Description:
keyCode for ITU-T key3.

Constant value51 is set toKEY_NUM3.

KEY_NUM4

Declaration:
public static final int KEY_NUM4

Description:
keyCode for ITU-T key4.

Constant value52 is set toKEY_NUM4.

KEY_NUM5

Declaration:
public static final int KEY_NUM5

Description:
keyCode for ITU-T key5.

Constant value53 is set toKEY_NUM5.

KEY_NUM6

Declaration:
public static final int KEY_NUM6

Description:
keyCode for ITU-T key6.
145

Canvas javax.microedition.lcdui

KEY_NUM7
Constant value54 is set toKEY_NUM6.

KEY_NUM7

Declaration:
public static final int KEY_NUM7

Description:
keyCode for ITU-T key7.

Constant value55 is set toKEY_NUM7.

KEY_NUM8

Declaration:
public static final int KEY_NUM8

Description:
keyCode for ITU-T key8.

Constant value56 is set toKEY_NUM8.

KEY_NUM9

Declaration:
public static final int KEY_NUM9

Description:
keyCode for ITU-T key9.

Constant value57 is set toKEY_NUM09.

KEY_POUND

Declaration:
public static final int KEY_POUND

Description:
keyCode for ITU-T key “pound” (#).

Constant value35 is set toKEY_POUND.

KEY_STAR

Declaration:
public static final int KEY_STAR

Description:
keyCode for ITU-T key “star” (*).

Constant value42 is set toKEY_STAR.

LEFT

Declaration:
public static final int LEFT

Description:
Constant for theLEFT game action.
146

javax.microedition.lcdui Canvas

RIGHT

ion is

ication.
Constant value2 is set toLEFT.

RIGHT

Declaration:
public static final int RIGHT

Description:
Constant for theRIGHT game action.

Constant value5 is set toRIGHT.

UP

Declaration:
public static final int UP

Description:
Constant for theUP game action.

Constant value1 is set toUP.

Constructors

Canvas()

Declaration:
protected Canvas ()

Description:
Constructs a newCanvas object.

Methods

getGameAction(int)

Declaration:
public int getGameAction (int keyCode)

Description:
Gets the game action associated with the given key code of the device. Returns zero if no game act
associated with this key code. See above for further discussion of game actions.

The mapping between key codes and game actions will not change during the execution of the appl

Parameters:
keyCode - the key code

Returns: the game action corresponding to this key, or0 if none

Throws:
IllegalArgumentException - if keyCode is not a valid key code
147

Canvas javax.microedition.lcdui

getHeight()

equired
very
ed with
te the

ation.

ication.

n the

on
getHeight()

Declaration:
public int getHeight ()

Description:
Gets the height in pixels of the displayable area of theCanvas . The value returned may change during
execution. If it does, the application will be notified through a call to thesizeChanged(int,
int) 154 method.

Overrides: getHeight 219 in classDisplayable 218

Returns: height of the displayable area

getKeyCode(int)

Declaration:
public int getKeyCode (int gameAction)

Description:
Gets a key code that corresponds to the specified game action on the device. The implementation is r
to provide a mapping for every game action, so this method will always return a valid key code for e
game action. See above for further discussion of game actions. There may be multiple keys associat
the same game action; however, this method will return only one of them. Applications should transla
key code of every key event into a game action usinggetGameAction(int) 147 and then interpret the
resulting game action, instead of generating a table of key codes at using this method during initializ

The mapping between key codes and game actions will not change during the execution of the appl

Parameters:
gameAction - the game action

Returns: a key code corresponding to this game action

Throws:
IllegalArgumentException - if gameAction is not a valid game action

getKeyName(int)

Declaration:
public String getKeyName (int keyCode)

Description:
Gets an informative key string for a key. The string returned will resemble the text physically printed o
key. This string is suitable for displaying to the user. For example, on a device with function keysF1
throughF4, calling this method on thekeyCode for theF1 key will return the string “F1”. A typical use
for this string will be to compose help text such as “PressF1 to proceed.”

This method will return a non-empty string for every valid key code.

There is no direct mapping from game actions to key names. To get the string name for a game acti
GAME_A, the application must call

getKeyName(getKeyCode(GAME_A));
148

javax.microedition.lcdui Canvas

getWidth()

ethod
Parameters:
keyCode - the key code being requested

Returns: a string name for the key

Throws:
IllegalArgumentException - if keyCode is not a valid key code

getWidth()

Declaration:
public int getWidth ()

Description:
Gets the width in pixels of the displayable area of theCanvas . The value returned may change during
execution. If it does, the application will be notified through a call to thesizeChanged(int,
int) 154 method.

Overrides: getWidth 220 in classDisplayable 218

Returns: width of the displayable area

hasPointerEvents()

Declaration:
public boolean hasPointerEvents ()

Description:
Checks if the platform supports pointer press and release events.

Returns: true if the device supports pointer events

hasPointerMotionEvents()

Declaration:
public boolean hasPointerMotionEvents ()

Description:
Checks if the platform supports pointer motion events (pointer dragged). Applications may use this m
to determine if the platform is capable of supporting motion events.

Returns: true if the device supports pointer motion events

hasRepeatEvents()

Declaration:
public boolean hasRepeatEvents ()

Description:
Checks if the platform can generate repeat events when key is kept down.

Returns: true if the device supports repeat events

hideNotify()

Declaration:
protected void hideNotify ()
149

Canvas javax.microedition.lcdui

isDoubleBuffered()

.
efault

the
if it

the
if it

the
if it
Description:
The implementation callshideNotify() shortly after theCanvas has been removed from the display
Canvas subclasses may override this method in order to pause animations, revoke timers, etc. The d
implementation of this method in classCanvas is empty.

isDoubleBuffered()

Declaration:
public boolean isDoubleBuffered ()

Description:
Checks if theCanvas is double buffered by the implementation.

Returns: true if double buffered,false otherwise

keyPressed(int)

Declaration:
protected void keyPressed (int keyCode)

Description:
Called when a key is pressed.

ThegetGameAction() method can be called to determine what game action, if any, is mapped to
key. ClassCanvas has an empty implementation of this method, and the subclass has to redefine it
wants to listen this method.

Parameters:
keyCode - the key code of the key that was pressed

keyReleased(int)

Declaration:
protected void keyReleased (int keyCode)

Description:
Called when a key is released.

ThegetGameAction() method can be called to determine what game action, if any, is mapped to
key. ClassCanvas has an empty implementation of this method, and the subclass has to redefine it
wants to listen this method.

Parameters:
keyCode - the key code of the key that was released

keyRepeated(int)

Declaration:
protected void keyRepeated (int keyCode)

Description:
Called when a key is repeated (held down).

ThegetGameAction() method can be called to determine what game action, if any, is mapped to
key. ClassCanvas has an empty implementation of this method, and the subclass has to redefine it
wants to listen this method.

Parameters:
keyCode - the key code of the key that was repeated
150

javax.microedition.lcdui Canvas

paint(Graphics)

e

r

 be
ming

the

ethod.

tly

y;
See Also:hasRepeatEvents() 149

paint(Graphics)

Declaration:
protected abstract void paint (javax.microedition.lcdui.Graphics 247 g)

Description:
Renders theCanvas . The application must implement this method in order to paint any graphics.

TheGraphics object’s clip region defines the area of the screen that is considered to be invalid. A
correctly-writtenpaint() routine must painteverypixel within this region. This is necessary because th
implementation is not required to clear the region prior to callingpaint() on it. Thus, failing to paint
every pixel may result in a portion of the previous screen image remaining visible.

Applicationsmust not assume that they know the underlying source of thepaint() call and use this
assumption to paint only a subset of the pixels within the clip region. The reason is that this particula
paint() call may have resulted from multiplerepaint() requests, some of which may have been
generated from outside the application. An application that paints only what it thinks is necessary to
painted may display incorrectly if the screen contents had been invalidated by, for example, an inco
telephone call.

Operations on this graphics object after thepaint() call returns are undefined. Thus, the application
must notcache thisGraphics object for later use or use by another thread. It must only be used within
scope of this method.

The implementation may postpone visible effects of graphics operations until the end of the paint m

The contents of theCanvas are never saved if it is hidden and then is made visible again. Thus, shor
aftershowNotify() is called,paint() will always be called with aGraphics object whose clip
region specifies the entire displayable area of theCanvas . Applicationsmust not rely on any contents
being preserved from a previous occasion when theCanvas was current. This call topaint() will not
necessarily occur before any other key or pointer methods are called on theCanvas . Applications whose
repaint recomputation is expensive may create an offscreenImage , paint into it, and then draw this image
on theCanvas whenpaint() is called.

The application code must never callpaint() ; it is called only by the implementation.

TheGraphics object passed to thepaint() method has the following properties:

• the destination is the actual display, or if double buffering is in effect, a back buffer for the displa

• the clip region includes at least one pixel within thisCanvas ;

• the current color is black;

• the font is the same as the font returned byFont.getDefaultFont() 227 ;

• the stroke style isSOLID254 ;

• the origin of the coordinate system is located at the upper-left corner of theCanvas ; and

• theCanvas is visible, that is, a call toisShown() will return true .

Parameters:
g - theGraphics object to be used for rendering theCanvas
151

Canvas javax.microedition.lcdui

pointerDragged(int, int)

it if it

it if it
pointerDragged(int, int)

Declaration:
protected void pointerDragged (int x, int y)

Description:
Called when the pointer is dragged.

ThehasPointerMotionEvents() 149 method may be called to determine if the device supports
pointer events. ClassCanvas has an empty implementation of this method, and the subclass has to
redefine it if it wants to listen this method.

Parameters:
x - the horizontal location where the pointer was dragged (relative to theCanvas)

y - the vertical location where the pointer was dragged (relative to theCanvas)

pointerPressed(int, int)

Declaration:
protected void pointerPressed (int x, int y)

Description:
Called when the pointer is pressed.

ThehasPointerEvents() 149 method may be called to determine if the device supports pointer
events. ClassCanvas has an empty implementation of this method, and the subclass has to redefine
wants to listen this method.

Parameters:
x - the horizontal location where the pointer was pressed (relative to theCanvas)

y - the vertical location where the pointer was pressed (relative to theCanvas)

pointerReleased(int, int)

Declaration:
protected void pointerReleased (int x, int y)

Description:
Called when the pointer is released.

ThehasPointerEvents() 149 method may be called to determine if the device supports pointer
events. ClassCanvas has an empty implementation of this method, and the subclass has to redefine
wants to listen this method.

Parameters:
x - the horizontal location where the pointer was released (relative to theCanvas)

y - the vertical location where the pointer was released (relative to theCanvas)

repaint()

Declaration:
public final void repaint ()

Description:
Requests a repaint for the entireCanvas . The effect is identical to

repaint(0, 0, getWidth(), getHeight());
152

javax.microedition.lcdui Canvas

repaint(int, int, int, int)

 a

ng
isplay,
repaint(int, int, int, int)

Declaration:
public final void repaint (int x, int y, int width, int height)

Description:
Requests a repaint for the specified region of theCanvas . Calling this method may result in subsequent
call to paint() , where the passedGraphics object’s clip region will include at least the specified
region.

If the canvas is not visible, or if width and height are zero or less, or if the rectangle does not specify
visible region of the display, this call has no effect.

The call topaint() occurs asynchronously of the call torepaint() . That is,repaint() will not
block waiting forpaint() to finish. Thepaint() method will either be called after the caller of
repaint() returns to the implementation (if the caller is a callback) or on another thread entirely.

To synchronize with itspaint() routine, applications can use eitherDisplay.callSerially() 210
or serviceRepaints() 153 , or they can code explicit synchronization into theirpaint() routine.

The origin of the coordinate system is above and to the left of the pixel in the upper left corner of the
displayable area of theCanvas . The X-coordinate is positive right and the Y-coordinate is positive
downwards.

Parameters:
x - the x coordinate of the rectangle to be repainted

y - the y coordinate of the rectangle to be repainted

width - the width of the rectangle to be repainted

height - the height of the rectangle to be repainted

See Also:Display.callSerially(Runnable) 210 , serviceRepaints() 153

serviceRepaints()

Declaration:
public final void serviceRepaints ()

Description:
Forces any pending repaint requests to be serviced immediately. This method blocks until the pendi
requests have been serviced. If there are no pending repaints, or if this canvas is not visible on the d
this call does nothing and returns immediately.

Warning: This method blocks until the call to the application’spaint() method returns. The application
has no control over which thread callspaint() ; it may vary from implementation to implementation. If
the caller ofserviceRepaints() holds a lock that thepaint() method acquires, this may result in
deadlock. Therefore, callers ofserviceRepaints() must not hold any locks that might be acquired
within thepaint() method. TheDisplay.callSerially() 210 method provides a facility where
an application can be called back after painting has completed, avoiding the danger of deadlock.

See Also:Display.callSerially(Runnable) 210

setFullScreenMode(boolean)

Declaration:
public void setFullScreenMode (boolean mode)
153

Canvas javax.microedition.lcdui

showNotify()

 setting

tics

d

as.
d with

o

of
Description:
Controls whether theCanvas is in full-screen mode or in normal mode.

Parameters:
mode - true if theCanvas is to be in full screen mode,false otherwise

Since: MIDP 2.0

showNotify()

Declaration:
protected void showNotify ()

Description:
The implementation callsshowNotify() immediately prior to thisCanvas being made visible on the
display. Canvas subclasses may override this method to perform tasks before being shown, such as
up animations, starting timers, etc. The default implementation of this method in classCanvas is empty.

sizeChanged(int, int)

Declaration:
protected void sizeChanged (int w, int h)

Description:
Called when the drawable area of theCanvas has been changed. This method has augmented seman
compared toDisplayable.sizeChanged 222 .

In addition to the causes listed inDisplayable.sizeChanged , a size change can occur on aCanvas
because of a change between normal and full-screen modes.

If the size of aCanvas changes while it is actually visible on the display, it may trigger an automatic
repaint request. If this occurs, the call tosizeChanged will occur prior to the call topaint . If the
Canvas has become smaller, the implementation may choose not to trigger a repaint request if the
remaining contents of theCanvas have been preserved. Similarly, if theCanvas has become larger, the
implementation may choose to trigger a repaint only for the new region. In both cases, the preserve
contents must remain stationary with respect to the origin of theCanvas . If the size change is significant to
the contents of theCanvas , the application must explicitly issue a repaint request for the changed are
Note that the application’s repaint request should not cause multiple repaints, since it can be coalesce
repaint requests that are already pending.

If the size of aCanvas changes while it is not visible, the implementation may choose to delay calls t
sizeChanged until immediately prior to the call toshowNotify . In that case, there will be only one
call tosizeChanged , regardless of the number of size changes.

An application that is sensitive to size changes can update instance variables in its implementation
sizeChanged . These updated values will be available to the code in theshowNotify , hideNotify ,
andpaint methods.

Overrides: sizeChanged 222 in classDisplayable 218

Parameters:
w - the new width in pixels of the drawable area of theCanvas

h - the new height in pixels of the drawable area of theCanvas

Since: MIDP 2.0
154

javax.microedition.lcdui Choice

sizeChanged(int, int)

 of

on
s
laced

ribute.

lt

aws
is

city of
e
can

 this
ment. If
lear
javax.microedition.lcdui

Choice
Declaration
public interface Choice

All Known Implementing Classes: ChoiceGroup 166 , List 303

Description
Choice defines an API for a user interface components implementing selection from predefined number
choices. Such UI components areList 303 andChoiceGroup 166 . The contents of theChoice are
represented with strings and images.

Each element of aChoice is composed of a text string part, anImage 270 part, and a font attribute that are all
treated as a unit. The font attribute applies to the text part and can be controlled by the application. The
application may providenull for the image if the element is not to have an image part. The implementati
must display the image at the beginning of the text string. If theChoice also has a selection indicator (such a
a radio button or a checkbox) placed at the beginning of the text string, the element’s image should be p
between the selection indicator and the beginning of the text string.

When a new element is inserted or appended, the implementation provides a default font for the font att
This default font is the same font that is used if the application callssetFont(i, null) . All
ChoiceGroup instances must have the same default font, and allList instances must have the same defau
font. However, the default font used forChoice objects may differ from the font returned by
Font.getDefaultFont 227 .

TheImage part of aChoice element may be mutable or immutable. If theImage is mutable, the effect is as
if snapshot of its contents is taken at the time theChoice is constructed with thisImage or when theChoice
element is created or modified with theappend 159 , insert 162 , or set 163 methods. The snapshot is used
whenever the contents of theChoice element are to be displayed. Even if the application subsequently dr
into theImage , the snapshot is not modified until the next call to one of the above methods. The snapshotnot
updated when theChoice becomes visible on the display. (This is because the application does not have
control over exactly whenDisplayables andItems appear and disappear from the display.)

The following code illustrates a technique to refresh the image part of elementk of aChoice ch :

If the application provides an image, the implementation may choose to truncate it if it exceeds the capa
the device to display it.Images within any particularChoice object should all be of the same size, becaus
the implementation is allowed to allocate the same amount of space for every element. The application
query the implementation’s image size recommendation by calling
Display.getBestImageWidth(int) 212 andDisplay.getBestImageHeight(int) 211 .

If an element is very long or contains a line break, the implementation may display only a portion of it. If
occurs, the implementation should provide the user with a means to see as much as possible of the ele
this is done by wrapping an element to multiple lines, the second and subsequent lines should show a c
indication to the user that they are part of the same element and are not a new element.

ch.set(k, ch.getString(k), ch.getImage(k));
155

Choice javax.microedition.lcdui

sizeChanged(int, int)

ments
ible if

lement’s
,

elects an
present

here
ent and

ese
lected
ent

to that

ted
ms a
io

lected

hen

 any
de.
sive-

nts may

ements

ed, it is
plicit

n
d
ptions.
The application can express a preference for the policy used by the implementation for display of long ele
including those that contain line break characters. The characters after the first line break may only be vis
the policy permits it. ThesetFitPolicy(int) 163 andgetFitPolicy() 160 methods control this
preference. The valid settings areTEXT_WRAP_DEFAULT158 , TEXT_WRAP_ON159 , and
TEXT_WRAP_OFF159 . Unless specified otherwise byChoice implementation classes, the initial value of the
element fit policy isTEXT_WRAP_DEFAULT.

After aChoice object has been created, elements may be inserted, appended, and deleted, and each e
string part and image part may be get and set. Elements within aChoice object are referred to by their indexes
which are consecutive integers in the range from zero tosize()-1 , with zero referring to the first element and
size()-1 to the last element.

There are four types ofChoices : implicit-choice (valid only forList 303), exclusive-choice, multiple-
choice, and pop-up (valid only forChoiceGroup 166).

The exclusive-choice presents a series of elements and interacts with the user. That is, when the user s
element, that element is shown to be selected using a distinct visual representation. If there are elements
in theChoice , one element must be selected at any given time. If at any time a situation would result w
there are elements in the exclusive-choice but none is selected, the implementation will choose an elem
select it. This situation can arise when an element is added to an emptyChoice , when the selected element is
deleted from theChoice , or when aChoice is created and populated with elements by a constructor. In th
cases, the choice of which element is selected is left to the implementation. Applications for which the se
element is significant should set the selection explicitly. There is no way for the user to unselect an elem
within an exclusiveChoice .

The popup choice is similar to the exclusive choice. The selection behavior of a popup choice is identical
of an exclusive choice. However, a popup choice differs from an exclusive choice in presentation and
interaction. In an exclusive choice, all elements should be displayed in-line. In a popup choice, the selec
element should always be displayed, and the other elements should remain hidden until the user perfor
specific action to show them. For example, an exclusive choice could be implemented as a series of rad
buttons with one always selected. A popup choice could be implemented as a popup menu, with the se
element being displayed in the menu button.

The implicit choice is an exclusive choice where the focused or highlighted element is implicitly selected w
a command is initiated. As with the exclusive choice, if there are elements present in theChoice , one element
is always selected.

A multiple-choice presents a series of elements and allows the user to select any number of elements in
combination. As with exclusive-choice, the multiple-choice interacts with the user in object-operation mo
The visual appearance of a multiple-choice will likely have a visual representation distinct from the exclu
choice that shows the selected state of each element as well as indicating to the user that multiple eleme
be selected.

The selected state of an element is a property of the element. This state stays with that element if other el
are inserted or deleted, causing elements to be shifted around. For example, suppose elementn is selected, and a
new element is inserted at index zero. The selected element would now have indexn+1. A similar rule applies
to deletion. Assumingn is greater than zero, deleting element zero would leave elementn-1selected. Setting the
contents of an element leaves its selected state unchanged. When a new element is inserted or append
always unselected (except in the special case of adding an element to an empty Exclusive, Popup, or Im
Choice as mentioned above).

The selected state of aChoice object can be controlled by the application with the
setSelectedFlags 164 andsetSelectedIndex 164 methods. This state is available to the applicatio
through thegetSelectedFlags 161 andgetSelectedIndex 162 methods. The selected state reporte
by these methods is generally identical to what has been set by the application, with the following exce
Adding or removing elements may change the selection. When theChoice is present on the display, the
156

javax.microedition.lcdui Choice

sizeChanged(int, int)

ction.
 is
 a
 an

om
ged it)

n).

s that
implementation’s user interface policy and direct user interaction with the object may also affect the sele
For example, the implementation might update the selection to the current highlight location as the user
moving the highlight, or it might set the selection from the highlight only when the user is about to invoke
command. As another example, the implementation might move the highlight (and thus the selection) of
implicit List to the first element each time theList becomes current. When aChoice object is present on
the display, applications should query its selected state only within aCommandListener 183 or a
ItemStateListener 301 callback. Querying the state at other times might result in a value different fr
what has been set by the application (because the user or the implementation’s UI policy might have chan
and it might not reflect the user’s intent (because the user might still in the process of making a selectio

Note: Methods have been added to theChoice interface in version 2.0. Adding methods to interfaces is
normally an incompatible change. However,Choice does not appear as atypein any field, method parameter,
or method return value, and so it is not useful for an application to create a class that implements theChoice
interface. Future versions of this specification may make additional changes to theChoice interface. In order
to remain compatible with future versions of this specification, applications should avoid creating classe
implement theChoice interface.

Since: MIDP 1.0

Member Summary

Fields
static int EXCLUSIVE158

static int IMPLICIT 158

static int MULTIPLE158

static int POPUP158

static int TEXT_WRAP_DEFAULT158

static int TEXT_WRAP_OFF159

static int TEXT_WRAP_ON159

Methods
 int append(String stringPart, Image imagePart) 159

 void delete(int elementNum) 160

 void deleteAll() 160

 int getFitPolicy() 160

 Font getFont(int elementNum) 160

 Image getImage(int elementNum) 161

 int getSelectedFlags(boolean[] selectedArray_return) 161

 int getSelectedIndex() 162

 java.lang.String getString(int elementNum) 162

 void insert(int elementNum, String stringPart, Image imagePart) 162

 boolean isSelected(int elementNum) 163

 void set(int elementNum, String stringPart, Image imagePart) 163

 void setFitPolicy(int fitPolicy) 163

 void setFont(int elementNum, Font font) 164

 void setSelectedFlags(boolean[] selectedArray) 164

 void setSelectedIndex(int elementNum, boolean selected) 164

 int size() 165
157

Choice javax.microedition.lcdui

EXCLUSIVE

own.
n the
se a
Fields

EXCLUSIVE

Declaration:
public static final int EXCLUSIVE

Description:
EXCLUSIVEis a choice having exactly one element selected at time. All elements of anEXCLUSIVEtype
Choice should be displayed in-line. That is, the user should not need to perform any extra action to
traverse among and select from the elements.

Value1 is assigned toEXCLUSIVE.

IMPLICIT

Declaration:
public static final int IMPLICIT

Description:
IMPLICIT is a choice in which the currently focused element is selected when aCommand175 is
initiated.

TheIMPLICIT type is not valid forChoiceGroup 166 objects.

Value3 is assigned toIMPLICIT .

MULTIPLE

Declaration:
public static final int MULTIPLE

Description:
MULTIPLE is a choice that can have arbitrary number of elements selected at a time.

Value2 is assigned toMULTIPLE.

POPUP

Declaration:
public static final int POPUP

Description:
POPUP is a choice having exactly one element selected at a time. The selected element is always sh
The other elements should be hidden until the user performs a particular action to show them. Whe
user performs this action, all elements become accessible. For example, an implementation could u
popup menu to display the elements of aChoiceGroup of typePOPUP.

ThePOPUP type is not valid forList 303 objects.

Value4 is assigned toPOPUP.

Since: MIDP 2.0

TEXT_WRAP_DEFAULT

Declaration:
public static final int TEXT_WRAP_DEFAULT
158

javax.microedition.lcdui Choice

TEXT_WRAP_OFF

ment

d, for
ome
up

point

 fit
ally
Description:
Constant for indicating that the application has no preference as to wrapping or truncation of text ele
contents and that the implementation should use its default behavior.

Field has the value0.

Since: MIDP 2.0

See Also:getFitPolicy() 160 , setFitPolicy(int) 163

TEXT_WRAP_OFF

Declaration:
public static final int TEXT_WRAP_OFF

Description:
Constant for hinting that text element contents should be limited to a single line. Line ending is force
example by cropping, if there is too much text to fit to the line. The implementation should provide s
means to present the full element contents. This may be done, for example, by using a special pop-
window or by scrolling the text of the focused element.

Implementations should indicate that cropping has occurred, for example, by placing an ellipsis at the
where the text contents have been cropped.

Field has the value2.

Since: MIDP 2.0

See Also:getFitPolicy() 160 , setFitPolicy(int) 163

TEXT_WRAP_ON

Declaration:
public static final int TEXT_WRAP_ON

Description:
Constant for hinting that text element contents should be wrapped to to multiple lines if necessary to
available content space. The Implementation may limit the maximum number of lines that it will actu
present.

Field has the value1.

Since: MIDP 2.0

See Also:getFitPolicy() 160 , setFitPolicy(int) 163

Methods

append(String, Image)

Declaration:
public int append (String stringPart, javax.microedition.lcdui.Image 270 imagePart)

Description:
Appends an element to theChoice . The added element will be the last element of theChoice . The size
of theChoice grows by one.

Parameters:
stringPart - the string part of the element to be added
159

Choice javax.microedition.lcdui

delete(int)

e.
garded

 the
imagePart - the image part of the element to be added, ornull if there is no image part

Returns: the assigned index of the element

Throws:
NullPointerException - if stringPart is null

delete(int)

Declaration:
public void delete (int elementNum)

Description:
Deletes the element referenced byelementNum . The size of theChoice shrinks by one. It is legal to
delete all elements from aChoice . TheelementNum parameter must be within the range
[0..size()-1] , inclusive.

Parameters:
elementNum - the index of the element to be deleted

Throws:
IndexOutOfBoundsException - if elementNum is invalid

deleteAll()

Declaration:
public void deleteAll ()

Description:
Deletes all elements from thisChoice , leaving it with zero elements. This method does nothing if the
Choice is already empty.

Since: MIDP 2.0

getFitPolicy()

Declaration:
public int getFitPolicy ()

Description:
Gets the application’s preferred policy for fittingChoice element contents to the available screen spac
The value returned is the policy that had been set by the application, even if that value had been disre
by the implementation.

Returns: one ofTEXT_WRAP_DEFAULT158 , TEXT_WRAP_ON159 , orTEXT_WRAP_OFF159

Since: MIDP 2.0

See Also:setFitPolicy(int) 163

getFont(int)

Declaration:
public javax.microedition.lcdui.Font 223 getFont (int elementNum)

Description:
Gets the application’s preferred font for rendering the specified element of thisChoice . The value
returned is the font that had been set by the application, even if that value had been disregarded by
160

javax.microedition.lcdui Choice

getImage(int)

to

f the

nd
implementation. If no font had been set by the application, or if the application explicitly set the font
null , the value is the default font chosen by the implementation.

TheelementNum parameter must be within the range[0..size()-1] , inclusive.

Parameters:
elementNum - the index of the element, starting from zero

Returns: the preferred font to use to render the element

Throws:
IndexOutOfBoundsException - if elementNum is invalid

Since: MIDP 2.0

See Also:setFont(int, Font) 164

getImage(int)

Declaration:
public javax.microedition.lcdui.Image 270 getImage (int elementNum)

Description:
Gets theImage part of the element referenced byelementNum . TheelementNum parameter must be
within the range[0..size()-1] , inclusive.

Parameters:
elementNum - the index of the element to be queried

Returns: the image part of the element, ornull if there is no image

Throws:
IndexOutOfBoundsException - if elementNum is invalid

See Also:getString(int) 162

getSelectedFlags(boolean[])

Declaration:
public int getSelectedFlags (boolean[] selectedArray_return)

Description:
Queries the state of aChoice and returns the state of all elements in the boolean array
selectedArray_return . Note: this is a result parameter. It must be at least as long as the size o
Choice as returned bysize() . If the array is longer, the extra elements are set tofalse .

This call is valid for all types ofChoices . ForMULTIPLE, any number of elements may be selected a
set totrue in the result array. ForEXCLUSIVE, POPUP, andIMPLICIT exactly one element will be
selected (unless there are zero elements in theChoice).

Parameters:
selectedArray_return - array to contain the results

Returns: the number of selected elements in theChoice

Throws:
IllegalArgumentException - if selectedArray_return is shorter than the size of the
Choice .

NullPointerException - if selectedArray_return is null

See Also:setSelectedFlags(boolean[]) 164
161

Choice javax.microedition.lcdui

getSelectedIndex()

the

ch a

he
getSelectedIndex()

Declaration:
public int getSelectedIndex ()

Description:
Returns the index number of an element in theChoice that is selected. ForChoice typesEXCLUSIVE,
POPUP, andIMPLICIT there is at most one element selected, so this method is useful for determining
user’s choice. Returns-1 if theChoice has no elements (and therefore has no selected elements).

ForMULTIPLE, this always returns-1 because no single value can in general represent the state of su
Choice . To get the complete state of aMULTIPLE Choice , seegetSelectedFlags 161 .

Returns: index of selected element, or-1 if none

See Also:setSelectedIndex(int, boolean) 164

getString(int)

Declaration:
public String getString (int elementNum)

Description:
Gets theString part of the element referenced byelementNum . TheelementNum parameter must be
within the range[0..size()-1] , inclusive.

Parameters:
elementNum - the index of the element to be queried

Returns: the string part of the element

Throws:
IndexOutOfBoundsException - if elementNum is invalid

See Also:getImage(int) 161

insert(int, String, Image)

Declaration:
public void insert (int elementNum, String stringPart,

javax.microedition.lcdui.Image 270 imagePart)

Description:
Inserts an element into theChoice just prior to the element specified. The size of theChoice grows by
one. TheelementNum parameter must be within the range[0..size()] , inclusive. The index of the
last element issize()-1 , and so there is actually no element whose index issize() . If this value is
used forelementNum , the new element is inserted immediately after the last element. In this case, t
effect is identical toappend() 159 .

Parameters:
elementNum - the index of the element where insertion is to occur

stringPart - the string part of the element to be inserted

imagePart - the image part of the element to be inserted, ornull if there is no image part

Throws:
IndexOutOfBoundsException - if elementNum is invalid

NullPointerException - if stringPart is null
162

javax.microedition.lcdui Choice

isSelected(int)

.

isSelected(int)

Declaration:
public boolean isSelected (int elementNum)

Description:
Gets a boolean value indicating whether this element is selected. TheelementNum parameter must be
within the range[0..size()-1] , inclusive.

Parameters:
elementNum - the index of the element to be queried

Returns: selection state of the element

Throws:
IndexOutOfBoundsException - if elementNum is invalid

set(int, String, Image)

Declaration:
public void set (int elementNum, String stringPart,

javax.microedition.lcdui.Image 270 imagePart)

Description:
Sets theString andImage parts of the element referenced byelementNum , replacing the previous
contents of the element. TheelementNum parameter must be within the range[0..size()-1] ,
inclusive. The font attribute of the element is left unchanged.

Parameters:
elementNum - the index of the element to be set

stringPart - the string part of the new element

imagePart - the image part of the element, ornull if there is no image part

Throws:
IndexOutOfBoundsException - if elementNum is invalid

NullPointerException - if stringPart is null

setFitPolicy(int)

Declaration:
public void setFitPolicy (int fitPolicy)

Description:
Sets the application’s preferred policy for fittingChoice element contents to the available screen space
The set policy applies for all elements of theChoice object. Valid values are
TEXT_WRAP_DEFAULT158 , TEXT_WRAP_ON159 , andTEXT_WRAP_OFF159 . Fit policy is a hint, and
the implementation may disregard the application’s preferred policy.

Parameters:
fitPolicy - preferred content fit policy for choice elements

Throws:
IllegalArgumentException - if fitPolicy is invalid

Since: MIDP 2.0

See Also:getFitPolicy() 160
163

Choice javax.microedition.lcdui

setFont(int, Font)

e

setFont(int, Font)

Declaration:
public void setFont (int elementNum, javax.microedition.lcdui.Font 223 font)

Description:
Sets the application’s preferred font for rendering the specified element of thisChoice . An element’s font
is a hint, and the implementation may disregard the application’s preferred font.

TheelementNum parameter must be within the range[0..size()-1] , inclusive.

Thefont parameter must be a validFont object ornull . If the font parameter isnull , the
implementation must use its default font to render the element.

Parameters:
elementNum - the index of the element, starting from zero

font - the preferred font to use to render the element

Throws:
IndexOutOfBoundsException - if elementNum is invalid

Since: MIDP 2.0

See Also:getFont(int) 160

setSelectedFlags(boolean[])

Declaration:
public void setSelectedFlags (boolean[] selectedArray)

Description:
Attempts to set the selected state of every element in theChoice . The array must be at least as long as th
size of theChoice . If the array is longer, the additional values are ignored.

ForChoice objects of typeMULTIPLE, this sets the selected state of every element in theChoice . An
arbitrary number of elements may be selected.

ForChoice objects of typeEXCLUSIVE, POPUP, andIMPLICIT , exactly one array element must have
the valuetrue . If no element istrue , the first element in theChoice will be selected. If two or more
elements aretrue , the implementation will choose the firsttrue element and select it.

Parameters:
selectedArray - an array in which the method collect the selection status

Throws:
IllegalArgumentException - if selectedArray is shorter than the size of theChoice

NullPointerException - if selectedArray is null

See Also:getSelectedFlags(boolean[]) 161

setSelectedIndex(int, boolean)

Declaration:
public void setSelectedIndex (int elementNum, boolean selected)

Description:
ForMULTIPLE, this simply sets an individual element’s selected state.
164

javax.microedition.lcdui Choice

size()

d. If

ForEXCLUSIVE andPOPUP, this can be used only to select any element, that is, the selected
parameter must betrue . When an element is selected, the previously selected element is deselecte
selected is false , this call is ignored. If element was already selected, the call has no effect.

For IMPLICIT , this can be used only to select any element, that is, theselected parameter must be
true . When an element is selected, the previously selected element is deselected. If selected is
false , this call is ignored. If element was already selected, the call has no effect.

The call tosetSelectedIndex does not cause implicit activation of anyCommand.

For all list types, theelementNum parameter must be within the range[0..size()-1] , inclusive.

Parameters:
elementNum - the index of the element, starting from zero

selected - the state of the element, wheretrue means selected andfalse means not selected

Throws:
IndexOutOfBoundsException - if elementNum is invalid

See Also:getSelectedIndex() 162

size()

Declaration:
public int size ()

Description:
Gets the number of elements present.

Returns: the number of elements in theChoice
165

ChoiceGroup javax.microedition.lcdui

size()

de
oice
javax.microedition.lcdui

ChoiceGroup
Declaration
public class ChoiceGroup extends Item 287 implements Choice 155

Object
|
+-- javax.microedition.lcdui.Item 287

|
+-- javax.microedition.lcdui.ChoiceGroup

All Implemented Interfaces: Choice 155

Description
A ChoiceGroup is a group of selectable elements intended to be placed within aForm231 . The group may
be created with a mode that requires a single choice to be made or that allows multiple choices. The
implementation is responsible for providing the graphical representation of these modes and must provi
visually different graphics for different modes. For example, it might use “radio buttons” for the single ch
mode and “check boxes” for the multiple choice mode.

Note: most of the essential methods have been specified in theChoice 155 interface.

Since: MIDP 1.0

Member Summary

Constructors
ChoiceGroup(String label, int choiceType) 167

ChoiceGroup(String label, int choiceType, String
stringElements, Image imageElements) 168

Methods
 int append(String stringPart, Image imagePart) 168

 void delete(int elementNum) 169

 void deleteAll() 169

 int getFitPolicy() 169

 Font getFont(int elementNum) 169

 Image getImage(int elementNum) 170

 int getSelectedFlags(boolean[] selectedArray_return) 170

 int getSelectedIndex() 171

 java.lang.String getString(int elementNum) 171

 void insert(int elementNum, String stringPart, Image imagePart) 171

 boolean isSelected(int elementNum) 172

 void set(int elementNum, String stringPart, Image imagePart) 172

 void setFitPolicy(int fitPolicy) 172

 void setFont(int elementNum, Font font) 173

 void setSelectedFlags(boolean[] selectedArray) 173

 void setSelectedIndex(int elementNum, boolean selected) 174
166

javax.microedition.lcdui ChoiceGroup

ChoiceGroup(String, int)
Constructors

ChoiceGroup(String, int)

Declaration:
public ChoiceGroup (String label, int choiceType)

Description:
Creates a new, emptyChoiceGroup , specifying its title and its type. The type must be one of
EXCLUSIVE, MULTIPLE, orPOPUP. TheIMPLICIT choice type is not allowed within a
ChoiceGroup .

Parameters:
label - the item’s label (seeItem 287)

choiceType - EXCLUSIVE, MULTIPLE, orPOPUP

Throws:
IllegalArgumentException - if choiceType is not one ofEXCLUSIVE, MULTIPLE, or
POPUP

See Also:Choice.EXCLUSIVE 158 , Choice.MULTIPLE 158 , Choice.IMPLICIT 158 ,
Choice.POPUP 158

 int size() 174

Inherited Member Summary

Fields inherited from interface Choice 155

EXCLUSIVE158, IMPLICIT 158, MULTIPLE158, POPUP158, TEXT_WRAP_DEFAULT158,
TEXT_WRAP_OFF159, TEXT_WRAP_ON159

Fields inherited from classItem 287

BUTTON291, HYPERLINK292, LAYOUT_2292, LAYOUT_BOTTOM292, LAYOUT_CENTER292,
LAYOUT_DEFAULT292, LAYOUT_EXPAND293, LAYOUT_LEFT293, LAYOUT_NEWLINE_AFTER293,
LAYOUT_NEWLINE_BEFORE293, LAYOUT_RIGHT293, LAYOUT_SHRINK294, LAYOUT_TOP294,
LAYOUT_VCENTER294, LAYOUT_VEXPAND294, LAYOUT_VSHRINK294, PLAIN295

Methods inherited from classItem 287

addCommand(Command)295, getLabel() 295, getLayout() 295, getMinimumHeight() 296,
getMinimumWidth() 296, getPreferredHeight() 296, getPreferredWidth() 296,
notifyStateChanged() 297, removeCommand(Command)297, setDefaultCommand(Command) 298,
setItemCommandListener(ItemCommandListener) 298, setLabel(String) 298,
setLayout(int) 299, setPreferredSize(int, int) 299

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
167

ChoiceGroup javax.microedition.lcdui

ChoiceGroup(String, int, String[], Image[])

ngth
ChoiceGroup(String, int, String[], Image[])

Declaration:
public ChoiceGroup (String label, int choiceType, String[] stringElements,

javax.microedition.lcdui.Image[] 270 imageElements)

Description:
Creates a newChoiceGroup , specifying its title, the type of theChoiceGroup , and an array of
Strings andImages to be used as its initial contents.

The type must be one ofEXCLUSIVE, MULTIPLE, orPOPUP. TheIMPLICIT type is not allowed for
ChoiceGroup .

ThestringElements array must be non-null and every array element must also be non-null. The le
of thestringElements array determines the number of elements in theChoiceGroup . The
imageElements array may benull to indicate that theChoiceGroup elements have no images. If
the imageElements array is non-null, it must be the same length as thestringElements array.
Individual elements of theimageElements array may benull in order to indicate the absence of an
image for the correspondingChoiceGroup element. Non-null elements of theimageElements array
may refer to mutable or immutable images.

Parameters:
label - the item’s label (seeItem 287)

choiceType - EXCLUSIVE, MULTIPLE, orPOPUP

stringElements - set of strings specifying the string parts of theChoiceGroup elements

imageElements - set of images specifying the image parts of theChoiceGroup elements

Throws:
NullPointerException - if stringElements is null

NullPointerException - if thestringElements array contains anynull elements

IllegalArgumentException - if the imageElements array is non-null and has a different
length from thestringElements array

IllegalArgumentException - if choiceType is not one ofEXCLUSIVE, MULTIPLE, or
POPUP

See Also:Choice.EXCLUSIVE 158 , Choice.MULTIPLE 158 , Choice.IMPLICIT 158 ,
Choice.POPUP 158

Methods

append(String, Image)

Declaration:
public int append (String stringPart, javax.microedition.lcdui.Image 270 imagePart)

Description:
Appends an element to theChoiceGroup .

Specified By: append 159 in interfaceChoice 155

Parameters:
stringPart - the string part of the element to be added

imagePart - the image part of the element to be added, ornull if there is no image part
168

javax.microedition.lcdui ChoiceGroup

delete(int)

e.
garded

 the
to
Returns: the assigned index of the element

Throws:
NullPointerException - if stringPart is null

delete(int)

Declaration:
public void delete (int elementNum)

Description:
Deletes the element referenced byelementNum .

Specified By: delete 160 in interfaceChoice 155

Parameters:
elementNum - the index of the element to be deleted

Throws:
IndexOutOfBoundsException - if elementNum is invalid

deleteAll()

Declaration:
public void deleteAll ()

Description:
Deletes all elements from thisChoiceGroup .

Specified By: deleteAll 160 in interfaceChoice 155

getFitPolicy()

Declaration:
public int getFitPolicy ()

Description:
Gets the application’s preferred policy for fittingChoice element contents to the available screen spac
The value returned is the policy that had been set by the application, even if that value had been disre
by the implementation.

Specified By: getFitPolicy 160 in interfaceChoice 155

Returns: one ofChoice.TEXT_WRAP_DEFAULT158 , Choice.TEXT_WRAP_ON159 , or
Choice.TEXT_WRAP_OFF159

Since: MIDP 2.0

See Also:setFitPolicy(int) 172

getFont(int)

Declaration:
public javax.microedition.lcdui.Font 223 getFont (int elementNum)

Description:
Gets the application’s preferred font for rendering the specified element of thisChoice . The value
returned is the font that had been set by the application, even if that value had been disregarded by
implementation. If no font had been set by the application, or if the application explicitly set the font
null , the value is the default font chosen by the implementation.
169

ChoiceGroup javax.microedition.lcdui

getImage(int)

f the

in
TheelementNum parameter must be within the range[0..size()-1] , inclusive.

Specified By: getFont 160 in interfaceChoice 155

Parameters:
elementNum - the index of the element, starting from zero

Returns: the preferred font to use to render the element

Throws:
IndexOutOfBoundsException - if elementNum is invalid

Since: MIDP 2.0

See Also:setFont(int, Font) 173

getImage(int)

Declaration:
public javax.microedition.lcdui.Image 270 getImage (int elementNum)

Description:
Gets theImage part of the element referenced byelementNum .

Specified By: getImage 161 in interfaceChoice 155

Parameters:
elementNum - the number of the element to be queried

Returns: the image part of the element, or null if there is no image

Throws:
IndexOutOfBoundsException - if elementNum is invalid

See Also:getString(int) 171

getSelectedFlags(boolean[])

Declaration:
public int getSelectedFlags (boolean[] selectedArray_return)

Description:
Queries the state of aChoiceGroup and returns the state of all elements in the boolean array
selectedArray_return . Note: this is a result parameter. It must be at least as long as the size o
ChoiceGroup as returned bysize() . If the array is longer, the extra elements are set tofalse .

ForChoiceGroup objects of typeMULTIPLE, any number of elements may be selected and set to true
the result array. ForChoiceGroup objects of typeEXCLUSIVEandPOPUP, exactly one element will be
selected, unless there are zero elements in theChoiceGroup .

Specified By: getSelectedFlags 161 in interfaceChoice 155

Parameters:
selectedArray_return - array to contain the results

Returns: the number of selected elements in theChoiceGroup

Throws:
IllegalArgumentException - if selectedArray_return is shorter than the size of the
ChoiceGroup

NullPointerException - if selectedArray_return is null
170

javax.microedition.lcdui ChoiceGroup

getSelectedIndex()

for
See Also:setSelectedFlags(boolean[]) 173

getSelectedIndex()

Declaration:
public int getSelectedIndex ()

Description:
Returns the index number of an element in theChoiceGroup that is selected. ForChoiceGroup
objects of typeEXCLUSIVEandPOPUPthere is at most one element selected, so this method is useful
determining the user’s choice. Returns-1 if there are no elements in theChoiceGroup .

ForChoiceGroup objects of typeMULTIPLE, this always returns-1 because no single value can in
general represent the state of such aChoiceGroup . To get the complete state of aMULTIPLE Choice ,
seegetSelectedFlags 170 .

Specified By: getSelectedIndex 162 in interfaceChoice 155

Returns: index of selected element, or-1 if none

See Also:setSelectedIndex(int, boolean) 174

getString(int)

Declaration:
public String getString (int elementNum)

Description:
Gets theString part of the element referenced byelementNum .

Specified By: getString 162 in interfaceChoice 155

Parameters:
elementNum - the index of the element to be queried

Returns: the string part of the element

Throws:
IndexOutOfBoundsException - if elementNum is invalid

See Also:getImage(int) 170

insert(int, String, Image)

Declaration:
public void insert (int elementNum, String stringPart,

javax.microedition.lcdui.Image 270 imagePart)

Description:
Inserts an element into theChoiceGroup just prior to the element specified.

Specified By: insert 162 in interfaceChoice 155

Parameters:
elementNum - the index of the element where insertion is to occur

stringPart - the string part of the element to be inserted

imagePart - the image part of the element to be inserted, ornull if there is no image part

Throws:
IndexOutOfBoundsException - if elementNum is invalid
171

ChoiceGroup javax.microedition.lcdui

isSelected(int)

.

NullPointerException - if stringPart is null

isSelected(int)

Declaration:
public boolean isSelected (int elementNum)

Description:
Gets a boolean value indicating whether this element is selected.

Specified By: isSelected 163 in interfaceChoice 155

Parameters:
elementNum - the index of the element to be queried

Returns: selection state of the element

Throws:
IndexOutOfBoundsException - if elementNum is invalid

set(int, String, Image)

Declaration:
public void set (int elementNum, String stringPart,

javax.microedition.lcdui.Image 270 imagePart)

Description:
Sets theString andImage parts of the element referenced byelementNum , replacing the previous
contents of the element.

Specified By: set 163 in interfaceChoice 155

Parameters:
elementNum - the index of the element to be set

stringPart - the string part of the new element

imagePart - the image part of the element, ornull if there is no image part

Throws:
IndexOutOfBoundsException - if elementNum is invalid

NullPointerException - if stringPart is null

setFitPolicy(int)

Declaration:
public void setFitPolicy (int fitPolicy)

Description:
Sets the application’s preferred policy for fittingChoice element contents to the available screen space
The set policy applies for all elements of theChoice object. Valid values are
Choice.TEXT_WRAP_DEFAULT158 , Choice.TEXT_WRAP_ON159 , and
Choice.TEXT_WRAP_OFF159 . Fit policy is a hint, and the implementation may disregard the
application’s preferred policy.

Specified By: setFitPolicy 163 in interfaceChoice 155

Parameters:
fitPolicy - preferred content fit policy for choice elements
172

javax.microedition.lcdui ChoiceGroup

setFont(int, Font)
Throws:
IllegalArgumentException - if fitPolicy is invalid

Since: MIDP 2.0

See Also:getFitPolicy() 169

setFont(int, Font)

Declaration:
public void setFont (int elementNum, javax.microedition.lcdui.Font 223 font)

Description:
Sets the application’s preferred font for rendering the specified element of thisChoice . An element’s font
is a hint, and the implementation may disregard the application’s preferred font.

TheelementNum parameter must be within the range[0..size()-1] , inclusive.

Thefont parameter must be a validFont object ornull . If the font parameter isnull , the
implementation must use its default font to render the element.

Specified By: setFont 164 in interfaceChoice 155

Parameters:
elementNum - the index of the element, starting from zero

font - the preferred font to use to render the element

Throws:
IndexOutOfBoundsException - if elementNum is invalid

Since: MIDP 2.0

See Also:getFont(int) 169

setSelectedFlags(boolean[])

Declaration:
public void setSelectedFlags (boolean[] selectedArray)

Description:
Attempts to set the selected state of every element in theChoiceGroup . The array must be at least as long
as the size of theChoiceGroup . If the array is longer, the additional values are ignored.

ForChoiceGroup objects of typeMULTIPLE, this sets the selected state of every element in the
Choice . An arbitrary number of elements may be selected.

ForChoiceGroup objects of typeEXCLUSIVE andPOPUP, exactly one array element must have the
valuetrue . If no element istrue , the first element in theChoice will be selected. If two or more
elements aretrue , the implementation will choose the firsttrue element and select it.

Specified By: setSelectedFlags 164 in interfaceChoice 155

Parameters:
selectedArray - an array in which the method collect the selection status

Throws:
IllegalArgumentException - if selectedArray is shorter than the size of the
ChoiceGroup

NullPointerException - if theselectedArray is null

See Also:getSelectedFlags(boolean[]) 170
173

ChoiceGroup javax.microedition.lcdui

setSelectedIndex(int, boolean)

t.
setSelectedIndex(int, boolean)

Declaration:
public void setSelectedIndex (int elementNum, boolean selected)

Description:
ForChoiceGroup objects of typeMULTIPLE, this simply sets an individual element’s selected state.

ForChoiceGroup objects of typeEXCLUSIVE andPOPUP, this can be used only to select an elemen
That is, the selected parameter must be true . When an element is selected, the previously
selected element is deselected. If selected is false , this call is ignored.

For both list types, theelementNum parameter must be within the range[0..size()-1] , inclusive.

Specified By: setSelectedIndex 164 in interfaceChoice 155

Parameters:
elementNum - the number of the element. Indexing of the elements is zero-based

selected - the new state of the elementtrue=selected , false=not selected

Throws:
IndexOutOfBoundsException - if elementNum is invalid

See Also:getSelectedIndex() 171

size()

Declaration:
public int size ()

Description:
Returns the number of elements in theChoiceGroup .

Specified By: size 165 in interfaceChoice 155

Returns: the number of elements in theChoiceGroup
174

javax.microedition.lcdui Command

size()

r that
mation
 in a

e
ct. For

ds. For
ysical
le, the
enu” is

ate the

shown
n on the

nts of

nd, the

te. The
, a

and the
ppears

om on
ng
javax.microedition.lcdui

Command
Declaration
public class Command

Object
|
+-- javax.microedition.lcdui.Command

Description
TheCommand class is a construct that encapsulates the semantic information of an action. The behavio
the command activates is not encapsulated in this object. This means that command contains only infor
about “command” not the actual action that happens when command is activated. The action is defined
CommandListener 183 associated with theDisplayable . Command objects arepresented in the user
interface and the way they are presented may depend on the semantic information contained within the
command.

Commands may be implemented in any user interface construct that has semantics for activating a singl
action. This, for example, can be a soft button, item in a menu, or some other direct user interface constru
example, a speech interface may present these commands as voice tags.

The mapping to concrete user interface constructs may also depend on the total number of the comman
example, if an application asks for more abstract commands than can be mapped onto the available ph
buttons on a device, then the device may use an alternate human interface such as a menu. For examp
abstract commands that cannot be mapped onto physical buttons are placed in a menu and the label “M
mapped onto one of the programmable buttons.

A command contains four pieces of information: ashort label, an optionallong label, atype, and apriority. One
of the labels is used for the visual representation of the command, whereas the type and the priority indic
semantics of the command.

Labels
Each command includes one or two label strings. The label strings are what the application requests to be
to the user to represent this command. For example, one of these strings may appear next to a soft butto
device or as an element in a menu. For command types other thanSCREEN, the labels provided may be
overridden by a system-specific label that is more appropriate for this command on this device. The conte
the label strings are otherwise not interpreted by the implementation.

All commands have a short label. The long label is optional. If the long label is not present on a comma
short label is always used.

The short label string should be as short as possible so that it consumes a minimum of screen real esta
long label can be longer and more descriptive, but it should be no longer than a few words. For example
command’s short label might be “Play”, and its long label might be “Play Sound Clip”.

The implementation chooses one of the labels to be presented in the user interface based on the context
amount of space available. For example, the implementation might use the short label if the command a
on a soft button, and it might use the long label if the command appears on a menu, but only if there is ro
the menu for the long label. The implementation may use the short labels of some commands and the lo
labels of other commands, and it is allowed to switch between using the short and long label at will. The
application cannot determine which label is being used at any given time.
175

Command javax.microedition.lcdui

size()

ation
on
ion as

ands
e actual
d,

 and
ghest
enu.
ccurs,
Type
The application uses the command type to specify the intent of this command. For example, if the applic
specifies that the command is of typeBACK, and if the device has a standard of placing the “back” operation
a certain soft-button, the implementation can follow the style of the device by using the semantic informat
a guide. The defined types areBACK178 , CANCEL178 , EXIT 179 , HELP179 , ITEM179 , OK179 ,
SCREEN180 , andSTOP180 .

Priority
The application uses the priority value to describe the importance of this command relative to other comm
on the same screen. Priority values are integers, where a lower number indicates greater importance. Th
values are chosen by the application. A priority value of one might indicate the most important comman
priority values of two, three, four, and so on indicate commands of lesser importance.

Typically, the implementation first chooses the placement of a command based on the type of command
then places similar commands based on a priority order. This could mean that the command with the hi
priority is placed so that user can trigger it directly and that commands with lower priority are placed on a m
It is not an error for there to be commands on the same screen with the same priorities and types. If this o
the implementation will choose the order in which they are presented.

For example, if the application has the following set of commands:

An implementation with two soft buttons may map theBACK command to the right soft button and create an
“Options” menu on the left soft button to contain the other commands.

When user presses the left soft button, a menu with the two remainingCommands appears:

new Command(“Buy”, Command.ITEM, 1);
new Command(“Info”, Command.ITEM, 1);
new Command(“Back”, Command.BACK, 1);
176

javax.microedition.lcdui Command

size()

reens.
ot
ply
nager
If the application had three soft buttons, all commands can be mapped to soft buttons:

The application is always responsible for providing the means for the user to progress through different sc
An application may set up a screen that has no commands. This is allowed by the API but is generally n
useful; if this occurs the user would have no means to move to another screen. Such program would sim
considered to be in error. A typical device should provide a means for the user to direct the application ma
to kill the erroneous application.

Since: MIDP 1.0

Member Summary

Fields
static int BACK178

static int CANCEL178

static int EXIT 179

static int HELP179

static int ITEM179

static int OK179

static int SCREEN180

static int STOP180
177

Command javax.microedition.lcdui

BACK

us

not be

is

he
and
Fields

BACK

Declaration:
public static final int BACK

Description:
A navigation command that returns the user to the logically previous screen. The jump to the previo
screen is not done automatically by the implementation but by thecommandAction 183 provided by the
application. Note that the application defines the actual action since the strictly previous screen may
logically correct.

Value2 is assigned toBACK.

See Also:CANCEL178 , STOP180

CANCEL

Declaration:
public static final int CANCEL

Description:
A command that is a standard negative answer to a dialog implemented by current screen. Nothing
cancelled automatically by the implementation; cancellation is implemented by thecommandAction 183
provided by the application.

With this command type, the application hints to the implementation that the user wants to dismiss t
current screen without taking any action on anything that has been entered into the current screen,
usually that the user wants to return to the prior screen. In many casesCANCEL is interchangeable with
BACK, butBACK is mainly used for navigation as in a browser-oriented applications.

Constructors
Command(String label, int commandType, int priority) 180

Command(String shortLabel, String longLabel, int commandType,
int priority) 181

Methods
 int getCommandType() 181

 java.lang.String getLabel() 181

 java.lang.String getLongLabel() 181

 int getPriority() 182

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
178

javax.microedition.lcdui Command

EXIT

e

to the

s done

nd to
the next
Value3 is assigned toCANCEL.

See Also:BACK178 , STOP180

EXIT

Declaration:
public static final int EXIT

Description:
A command used for exiting from the application. When the user invokes this command, the
implementation does not exit automatically. The application’scommandAction 183 will be called, and it
should exit the application if it is appropriate to do so.

Value7 is assigned toEXIT .

HELP

Declaration:
public static final int HELP

Description:
This command specifies a request for on-line help. No help information is shown automatically by th
implementation. ThecommandAction 183 provided by the application is responsible for showing the
help information.

Value5 is assigned toHELP.

ITEM

Declaration:
public static final int ITEM

Description:
With this command type the application can hint to the implementation that the command is specific
items of theScreen or the elements of aChoice . Normally this means that command relates to the
focused item or element. For example, an implementation ofList can use this information for creating
context sensitive menus.

Value8 is assigned toITEM.

OK

Declaration:
public static final int OK

Description:
A command that is a standard positive answer to a dialog implemented by current screen. Nothing i
automatically by the implementation; any action taken is implemented by thecommandAction 183
provided by the application.

With this command type the application hints to the implementation that the user will use this comma
ask the application to confirm the data that has been entered in the current screen and to proceed to
logical screen.

CANCEL is often used together withOK.

Value4 is assigned toOK.
179

Command javax.microedition.lcdui

SCREEN

oad”
ong

r

tically

nd to
cesses

mand
See Also:CANCEL178

SCREEN

Declaration:
public static final int SCREEN

Description:
Specifies an application-defined command that pertains to the current screen. Examples could be “L
and “Save”. ASCREEN command generally applies to the entire screen’s contents or to navigation am
screens. This is in constrast to theITEM type, which applies to the currently activated or focused item o
element contained within this screen.

Value1 is assigned toSCREEN.

STOP

Declaration:
public static final int STOP

Description:
A command that will stop some currently running process, operation, etc. Nothing is stopped automa
by the implementation. The cessation must be performed by thecommandAction 183 provided by the
application.

With this command type the application hints to the implementation that the user will use this comma
stop any currently running process visible to the user on the current screen. Examples of running pro
might include downloading or sending of data. Use of theSTOP command does not necessarily imply a
switch to another screen.

Value6 is assigned toSTOP.

See Also:BACK178 , CANCEL178

Constructors

Command(String, int, int)

Declaration:
public Command(String label, int commandType, int priority)

Description:
Creates a new command object with the given short label, type, and priority. The newly created com
has no long label. This constructor is identical toCommand(label, null, commandType,
priority) .

Parameters:
label - the command’s short label

commandType - the command’s type

priority - the command’s priority value

Throws:
NullPointerException - if label isnull

IllegalArgumentException - if thecommandType is an invalid type
180

javax.microedition.lcdui Command

Command(String, String, int, int)
See Also:Command(String, String, int, int) 181

Command(String, String, int, int)

Declaration:
public Command(String shortLabel, String longLabel, int commandType, int priority)

Description:
Creates a new command object with the given labels, type, and priority.

The short label is required and must not benull . The long label is optional and may benull if the
command is to have no long label.

Parameters:
shortLabel - the command’s short label

longLabel - the command’s long label, ornull if none

commandType - the command’s type

priority - the command’s priority value

Throws:
NullPointerException - if shortLabel is null

IllegalArgumentException - if thecommandType is an invalid type

Since: MIDP 2.0

Methods

getCommandType()

Declaration:
public int getCommandType ()

Description:
Gets the type of the command.

Returns: type of theCommand

getLabel()

Declaration:
public String getLabel ()

Description:
Gets the short label of the command.

Returns: theCommand's short label

getLongLabel()

Declaration:
public String getLongLabel ()

Description:
Gets the long label of the command.

Returns: theCommand's long label, ornull if theCommand has no long label
181

Command javax.microedition.lcdui

getPriority()
Since: MIDP 2.0

getPriority()

Declaration:
public int getPriority ()

Description:
Gets the priority of the command.

Returns: priority of theCommand
182

javax.microedition.lcdui CommandListener

commandAction(Command, Displayable)

An

there

ded
javax.microedition.lcdui

CommandListener
Declaration
public interface CommandListener

Description
This interface is used by applications which need to receive high-level events from the implementation.
application will provide an implementation of aCommandListener (typically by using a nested class or an
inner class) and will then provide the instance to theaddCommand method on aDisplayable in order to
receive high-level events on that screen.

The specification does not require the platform to create several threads for the event delivery. Thus, if a
CommandListener method does not return or the return is not delayed, the system may be blocked. So,
is the following note to application developers:

• the CommandListener method should return immediately.

Since: MIDP 1.0

See Also: Displayable.setCommandListener(CommandListener) 221

Methods

commandAction(Command, Displayable)

Declaration:
public void commandAction (javax.microedition.lcdui.Command 175 c,

javax.microedition.lcdui.Displayable 218 d)

Description:
Indicates that a command event has occurred onDisplayable d .

Parameters:
c - aCommandobject identifying the command. This is either one of the applications have been ad
to Displayable with addCommand(Command)219 or is the implicitSELECT_COMMAND306 of
List .

d - theDisplayable on which this event has occurred

Member Summary

Methods
 void commandAction(Command c, Displayable d) 183
183

CustomItem javax.microedition.lcdui

commandAction(Command, Displayable)

s, fonts
ted by

l
ssion

f

s
inting,

for
area of

ort the

of the
javax.microedition.lcdui

CustomItem
Declaration
public abstract class CustomItem extends Item 287

Object
|
+-- javax.microedition.lcdui.Item 287

|
+-- javax.microedition.lcdui.CustomItem

Description
A CustomItem is customizable by subclassing to introduce new visual and interactive elements intoForms .
Subclasses are responsible for their visual appearance including sizing and rendering and choice of color
and graphics. Subclasses are responsible for the user interaction mode by responding to events genera
keys, pointer actions, and traversal actions. Finally, subclasses are responsible for calling
Item.notifyStateChanged() 297 to trigger notification of listeners that theCustomItem's value has
changed.

Like otherItems , CustomItems have the concept ofminimumandpreferredsizes. These pertain to the tota
area of theItem , which includes space for the content, label, borders, etc. See Item Sizes for a full discu
of the areas and sizes ofItems .

CustomItem subclasses also have the concept of thecontentsize, which is the size of only the content area o
theCustomItem . The content area is a rectangular area inside the total area occupied by theCustomItem .
The content area is the area within which theCustomItem subclass paints and receives input events. It doe
not include space consumed by labels and borders. The implementation is responsible for laying out, pa
and handling input events within the area of theItem that is outside the content area.

All coordinates passed between the implementation and theCustomItem subclass are relative to the item’s
content area, with the upper-left corner of this area being located at(0,0) . Size information passed between
the implementation and theCustomItem subclass with thegetMinContentHeight 191 ,
getMinContentWidth 191 , getPrefContentHeight 191 , getPrefContentWidth 192 , and
sizeChanged 196 methods all refer to the size of the content area. The implementation is responsible
computing and maintaining the difference between the size of the content area and the size of the total
theItem as reported by the Item size methodsItem.getMinimumHeight 296 ,
Item.getMinimumWidth 296 , Item.getPreferredHeight 296 , and
Item.getPreferredWidth 296 .

The implementation may disregard sizing information returned from aCustomItem if it exceeds limits
imposed by the implementation’s user interface policy. In this case, the implementation must always rep
actual size granted to theCustomItem via thesizeChanged 196 and thepaint 193 methods. For
example, this situation may occur if the implementation prohibits anItem from becoming wider than the
screen. If theCustomItem subclass code returns a value fromgetMinContentWidth that would result in
theCustomItem being wider than the screen, the implementation may assign a width smaller than the
minimum width returned bygetMinContentWidth .

The implementation is allowed to call theCustomItem's content size methods
getMinContentHeight 191 , getMinContentWidth 191 , getPrefContentHeight 191 , and
getPrefContentWidth 192 , in any order with respect to otherCustomItem methods. For all of these
methods, theCustomItem subclass code must return values that are consistent with the current contents
184

javax.microedition.lcdui CustomItem

commandAction(Command, Displayable)

ay
on the

simple
hout

e is

w) that
ode.

with a

e

o

ns
CustomItem . If the contents changes, it is not sufficient for theCustomItem subclass code simply to begin
returning different values from the content size methods. Instead, the subclass code must call the
invalidate 192 method whenever its contents changes. This indicates to the implementation that it m
need to perform its layout computation, which will call the content size methods to get new values based
CustomItem's new contents.

Interaction Modes
TheCustomItem class is intended to allow edit-in-place on many items, but it does not allow every
conceivable interaction. Desire for flexibility has been balanced against a requirement that these APIs be
enough to master easily, along with a need to allow for platform-specific variations in look-and-feel, all wit
sacrificing interoperability.

The general idea is that there are multiple interaction “modes” and that theForm implementation can convey
which ones it supports. TheCustomItem can then choose to support one or more interaction modes. Ther
no requirement for aCustomItem to implement all combinations of all interaction modes. Typically, a
CustomItem will implement an approach (such as the separate editing screen technique discussed belo
works on all platforms, in addition to a highly interactive approach that relies on a particular interaction m
At run time, theCustomItem code can query the system to determine whether this interaction mode is
supported. If it is, theCustomItem can use it; otherwise, it will fall back to the approach that works on all
platforms.

CustomItem can always use item commands to invoke a separate editing screen, although components
small number of discrete states could simply respond by changing the state and then causing an
notifyStateChanged notification. A technique for using a separate editing screen would be to load th
value into anotherDisplayable object (such as a List) and then to call
Display.setCurrent(Displayable) 214 on it. When the user issues a command (such as “OK”) t
indicate that editing of this value is complete, the listener can retrieve the value from thatDisplayable
object and then callDisplay.setCurrentItem(Item) 216 to return to this item.

Keypad Input
The implementation may optionally support delivery of keypad events to theCustomItem . The
implementation indicates the level of support by setting theKEY_PRESS, KEY_RELEASE, andKEY_REPEAT
bits in the value returned bygetInteractionModes . Events corresponding to these bits are delivered
through calls to thekeyPressed() , keyReleased() , andkeyRepeated() methods, respectively. If an
implementation supportsKEY_RELEASE events, it must also supportKEY_PRESS events. If an
implementation supportsKEY_REPEATevents, it must also supportKEY_PRESSandKEY_RELEASEevents.
If supported,KEY_RELEASEevents will generally occur after a correspondingKEY_PRESSevent is received,
andKEY_REPEATevents will generally occur betweenKEY_PRESSandKEY_RELEASEevents. However, it
is possible for theCustomItem to receiveKEY_RELEASEor KEY_REPEATevents without a corresponding
KEY_PRESS if a key is down when theCustomItem becomes visible.

Key event methods are passed thekeyCode indicating the key on which the event occurred. Implementatio
must provide means for the user to generate events with key codesCanvas.KEY_NUM0 through
Canvas.KEY_NUM9, Canvas.KEY_STAR , andCanvas.KEY_POUND. Implementations may also deliver
key events for other keys, include device-specific keys. The set of keys available to aCustomItem may differ
depending upon whether commands have been added to it.

The application may map key codes to game actions through use of thegetGameAction method. If the
implementation supports key events onCustomItems , the implementation must provide a sufficient set of
key codes and a mapping to game actions such that all game actions are available toCustomItems .
185

CustomItem javax.microedition.lcdui

commandAction(Command, Displayable)

 elect

n the

ation

this
height

em,
The set of keys and the key events available to aCustomItem may differ from what is available on aCanvas .
In particular, on a system that supports traversal, the system might use directional keys for traversal and
not to deliver these keys toCustomItems . The mapping between key codes and game actions in a
CustomItem may differ from the mapping in aCanvas . See Key Events and Game Actions on class
Canvas for further information about key codes and game actions.

Pointer Input
The implementation may optionally support delivery of pointer events (such as taps with a stylus) to the
CustomItem . The implementation indicates the level of support by setting thePOINTER_PRESS,
POINTER_RELEASE, andPOINTER_DRAGbits in the value returned bygetInteractionModes . Events
corresponding to these bits are delivered through calls to thepointerPressed() ,
pointerReleased() , andpointerDragged() methods, respectively. If an implementation supports
POINTER_RELEASE events, it must also supportPOINTER_PRESS events. If an implementation supports
POINTER_DRAG events, it must also supportPOINTER_PRESS andPOINTER_RELEASE events. If
supported,POINTER_RELEASEevents will generally occur after a correspondingPOINTER_PRESSevent is
received, andPOINTER_DRAG events will generally occur betweenPOINTER_PRESS and
POINTER_RELEASE events. However, it is possible for theCustomItem to receivePOINTER_RELEASE
or POINTER_DRAG events without a correspondingPOINTER_PRESS if the pointer is down when the
CustomItem becomes visible.

The(x,y) location of the pointer event is reported with every pointer event. This location is expressed i
coordinate system of theCustomItem , where(0,0) is the upper-left corner of theCustomItem . Under
certain circumstances, pointer events may occur outside the bounds of the item.

Traversal
An implementation may support traversalinternal to aCustomItem , that is, the implementation may
temporarily delegate the responsibility for traversal to the item itself. Even if there is only one traversal loc
inside theCustomItem , the item may want support the internal traversal protocol so that it can perform
specialized highlighting, animation, etc. when the user has traversed into it.

The implementation indicates its support for traversal internal to aCustomItem by setting one or both of the
TRAVERSE_HORIZONTAL or TRAVERSE_VERTICAL bits in the value returned by
getInteractionModes() . If neither of these bits is set, the implementation is unwilling to let
CustomItems traverse internally, or the implementation does not support traversal at all. If the
implementation does support traversal but has declined to permit traversal internal toCustomItems , the
implementation will supply its own highlighting outside theCustomItem's content area.

TheCustomItem need not support internal traversal at all. It can do this by returningfalse to the initial call
to thetraverse method. (This is the default behavior if this method hasn’t been overridden by the
CustomItem .) If this occurs, the system must arrange for the user to be able to traverse onto and past
item. The system must also arrange for proper scrolling to take place, particularly if the item exceeds the
of the screen, regardless of whether internal traversal is occurring.

An implementation may provide support for delivering keypad or pointer events toCustomItems even if it
has declined to support delivering traverse events toCustomItems . If an implementation provides support for
delivering keypad or pointer events toCustomItems , it must provide a means to do so for every
CustomItem , even for those that have refused internal traversal by returningfalse to the initial
traverse() call. This implies that such implementations must still support some notion of focus for an it
even if that item is not supporting internal traversal.

See the documentation for thetraverse 196 method for a full specification of the behavior and
responsibilities required for the item to perform internal traversal.
186

javax.microedition.lcdui CustomItem

commandAction(Command, Displayable)

t to
Item Appearance
The visual appearance of each item consists of a label (handled by the implementation) and its contents
(handled by the subclass).

Labels are the responsibility of the implementation, not the item. The screen area that is allocated to the
CustomItem for its contents is separate from the area that the implementation uses to display the
CustomItem's label. The implementation controls the rendering of the label and its layout with respec
the content area.

TheCustomItem is responsible for painting its contents whenever thepaint method is called.

The colors for foreground, background, highlighted foreground, highlighted background, border, and
highlighted border should be retrieved fromDisplay.getColor(int) 212 . This will allow
CustomItems to match the color scheme of other items provided with the device. TheCustomItem is
responsible for keeping track of its own highlighted and unhighlighted state.

The fonts used should be retrieved fromFont.getFont(int) 228 . This will allow them to match the fonts
used by other items on the device for a consistent visual appearance.

Since: MIDP 2.0

Member Summary

Fields
protected static int KEY_PRESS188

protected static int KEY_RELEASE188

protected static int KEY_REPEAT189

protected static int NONE189

protected static int POINTER_DRAG189

protected static int POINTER_PRESS189

protected static int POINTER_RELEASE189

protected static int TRAVERSE_HORIZONTAL190

protected static int TRAVERSE_VERTICAL190

Constructors
protected CustomItem(String label) 190

Methods
 int getGameAction(int keyCode) 190

protected int getInteractionModes() 191

protected abstract int getMinContentHeight() 191

protected abstract int getMinContentWidth() 191

protected abstract int getPrefContentHeight(int width) 191

protected abstract int getPrefContentWidth(int height) 192

protected void hideNotify() 192

protected void invalidate() 192

protected void keyPressed(int keyCode) 193

protected void keyReleased(int keyCode) 193

protected void keyRepeated(int keyCode) 193

protected abstract
void

paint(Graphics g, int w, int h) 193

protected void pointerDragged(int x, int y) 194

protected void pointerPressed(int x, int y) 194

protected void pointerReleased(int x, int y) 195

protected void repaint() 195
187

CustomItem javax.microedition.lcdui

KEY_PRESS
Fields

KEY_PRESS

Declaration:
protected static final int KEY_PRESS

Description:
Interaction mode bit indicating support for key pressed events.

KEY_PRESS has the value4.

See Also:getInteractionModes() 191 , keyPressed(int) 193

KEY_RELEASE

Declaration:
protected static final int KEY_RELEASE

Description:
Interaction mode bit indicating support for key released events.

KEY_RELEASE has the value8.

protected void repaint(int x, int y, int w, int h) 195

protected void showNotify() 195

protected void sizeChanged(int w, int h) 196

protected boolean traverse(int dir, int viewportWidth, int viewportHeight,
int[] visRect_inout) 196

protected void traverseOut() 199

Inherited Member Summary

Fields inherited from classItem 287

BUTTON291, HYPERLINK292, LAYOUT_2292, LAYOUT_BOTTOM292, LAYOUT_CENTER292,
LAYOUT_DEFAULT292, LAYOUT_EXPAND293, LAYOUT_LEFT293, LAYOUT_NEWLINE_AFTER293,
LAYOUT_NEWLINE_BEFORE293, LAYOUT_RIGHT293, LAYOUT_SHRINK294, LAYOUT_TOP294,
LAYOUT_VCENTER294, LAYOUT_VEXPAND294, LAYOUT_VSHRINK294, PLAIN295

Methods inherited from classItem 287

addCommand(Command)295, getLabel() 295, getLayout() 295, getMinimumHeight() 296,
getMinimumWidth() 296, getPreferredHeight() 296, getPreferredWidth() 296,
notifyStateChanged() 297, removeCommand(Command)297, setDefaultCommand(Command) 298,
setItemCommandListener(ItemCommandListener) 298, setLabel(String) 298,
setLayout(int) 299, setPreferredSize(int, int) 299

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
188

javax.microedition.lcdui CustomItem

KEY_REPEAT

n this
See Also:getInteractionModes() 191 , keyReleased(int) 193

KEY_REPEAT

Declaration:
protected static final int KEY_REPEAT

Description:
Interaction mode bit indicating support for key repeated events.

KEY_REPEAT has the value0x10 .

See Also:getInteractionModes() 191 , keyRepeated(int) 193

NONE

Declaration:
protected static final int NONE

Description:
A value for traversal direction that indicates that traversal has entered or has changed location withi
item, but that no specific direction is associated with this traversal event.

NONE has the value0.

See Also: traverse(int, int, int, int[]) 196

POINTER_DRAG

Declaration:
protected static final int POINTER_DRAG

Description:
Interaction mode bit indicating support for point dragged events.

POINTER_DRAG has the value0x80 .

See Also:getInteractionModes() 191 , pointerDragged(int, int) 194

POINTER_PRESS

Declaration:
protected static final int POINTER_PRESS

Description:
Interaction mode bit indicating support for point pressed events.

POINTER_PRESS has the value0x20 .

See Also:getInteractionModes() 191 , pointerPressed(int, int) 194

POINTER_RELEASE

Declaration:
protected static final int POINTER_RELEASE

Description:
Interaction mode bit indicating support for point released events.

POINTER_RELEASE has the value 0x40 .

See Also:getInteractionModes() 191 , pointerReleased(int, int) 195
189

CustomItem javax.microedition.lcdui

TRAVERSE_HORIZONTAL

ion is
TRAVERSE_HORIZONTAL

Declaration:
protected static final int TRAVERSE_HORIZONTAL

Description:
Interaction mode bit indicating support of horizontal traversal internal to theCustomItem .

TRAVERSE_HORIZONTAL has the value1.

See Also:getInteractionModes() 191 , traverse(int, int, int, int[]) 196

TRAVERSE_VERTICAL

Declaration:
protected static final int TRAVERSE_VERTICAL

Description:
Interaction mode bit indicating support for vertical traversal internal to theCustomItem .

TRAVERSE_VERTICAL has the value2.

See Also:getInteractionModes() 191 , traverse(int, int, int, int[]) 196

Constructors

CustomItem(String)

Declaration:
protected CustomItem (String label)

Description:
Superclass constructor, provided so that theCustomItem subclass can specify its label.

Parameters:
label - theCustomItem's label

Methods

getGameAction(int)

Declaration:
public int getGameAction (int keyCode)

Description:
Gets the game action associated with the given key code of the device. Returns zero if no game act
associated with this key code. See the Game Actions section of classCanvas for further discussion of
game actions.

The mapping of key codes to game actions may differ betweenCustomItem andCanvas .

Parameters:
keyCode - the key code

Returns: the game action corresponding to this key, or0 if none
190

javax.microedition.lcdui CustomItem

getInteractionModes()

ay be
ded for

further

d is
the

d is
the

d is

se this

 or the
Throws:
IllegalArgumentException - if keyCode is not a valid key code

getInteractionModes()

Declaration:
protected final int getInteractionModes ()

Description:
Gets the available interaction modes. This method is intended to be called byCustomItem subclass code
in order for it to determine what kinds of input are available from this device. The modes available m
dependent upon several factors: the hardware keys on the actual device, which of these keys are nee
the system to do proper navigation, the presence of a pointing device, etc. See Interaction Modes for
discussion. If this method returns0, the only interaction available is through item commands.

Returns: a bitmask of the available interaction modes

getMinContentHeight()

Declaration:
protected abstract int getMinContentHeight ()

Description:
Implemented by the subclass to return the minimum height of the content area, in pixels. This metho
called by the implementation as part of its layout algorithm. The actual height granted is reported in
sizeChanged 196 andpaint 193 methods.

Returns: the minimum content height in pixels

getMinContentWidth()

Declaration:
protected abstract int getMinContentWidth ()

Description:
Implemented by the subclass to return the minimum width of the content area, in pixels. This metho
called by the implementation as part of its layout algorithm. The actual width granted is reported in
sizeChanged 196 andpaint 193 methods.

Returns: the minimum content width in pixels

getPrefContentHeight(int)

Declaration:
protected abstract int getPrefContentHeight (int width)

Description:
Implemented by the subclass to return the preferred height of the content area, in pixels. This metho
called by the implementation as part of its layout algorithm.

Thewidth parameter is the tentative width assigned to the content area. The subclass code may u
value in its computation of the preferred height. Thewidth parameter will be -1 if the implementation has
not assigned a tentative value for the width. Otherwise,width will have a specific value if the application
has locked the width of theCustomItem or if the container’s layout algorithm has already computed a
tentative width at the time of this call. The subclass must not assume that the tentative width passed
preferred height returned will be granted. The actual size granted is reported in thesizeChanged 196 and
paint 193 methods.
191

CustomItem javax.microedition.lcdui

getPrefContentWidth(int)

d is

se this

 height

n at

d to

urs if

lidated
Parameters:
width - the tentative content width in pixels, or -1 if a tentative width has not been computed

Returns: the preferred content height in pixels

getPrefContentWidth(int)

Declaration:
protected abstract int getPrefContentWidth (int height)

Description:
Implemented by the subclass to return the preferred width of the content area, in pixels. This metho
called by the implementation as part of its layout algorithm.

Theheight parameter is the tentative height assigned to the content area. The subclass code may u
value in its computation of the preferred width. Theheight parameter will be -1 if the implementation
has not assigned a tentative value for the height. Otherwise,height will have a specific value if the
application has locked the height of theCustomItem or if the container’s layout algorithm has already
computed a tentative height at the time of this call. The subclass must not assume that the tentative
passed or the preferred width returned will be granted. The actual size granted is reported in the
sizeChanged 196 andpaint 193 methods.

Parameters:
height - the tentative content height in pixels, or -1 if a tentative height has not been computed

Returns: the preferred content width in pixels

hideNotify()

Declaration:
protected void hideNotify ()

Description:
Called by the system to notify the item that it is now completely invisible, when it previously had bee
least partially visible. No furtherpaint() calls will be made on this item until after ashowNotify()
has been called again.

The default implementation of this method does nothing.

invalidate()

Declaration:
protected final void invalidate ()

Description:
Signals that theCustomItem's size and traversal location need to be updated. This method is intende
be called byCustomItem subclass code to inform the implementation that the size of the
CustomItem's content area or the internal traversal location might need to change. This often occ
the contents of theCustomItem are modified. A call to this method will return immediately, and it will
cause the container’s layout algorithm to run at some point in the future, possibly resulting in calls to
getMinContentHeight 191 , getMinContentWidth 191 , getPrefContentHeight 191 ,
getPrefContentWidth 192 , sizeChanged 196 , or traverse 196 . Thepaint 193 method may
also be called if repainting is necessary as a result of the layout operation. If the content size is inva
while theCustomItem is not visible, the layout operation may be deferred. Thetraverse method will
be called if theCustomItem contains the current traversal location at the timeinvalidate is called.
192

javax.microedition.lcdui CustomItem

keyPressed(int)

press

ey

ey

e
ea,
ntent
ll
keyPressed(int)

Declaration:
protected void keyPressed (int keyCode)

Description:
Called by the system when a key is pressed. The implementation indicates support for delivery of key
events by setting theKEY_PRESS bit in the value returned by thegetInteractionModes method.

Parameters:
keyCode - the key code of the key that has been pressed

See Also:getInteractionModes() 191

keyReleased(int)

Declaration:
protected void keyReleased (int keyCode)

Description:
Called by the system when a key is released. The implementation indicates support for delivery of k
release events by setting theKEY_RELEASE bit in the value returned by thegetInteractionModes
method.

Parameters:
keyCode - the key code of the key that has been released

See Also:getInteractionModes() 191

keyRepeated(int)

Declaration:
protected void keyRepeated (int keyCode)

Description:
Called by the system when a key is repeated. The implementation indicates support for delivery of k
repeat events by setting theKEY_REPEAT bit in the value returned by thegetInteractionModes
method.

Parameters:
keyCode - the key code of the key that has been repeated

See Also:getInteractionModes() 191

paint(Graphics, int, int)

Declaration:
protected abstract void paint (javax.microedition.lcdui.Graphics 247 g, int w, int h)

Description:
Implemented by the subclass to render the item within its container. At the time of the call, theGraphics
context’s destination is the content area of thisCustomItem (or back buffer for it). The Translation is set
so that the upper left corner of the content area is at(0,0) , and the clip is set to the area to be painted. Th
application must paint every pixel within the given clip area. The item is allowed to modify the clip ar
but the system must not allow any modification to result in drawing outside the bounds of the item’s co
area. Thew andh passed in are the width and height of the content area of the item. These values wi
always be equal to the values passed with the most recent call tosizeChanged() ; they are passed here
as well for convenience.
193

CustomItem javax.microedition.lcdui

pointerDragged(int, int)

t

t

lease)
ns

case

. The
the
Other values of theGraphics object are as follows:

• the current color is black;

• the font is the same as the font returned byFont.getDefaultFont() 227 ;

• the stroke style isSOLID254 ;

Thepaint() method will be called only aftershowNotify() call on this item and before a subsequen
hideNotify() call on this item, in other words, only when at least a portion of the item is actually
visible on the display. In addition, thepaint() method will be called only if the item’s width and heigh
are both greater than zero.

Parameters:
g - theGraphics object to be used for rendering the item

w - current width of the item in pixels

h - current height of the item in pixels

pointerDragged(int, int)

Declaration:
protected void pointerDragged (int x, int y)

Description:
Called by the system when a pointer drag action (for example, pen motion after a press but before a re
has occurred within the item. The(x,y) coordinates are relative to the origin of the item. Implementatio
should deliver pointer drag events to an item even if the pointer is being moved outside the item. In this
the(x,y) coordinates may indicate a location outside the bounds of the item. The implementation
indicates support for delivery of pointer release events by setting thePOINTER_DRAG bit in the value
returned by thegetInteractionModes method.

Parameters:
x - thex coordinate of the pointer drag

y - thex coordinate of the pointer drag

See Also:getInteractionModes() 191

pointerPressed(int, int)

Declaration:
protected void pointerPressed (int x, int y)

Description:
Called by the system when a pointer down action (for example, a pen tap) has occurred within the item
(x,y) coordinates are relative to the origin of the item, and they will always indicate a location within
item. The implementation indicates support for delivery of pointer press events by setting the
POINTER_PRESS bit in the value returned by thegetInteractionModes method.

Parameters:
x - thex coordinate of the pointer down

y - they coordinate of the pointer down

See Also:getInteractionModes() 191
194

javax.microedition.lcdui CustomItem

pointerReleased(int, int)

down

ide the

etting

is will

l

t area is
r

needs
pointerReleased(int, int)

Declaration:
protected void pointerReleased (int x, int y)

Description:
Called by the system when a pointer up action (for example, a pen lift) has occurred after a pointer
action had occurred within the item. The(x,y) coordinates are relative to the origin of the item.
Implementations should deliver a pointer release event to an item even if the pointer has moved outs
item when the release occurs. In this case the(x,y) coordinates may indicate a location outside the
bounds of the item. The implementation indicates support for delivery of pointer release events by s
thePOINTER_RELEASE bit in the value returned by thegetInteractionModes method.

Parameters:
x - the x coordinate of the pointer up

y - the x coordinate of the pointer up

See Also:getInteractionModes() 191

repaint()

Declaration:
protected final void repaint ()

Description:
Called by subclass code to request that the item be repainted. If this item is visible on the display, th
result in a call topaint() the next time theCustomItem is to be displayed. TheCustomItem
subclass should call this method when the item’s internal state has been updated such that its visua
representation needs to be updated.

repaint(int, int, int, int)

Declaration:
protected final void repaint (int x, int y, int w, int h)

Description:
Called by subclass code to request that the specified rectangular area of the item be repainted. If tha
visible on the display, this will result in call topaint with graphics set to include the specified rectangula
area. The area is specified relative to theCustomItem's content area. TheCustomItem should call
this method when the item’s internal state has been updated and only part of the visual representation
to be updated.

Parameters:
x - the x coordinate of the rectangular area to be updated

y - the y coordinate of the rectangular area to be updated

w - the width of the rectangular area to be updated

h - the height of the rectangular area to be updated

showNotify()

Declaration:
protected void showNotify ()
195

CustomItem javax.microedition.lcdui

sizeChanged(int, int)

een

stem

int

if the

e

paints,

d. If

tion of
e
e

the
Description:
Called by the system to notify the item that it is now at least partially visible, when it previously had b
completely invisible. The item may receivepaint() calls aftershowNotify() has been called.

The default implementation of this method does nothing.

sizeChanged(int, int)

Declaration:
protected void sizeChanged (int w, int h)

Description:
Implemented by the subclass in order to handle size change events. This method is called by the sy
when the size of the content area of thisCustomItem has changed.

If the size of aCustomItem changes while it is visible on the display, it may trigger an automatic repa
request. If this occurs, the call tosizeChanged will occur prior to the call topaint . If the
CustomItem has become smaller, the implementation may choose not to trigger a repaint request
remaining contents of theCustomItem have been preserved. Similarly, if theCustomItem has become
larger, the implementation may choose to trigger a repaint only for the new region. In both cases, th
preserved contents must remain stationary with respect to the origin of theCustomItem . If the size
change is significant to the contents of theCustomItem , the application must explicitly issue a repaint
request for the changed areas. Note that the application’s repaint request should not cause multiple re
since it can be coalesced with repaint requests that are already pending.

If the size of the item’s content area changes while it is not visible, calls to this method may be deferre
the size had changed while the item was not visible,sizeChanged will be called at least once before the
item becomes visible once again.

The default implementation of this method does nothing.

Parameters:
w - the new width of the item’s content area

h - the new height of the item’s content area

traverse(int, int, int, int[])

Declaration:
protected boolean traverse (int dir, int viewportWidth, int viewportHeight,

int[] visRect_inout)

Description:
Called by the system when traversal has entered the item or has occurred within the item. The direc
traversal and the item’s visible rectangle are passed into the method. The method must do one of th
following: it must either update its state information pertaining to its internal traversal location, set th
return rectangle to indicate a region associated with this location, and returntrue ; or, it must return
false to indicate that this item does not support internal traversal, or that that internal traversal has
reached the edge of the item and that traversal should proceed to the next item if possible.

The implementation indicates support for internal traversal within aCustomItem by setting one or both
of theTRAVERSE_HORIZONTAL or TRAVERSE_VERTICAL bits in the value returned by the
getInteractionModes method. Thedir parameter indicates the direction of traversal by using
Canvas game actionsCanvas.UP , Canvas.DOWN, Canvas.LEFT , andCanvas.RIGHT , or the
valueNONE, which indicates that there is no specific direction associated with this traversal event. If
TRAVERSE_HORIZONTALbit is set, this indicates that theCanvas.LEFT andCanvas.RIGHT values
196

javax.microedition.lcdui CustomItem

traverse(int, int, int, int[])

re
rform

the
 for

 be

ing
f
the
rray

he
ple,

ust

“first”
icy, if

m.

al

be
ains

ser

priate

t
at the
will be used to indicate the traversal direction. If theTRAVERSE_VERTICAL bit is set, this indicates that
theCanvas.UP andCanvas.DOWNvalues will be used to indicate the traversal direction. If both bits a
set, all four direction values may be used for the traversal direction, indicating that the item should pe
two-dimensional traversal. Thedir parameter may have the valueNONE under any combination of the
TRAVERSE_VERTICAL andTRAVERSE_HORIZONTAL bits.

AlthoughCanvas game actions are used to indicate the traversal direction, this does not imply that
keys mapped to these game actions are being used for traversal, nor that that keys are being used
traversal at all.

TheviewportWidth andviewportHeight parameters indicate the size of the viewable area the
item’s container has granted to its items. This represents the largest area of the item that is likely to
visible at any given time.

ThevisRect_inout parameter is used both for passing information into this method and for return
information from this method. It must be anint[4] array. The information in this array is a rectangle o
the form[x,y,w,h] where(x,y) is the location of the upper-left corner of the rectangle relative to
item’s origin, and(w,h) are the width and height of the rectangle. The return values placed into this a
are significant only when thetraverse() method returnstrue . The values are ignored if the
traverse() method returnsfalse .

When this method is called, thevisRect_inout array contains a rectangle representing the region of t
item that is currently visible. This region might have zero area if no part of the item is visible, for exam
if it is scrolled offscreen. The semantics of the rectangle returned are discussed below.

TheCustomItem must maintain state that tracks whether traversal is within this item, and if it is, it m
also record the current internal location. Initially, traversal is outside the item. The first call to the
traverse() method indicates that traversal has entered the item. Subsequent calls to this method
indicate that traversal is occurring within this item. Traversal remains within the item until the
traverseOut method is called. TheCustomItem must keep track of its traversal state so that it can
distinguish traversalentering the item from traversalwithin the item.

When traversal enters the item, the traversal code should initialize its internal traversal location to the
location appropriate for the item’s structure and the traversal direction. As an example of the latter pol
the traversal direction isDOWN, the initial location should be the topmost internal element of the item.
Similarly, if the traversal direction isUP, the initial location should be the bottommost element of the ite
TheCustomItem should still choose the “first” location appropriately even if its primary axis is
orthogonal to the axis of traversal. For example, suppose the traversal mode supported is
TRAVERSE_VERTICAL but theCustomItem is structured as a horizontal row of elements. If the initi
traversal direction isDOWN, the initial location might be the leftmost element, and if the initial traversal
direction isUP, the initial location might be the rightmost element.

Traversal may enter the item without any specific direction, in which case the traversal direction will
NONE. This may occur if the user selects the item directly (e.g., with a pointing device), or if the item g
the focus because its containingForm has become current. TheCustomItem should choose a default
traversal location. If theCustomItem had been traversed to previously, and if it is appropriate for the u
interface of theCustomItem , the previous traversal location should be restored.

When traversal occurs within the item, the internal traversal location must be moved to the next appro
region in the direction of traversal. The item must report its updated internal traversal location in the
visRect_inout return parameter as described below and returntrue . The item will typically provide a
highlight to display the internal traversal location to the user. Thus, the item will typically also reques
repaints of the old and new traversal locations after each traversal event. There is no requirement th
area the item requests to be repainted is the same as the area returned in thevisRect_inout rectangle.
197

CustomItem javax.microedition.lcdui

traverse(int, int, int, int[])

ult of

ontents.

ceed

in
uld

en

f
h
s
ht

ht
d as if

ngle
in

rds
ap the

rnal
 the
aversal
The system will combine any repaint requests with any additional repainting that may occur as a res
scrolling.

Thetraverse() method may be called with a direction ofNONEwhen the traversal is already within the
CustomItem . This will occur in response to theCustomItem subclass code having called the
invalidate() method. In this case, theCustomItem should simply return its current notion of the
traversal location. This mechanism is useful if theCustomItem needs to update the traversal location
spontaneously (that is, not in response to a traversal event), for example, because of a change in its c

If the internal traversal location is such that the traversal event would logically cause traversal to pro
out of the item, the item should returnfalse from thetraverse() method. For example, if the current
traversal location is the bottommost internal element of the item, and the traversal direction isDOWN, the
traverse() method should simply returnfalse . In this case the method need not update the values
thevisRect_inout array. The item must leave its internal traversal location unchanged, and it sho
not request a repaint to update its highlighting. It should defer these actions until thetraverseOut()
method is called. The system will call thetraverseOut() method when traversal actually leaves the
item. The system might not call thetraverseOut() method, even iftraverse() has returned
false , if this item is at the edge of theForm or there is no other item beyond to accept the traversal. Ev
if the traverse() method returnsfalse , the traversal location is still within this item. It remains within
this item untiltraverseOut() is called.

Note the subtle distinction here between the initialtraverse() call signifyingentry into the item and
subsequent calls signifying traversalwithin the item. A return value offalse to the initial call indicates
that this item performs no internal traversal at all, whereas a return offalse to subsequent calls indicates
that traversal is within this item and may now exit.

The width and height of the rectangle returned in thevisRect_inout array are used by theForm for
scrolling and painting purposes. TheForm must always position the item so that the upper left corner o
this rectangle, as specified by the(x,y) position, is visible. In addition, the item may also specify a widt
and height, in which case theForm will attempt to position the item so that as much of this rectangle a
possible is visible. If the width and height are larger than the size of the viewport, the bottom and rig
portions of this rectangle will most likely not be visible to the user. The rectangle thus returned will
typically denote the size and location of one of the item’s internal elements, and it will also typically
(though not necessarily) correspond to where the element’s highlight will be painted. Width and heig
values of zero are legal and are not treated specially. Negative values of width and height are treate
they were zero.

There is no requirement on the location of the rectangle returned in thevisRect_inout array with
respect to the traversal direction. For example, if theCustomItem implements internal scrolling, a
traversal direction ofDOWNmay cause the item’s contents to scroll upwards far enough so that the recta
returned may be above its old location.CustomItem subclasses must ensure that continued traversal
one direction will eventually reach the edge of the item and then traverse out by returningfalse from this
method.CustomItems must not implement “wraparound” behavior (for example, traversing downwa
from the bottommost element moves the traversal location to the topmost element) because this will tr
traversal within the item.

If the CustomItem consists of internal elements that are smaller than the container’s viewport, the
rectangle returned should be the same size as one of these elements. However, theCustomItem might
have contents whose elements are larger than the viewport, or it might have contents having no inte
structure. In either of these cases, the item should return a rectangle that best represents its idea of
content area that is important for the user to see. When traversal occurs, the item should move its tr
location by an amount based on the viewport size. For example, if the viewport is80 pixels high, and
198

javax.microedition.lcdui CustomItem

traverseOut()

by the

l

ight-to-

row.

gonal

dy

on

al call

m
own

.

sal
traversal occurs downwards, the item might move its traversal location down by70 pixels in order to
display the next screenful of content, with10 pixels overlap for context.

All internal traversal locations must be reachable regardless of which traversal modes are provided
implementation. This implies that, if the implementation provides one-dimensional traversal, the
CustomItem must linearize its internal locations. For example, suppose the traversal mode is
TRAVERSE_VERTICAL and theCustomItem consists of a horizontal row of elements. If the traversa
direction isDOWNthe internal traversal location should move to the right, and if the traversal direction isUP
the internal traversal location should move to the left. (The foregoing convention is appropriate for
languages that use left-to-right text. The opposite convention should be used for languages that use r
left text.) Consider a similar example where the traversal mode isTRAVERSE_VERTICAL and the
CustomItem consists of a grid of elements. A traversal direction ofDOWNmight proceed leftwards across
each row, moving to the next row downwards when the location reaches the rightmost element in a

If the implementation provides two-dimensional traversal but theCustomItem is one-dimensional, a
traversal direction along the item’s axis should traverse within the item, and a traversal direction ortho
to the item’s axis should cause immediate traversal out of the item by returningfalse from this method.
For example, suppose aCustomItem is implementing a vertical stack of elements and traversal is alrea
inside the item. If a traverse event is received with directionUPor DOWN, thetraverse() method should
move to the next element and returntrue . On the other hand, if a traverse event is received with directi
RIGHT or LEFT, thetraverse() method should always returnfalse so that traversal exits the item
immediately. An item that implements internal traversal should always accept entry - that is, the initi
to traverse() should returntrue - regardless of the axis of the traversal direction.

If the traverse() method returnsfalse when traversal is entering the item, this indicates to the syste
that the item does not support internal traversal. In this case, the item should not perform any of its
highlighting, and the system will perform highlighting appropriate for the platform, external to the item

The default implementation of thetraverse() method always returnsfalse .

Parameters:
dir - the direction of traversal, one ofCanvas.UP 147 , Canvas.DOWN143 , Canvas.LEFT 146 ,
Canvas.RIGHT 147 , orNONE189 .

viewportWidth - the width of the container’s viewport

viewportHeight - the height of the container’s viewport

visRect_inout - passes the visible rectangle into the method, and returns the updated traver
rectangle from the method

Returns: true if internal traversal had occurred,false if traversal should proceed out

See Also:getInteractionModes() 191 , traverseOut() 199 , TRAVERSE_HORIZONTAL190 ,
TRAVERSE_VERTICAL190

traverseOut()

Declaration:
protected void traverseOut ()

Description:
Called by the system when traversal has occurred out of the item. This may occur in response to the
CustomItem having returnedfalse to a previous call totraverse() , if the user has begun
interacting with another item, or ifForm containing this item is no longer current. If theCustomItem is
using highlighting to indicate internal traversal, theCustomItem should set its state to be unhighlighted
and request a repaint. (Note that painting will not occur if the item is no longer visible.)
199

CustomItem javax.microedition.lcdui

traverseOut()
See Also:getInteractionModes() 191 , traverse(int, int, int, int[]) 196 ,
TRAVERSE_HORIZONTAL190 , TRAVERSE_VERTICAL190
200

javax.microedition.lcdui DateField

traverseOut()

e
e

t

,

lations
t back
javax.microedition.lcdui

DateField
Declaration
public class DateField extends Item 287

Object
|
+-- javax.microedition.lcdui.Item 287

|
+-- javax.microedition.lcdui.DateField

Description
A DateField is an editable component for presenting date and time (calendar) information that may b
placed into aForm. Value for this field can be initially set or left unset. If value is not set then the UI for th
field shows this clearly. The field value for “not initialized state” is not valid value andgetDate() for this
state returnsnull .

Instance of aDateField can be configured to accept date or time information or both of them. This inpu
mode configuration is done byDATE, TIME or DATE_TIMEstatic fields of this class.DATEinput mode allows
to set only date information andTIME only time information (hours, minutes).DATE_TIMEallows to set both
clock time and date values.

In TIME input mode the date components ofDate object must be set to the “zero epoch” value of January 1
1970.

Calendar calculations in this field are based on default locale and defined time zone. Because of the calcu
and different input modes date object may not contain same millisecond value when set to this field and ge
from this field.

Since: MIDP 1.0

Member Summary

Fields
static int DATE202

static int DATE_TIME202

static int TIME202

Constructors
DateField(String label, int mode) 203

DateField(String label, int mode, java.util.TimeZone
timeZone) 203

Methods
 java.util.Date getDate() 203

 int getInputMode() 204

 void setDate(java.util.Date date) 204

 void setInputMode(int mode) 204
201

DateField javax.microedition.lcdui

DATE

 1,
Fields

DATE

Declaration:
public static final int DATE

Description:
Input mode for date information (day, month, year). With this mode thisDateField presents and allows
only to modify date value. The time information of date object is ignored.

Value1 is assigned toDATE.

DATE_TIME

Declaration:
public static final int DATE_TIME

Description:
Input mode for date (day, month, year) and time (minutes, hours) information. With this mode this
DateField presents and allows to modify both time and date information.

Value3 is assigned toDATE_TIME.

TIME

Declaration:
public static final int TIME

Description:
Input mode for time information (hours and minutes). With this mode thisDateField presents and
allows only to modify time. The date components should be set to the “zero epoch” value of January
1970 and should not be accessed.

Inherited Member Summary

Fields inherited from classItem 287

BUTTON291, HYPERLINK292, LAYOUT_2292, LAYOUT_BOTTOM292, LAYOUT_CENTER292,
LAYOUT_DEFAULT292, LAYOUT_EXPAND293, LAYOUT_LEFT293, LAYOUT_NEWLINE_AFTER293,
LAYOUT_NEWLINE_BEFORE293, LAYOUT_RIGHT293, LAYOUT_SHRINK294, LAYOUT_TOP294,
LAYOUT_VCENTER294, LAYOUT_VEXPAND294, LAYOUT_VSHRINK294, PLAIN295

Methods inherited from classItem 287

addCommand(Command)295, getLabel() 295, getLayout() 295, getMinimumHeight() 296,
getMinimumWidth() 296, getPreferredHeight() 296, getPreferredWidth() 296,
notifyStateChanged() 297, removeCommand(Command)297, setDefaultCommand(Command) 298,
setItemCommandListener(ItemCommandListener) 298, setLabel(String) 298,
setLayout(int) 299, setPreferredSize(int, int) 299

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
202

javax.microedition.lcdui DateField

DateField(String, int)

resents

the
Value2 is assigned toTIME.

Constructors

DateField(String, int)

Declaration:
public DateField (String label, int mode)

Description:
Creates aDateField object with the specified label and mode. This call is identical to
DateField(label, mode, null) .

Parameters:
label - item label

mode - the input mode, one ofDATE, TIME or DATE_TIME

Throws:
IllegalArgumentException - if the inputmode's value is invalid

DateField(String, int, TimeZone)

Declaration:
public DateField (String label, int mode, java.util.TimeZone timeZone)

Description:
Creates a date field in which calendar calculations are based on specificTimeZone object and the default
calendaring system for the current locale. The value of theDateField is initially in the “uninitialized”
state. IftimeZone is null , the system’s default time zone is used.

Parameters:
label - item label

mode - the input mode, one ofDATE, TIME or DATE_TIME

timeZone - a specific time zone, ornull for the default time zone

Throws:
IllegalArgumentException - if the inputmode's value is invalid

Methods

getDate()

Declaration:
public java.util.Date getDate ()

Description:
Returns date value of this field. Returned value isnull if field value is not initialized. The date object is
constructed according the rules of locale specific calendaring system and defined time zone. InTIME mode
field the date components are set to the “zero epoch” value of January 1, 1970. If a date object that p
time beyond one day from this “zero epoch” then this field is in “not initialized” state and this method
returnsnull . In DATEmode field the time component of the calendar is set to zero when constructing
date object.
203

DateField javax.microedition.lcdui

getInputMode()

put

a date
Returns: date object representing time or date depending on input mode

See Also:setDate(Date) 204

getInputMode()

Declaration:
public int getInputMode ()

Description:
Gets input mode for this date field. Valid input modes areDATE, TIME andDATE_TIME.

Returns: input mode of this field

See Also:setInputMode(int) 204

setDate(Date)

Declaration:
public void setDate (java.util.Date date)

Description:
Sets a new value for this field.null can be passed to set the field state to “not initialized” state. The in
mode of this field defines what components of passedDate object is used.

In TIME input mode the date components must be set to the “zero epoch” value of January 1, 1970. If
object that presents time beyond one day then this field is in “not initialized” state. InTIME input mode the
date component ofDate object is ignored and time component is used to precision of minutes.

In DATE input mode the time component ofDate object is ignored.

In DATE_TIME input mode the date and time component ofDate are used but only to precision of
minutes.

Parameters:
date - new value for this field

See Also:getDate() 203

setInputMode(int)

Declaration:
public void setInputMode (int mode)

Description:
Set input mode for this date field. Valid input modes areDATE, TIME andDATE_TIME.

Parameters:
mode - the input mode, must be one ofDATE, TIME or DATE_TIME

Throws:
IllegalArgumentException - if an invalid value is specified

See Also:getInputMode() 204
204

javax.microedition.lcdui Display

setInputMode(int)

r
ds that

ace

when

lls on

hread

ch

lacks
javax.microedition.lcdui

Display
Declaration
public class Display

Object
|
+-- javax.microedition.lcdui.Display

Description
Display represents the manager of the display and input devices of the system. It includes methods fo
retrieving properties of the device and for requesting that objects be displayed on the device. Other metho
deal with device attributes are primarily used withCanvas 139 objects and are thus defined there instead of
here.

There is exactly one instance of Display perMIDlet 444 and the application can get a reference to that
instance by calling thegetDisplay() 213 method. The application may call thegetDisplay() method
at any time during course of its execution. TheDisplay object returned by all calls togetDisplay() will
remain the same during this time.

A typical application will perform the following actions in response to calls to itsMIDlet methods:

• startApp - the application is moving from the paused state to the active state. Initialization of objects
needed while the application is active should be done. The application may callsetCurrent() 214 for

the first screen if that has not already been done. Note thatstartApp() can be called several times if
pauseApp() has been called in between. This means that one-time initialization should not take pl
here but instead should occur within theMIDlet's constructor.

• pauseApp - the application may pause its threads. Also, if it is desirable to start with another screen
the application is re-activated, the new screen should be set withsetCurrent() .

• destroyApp - the application should free resources, terminate threads, etc. The behavior of method ca
user interface objects afterdestroyApp() has returned is undefined.

The user interface objects that are shown on the display device are contained within aDisplayable 218
object. At any time the application may have at most oneDisplayable object that it intends to be shown on
the display device and through which user interaction occurs. ThisDisplayable is referred to as thecurrent
Displayable .

TheDisplay class has asetCurrent() 214 method for setting the currentDisplayable and a
getCurrent() 213 method for retrieving the currentDisplayable . The application has control over its
currentDisplayable and may callsetCurrent() at any time. Typically, the application will change the
currentDisplayable in response to some user action. This is not always the case, however. Another t
may change the currentDisplayable in response to some other stimulus. The currentDisplayable will
also be changed when the timer for anAlert 128 elapses.

The application’s currentDisplayable may not physically be drawn on the screen, nor will user events (su
as keystrokes) that occur necessarily be directed to the currentDisplayable . This may occur because of the
presence of otherMIDlet applications running simultaneously on the same device.

An application is said to be in theforeground if its currentDisplayable is actually visible on the display
device and if user input device events will be delivered to it. If the application is not in the foreground, it
access to both the display and input devices, and it is said to be in thebackground. The policy for allocation of
205

Display javax.microedition.lcdui

setInputMode(int)

trol

ent

n. These
r if

ange. In

d,

el user

r
se that
tem
cs,
these devices to differentMIDlet applications is outside the scope of this specification and is under the con
of an external agent referred to as theapplication management software.

As mentioned above, the application still has a notion of its currentDisplayable even if it is in the
background. The currentDisplayable is significant, even for background applications, because the curr
Displayable is always the one that will be shown the next time the application is brought into the
foreground. The application can determine whether aDisplayable is actually visible on the display by
calling isShown() 220 . In the case ofCanvas , theshowNotify() 154 andhideNotify() 149
methods are called when theCanvas is made visible and is hidden, respectively.

EachMIDlet application has its own currentDisplayable . This means that thegetCurrent() 213
method returns theMIDlet's currentDisplayable , regardless of theMIDlet's foreground/background
state. For example, suppose aMIDlet running in the foreground has currentDisplayable F, and aMIDlet
running in the background has currentDisplayable B. When the foregroundMIDlet calls
getCurrent() , it will returnF, and when the backgroundMIDlet callsgetCurrent() , it will returnB.
Furthermore, if eitherMIDlet changes its currentDisplayable by callingsetCurrent() , this will not
affect the any otherMIDlet's currentDisplayable .

It is possible forgetCurrent() to returnnull . This may occur at startup time, before theMIDlet
application has calledsetCurrent() on its first screen. ThegetCurrent() method will never return a
reference to aDisplayable object that was not passed in a prior call tosetCurrent() call by this
MIDlet .

System Screens
Typically, the current screen of the foregroundMIDlet will be visible on the display. However, under certain
circumstances, the system may create a screen that temporarily obscures the application’s current scree
screens are referred to assystem screens.This may occur if the system needs to show a menu of commands o
the system requires the user to edit text on a separate screen instead of within a text field inside aForm. Even
though the system screen obscures the application’s screen, the notion of the current screen does not ch
particular, while a system screen is visible, a call togetCurrent() will return the application’s current
screen, not the system screen. The value returned byisShown() is false while the currentDisplayable
is obscured by a system screen.

If system screen obscures a canvas, itshideNotify() method is called. When the system screen is remove
restoring the canvas, itsshowNotify() method and then itspaint() method are called. If the system
screen was used by the user to issue a command, thecommandAction() method is called after
showNotify() is called.

This class contains methods to retrieve the prevailing foreground and background colors of the high-lev
interface. These methods are useful for creatingCustomItem objects that match the user interface of other
items and for creating user interfaces withinCanvas that match the user interface of the rest of the system.
Implementations are not restricted to using foreground and background colors in their user interfaces (fo
example, they might use highlight and shadow colors for a beveling effect) but the colors returned are tho
match reasonably well with the implementation’s color scheme. An application implementing a custom i
should use the background color to clear its region and then paint text and geometric graphics (lines, ar
rectangles) in the foreground color.

Since: MIDP 1.0

Member Summary

Fields
206

javax.microedition.lcdui Display

ALERT
Fields

ALERT

Declaration:
public static final int ALERT

Description:
Image type forAlert image.

The value ofALERT is 3.

Since: MIDP 2.0

See Also:getBestImageWidth(int) 212 , getBestImageHeight(int) 211

static int ALERT207

static int CHOICE_GROUP_ELEMENT208

static int COLOR_BACKGROUND208

static int COLOR_BORDER208

static int COLOR_FOREGROUND208

static int COLOR_HIGHLIGHTED_BACKGROUND209

static int COLOR_HIGHLIGHTED_BORDER209

static int COLOR_HIGHLIGHTED_FOREGROUND209

static int LIST_ELEMENT209

Methods
 void callSerially(Runnable r) 210

 boolean flashBacklight(int duration) 210

 int getBestImageHeight(int imageType) 211

 int getBestImageWidth(int imageType) 212

 int getBorderStyle(boolean highlighted) 212

 int getColor(int colorSpecifier) 212

 Displayable getCurrent() 213

static Display getDisplay(javax.microedition.midlet.MIDlet m) 213

 boolean isColor() 213

 int numAlphaLevels() 213

 int numColors() 214

 void setCurrent(Alert alert, Displayable nextDisplayable) 214

 void setCurrent(Displayable nextDisplayable) 214

 void setCurrentItem(Item item) 216

 boolean vibrate(int duration) 216

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
207

Display javax.microedition.lcdui

CHOICE_GROUP_ELEMENT

ith the
tyle

 the
CHOICE_GROUP_ELEMENT

Declaration:
public static final int CHOICE_GROUP_ELEMENT

Description:
Image type forChoiceGroup element image.

The value ofCHOICE_GROUP_ELEMENT is 2.

Since: MIDP 2.0

See Also:getBestImageWidth(int) 212 , getBestImageHeight(int) 211

COLOR_BACKGROUND

Declaration:
public static final int COLOR_BACKGROUND

Description:
A color specifier for use withgetColor . COLOR_BACKGROUND specifies the background color of the
screen. The background color will always contrast with the foreground color.

COLOR_BACKGROUND has the value0.

Since: MIDP 2.0

See Also:getColor(int) 212

COLOR_BORDER

Declaration:
public static final int COLOR_BORDER

Description:
A color specifier for use withgetColor . COLOR_BORDER identifies the color for boxes and borders
when the object is to be drawn in a non-highlighted state. The border color is intended to be used w
background color and will contrast with it. The application should draw its borders using the stroke s
returned bygetBorderStyle() .

COLOR_BORDER has the value4.

Since: MIDP 2.0

See Also:getColor(int) 212

COLOR_FOREGROUND

Declaration:
public static final int COLOR_FOREGROUND

Description:
A color specifier for use withgetColor . COLOR_FOREGROUND specifies the foreground color, for text
characters and simple graphics on the screen. Static text or user-editable text should be drawn with
foreground color. The foreground color will always constrast with background color.

COLOR_FOREGROUND has the value1.

Since: MIDP 2.0

See Also:getColor(int) 212
208

javax.microedition.lcdui Display

COLOR_HIGHLIGHTED_BACKGROUND

ill

r is
t with

 be
COLOR_HIGHLIGHTED_BACKGROUND

Declaration:
public static final int COLOR_HIGHLIGHTED_BACKGROUND

Description:
A color specifier for use withgetColor . COLOR_HIGHLIGHTED_BACKGROUNDidentifies the color for
the focus, or focus highlight, when it is drawn as a filled in rectangle. The highlighted background w
always constrast with the highlighted foreground.

COLOR_HIGHLIGHTED_BACKGROUND has the value2.

Since: MIDP 2.0

See Also:getColor(int) 212

COLOR_HIGHLIGHTED_BORDER

Declaration:
public static final int COLOR_HIGHLIGHTED_BORDER

Description:
A color specifier for use withgetColor . COLOR_HIGHLIGHTED_BORDER identifies the color for
boxes and borders when the object is to be drawn in a highlighted state. The highlighted border colo
intended to be used with the background color (not the highlighted background color) and will contras
it. The application should draw its borders using the stroke style returnedby getBorderStyle() .

COLOR_HIGHLIGHTED_BORDER has the value5.

Since: MIDP 2.0

See Also:getColor(int) 212

COLOR_HIGHLIGHTED_FOREGROUND

Declaration:
public static final int COLOR_HIGHLIGHTED_FOREGROUND

Description:
A color specifier for use withgetColor . COLOR_HIGHLIGHTED_FOREGROUNDidentifies the color for
text characters and simple graphics when they are highlighted. Highlighted foreground is the color to
used to draw the highlighted text and graphics against the highlighted background. The highlighted
foreground will always constrast with the highlighted background.

COLOR_HIGHLIGHTED_FOREGROUND has the value3.

Since: MIDP 2.0

See Also:getColor(int) 212

LIST_ELEMENT

Declaration:
public static final int LIST_ELEMENT

Description:
Image type forList element image.

The value ofLIST_ELEMENT is 1.

Since: MIDP 2.0
209

Display javax.microedition.lcdui

callSerially(Runnable)

mary,

f

ore the

n call
for

d

ct the
nd off
See Also:getBestImageWidth(int) 212 , getBestImageHeight(int) 211

Methods

callSerially(Runnable)

Declaration:
public void callSerially (Runnable r)

Description:
Causes theRunnable objectr to have itsrun() method called later, serialized with the event stream,
soon after completion of the repaint cycle. As noted in the Event Handling section of the package sum
the methods that deliver event notifications to the application are all called serially. The call tor.run()
will be serialized along with the event calls into the application. Therun() method will be called exactly
once for each call tocallSerially() . Calls torun() will occur in the order in which they were
requested by calls tocallSerially() .

If the currentDisplayable is aCanvas that has a repaint pending at the time of a call to
callSerially() , thepaint() method of theCanvas will be called and will return, and a buffer
switch will occur (if double buffering is in effect), before therun() method of theRunnable is called. If
the currentDisplayable contains one or moreCustomItems that have repaints pending at the time o
a call tocallSerially() , thepaint() methods of theCustomItems will be called and will return
before therun() method of theRunnable is called. Calls to therun() method will occur in a timely
fashion, but they are not guaranteed to occur immediately after the repaint cycle finishes, or even bef
next event is delivered.

ThecallSerially() method may be called from any thread. The call to therun() method will occur
independently of the call tocallSerially() . In particular,callSerially() will never block
waiting for r.run() to return.

As with other callbacks, the call tor.run() must return quickly. If it is necessary to perform a long-
running operation, it may be initiated from within therun() method. The operation itself should be
performed within another thread, allowingrun() to return.

ThecallSerially() facility may be used by applications to run an animation that is properly
synchronized with the repaint cycle. A typical application will set up a frame to be displayed and the
repaint() . The application must then wait until the frame is actually displayed, after which the setup
the next frame may occur. The call torun() notifies the application that the previous frame has finishe
painting. The example below showscallSerially() being used for this purpose.

Parameters:
r - instance of interfaceRunnable to be called

flashBacklight(int)

Declaration:
public boolean flashBacklight (int duration)

Description:
Requests a flashing effect for the device’s backlight. The flashing effect is intended to be used to attra
user’s attention or as a special effect for games. Examples of flashing are cycling the backlight on a
210

javax.microedition.lcdui Display

getBestImageHeight(int)

olled

 zero.
ing.

t,

ould

nd,
or from dim to bright repeatedly. The return value indicates if the flashing of the backlight can be contr
by the application.

The flashing effect occurs for the requested duration, or it is switched off if the requested duration is
This method returns immediately; that is, it must not block the caller while the flashing effect is runn

Calls to this method are honored only if theDisplay is in the foreground. This method MUST perform no
action and returnfalse if theDisplay is in the background.

The device MAY limit or override the duration. For devices that do not include a controllable backligh
calls to this method returnfalse .

Parameters:
duration - the number of milliseconds the backlight should be flashed, or zero if the flashing sh
be stopped

Returns: true if the backlight can be controlled by the application and this display is in the foregrou
false otherwise

Throws:
IllegalArgumentException - if duration is negative

Since: MIDP 2.0

getBestImageHeight(int)

Declaration:
public int getBestImageHeight (int imageType)

Description:
Returns the best image height for a given image type. The image type must be one of
LIST_ELEMENT209 , CHOICE_GROUP_ELEMENT208 , orALERT207 .

Parameters:
imageType - the image type

class Animation extends Canvas
implements Runnable {

// paint the current frame
void paint(Graphics g) { ... }

Display display; // the display for the application
void paint(Graphics g) { ... } // paint the current frame
void startAnimation() {

// set up initial frame
repaint();
display.callSerially(this);

}
// called after previous repaint is finished
void run() {

if (/* there are more frames */) {
// set up the next frame
repaint();
display.callSerially(this);

}
}

}

211

Display javax.microedition.lcdui

getBestImageWidth(int)

gative

d/non-
ht be
Returns: the best image height for the image type, may be zero if there is no best size; must not be
negative

Throws:
IllegalArgumentException - if imageType is illegal

Since: MIDP 2.0

getBestImageWidth(int)

Declaration:
public int getBestImageWidth (int imageType)

Description:
Returns the best image width for a given image type. The image type must be one ofLIST_ELEMENT209 ,
CHOICE_GROUP_ELEMENT208 , or ALERT207 .

Parameters:
imageType - the image type

Returns: the best image width for the image type, may be zero if there is no best size; must not be ne

Throws:
IllegalArgumentException - if imageType is illegal

Since: MIDP 2.0

getBorderStyle(boolean)

Declaration:
public int getBorderStyle (boolean highlighted)

Description:
Returns the stroke style used for border drawing depending on the state of the component (highlighte
highlighted). For example, on a monochrome system, the border around a non-highlighted item mig
drawn with aDOTTED stroke style while the border around a highlighted item might be drawn with a
SOLID stroke style.

Parameters:
highlighted - true if the border style being requested is for the highlighted state,false if the
border style being requested is for the non-highlighted state

Returns: Graphics.DOTTED 253 or Graphics.SOLID 254

Since: MIDP 2.0

getColor(int)

Declaration:
public int getColor (int colorSpecifier)

Description:
Returns one of the colors from the high level user interface color scheme, in the form0x00RRGGBBbased
on thecolorSpecifier passed in.

Parameters:
colorSpecifier - the predefined color specifier; must be one ofCOLOR_BACKGROUND208 ,
COLOR_FOREGROUND208 , COLOR_HIGHLIGHTED_BACKGROUND209 ,
212

javax.microedition.lcdui Display

getCurrent()
COLOR_HIGHLIGHTED_FOREGROUND209 , COLOR_BORDER208 , or
COLOR_HIGHLIGHTED_BORDER209

Returns: color in the form of0x00RRGGBB

Throws:
IllegalArgumentException - if colorSpecifier is not a valid color specifier

Since: MIDP 2.0

getCurrent()

Declaration:
public javax.microedition.lcdui.Displayable 218 getCurrent ()

Description:
Gets the currentDisplayable object for thisMIDlet . TheDisplayable object returned may not
actually be visible on the display if theMIDlet is running in the background, or if theDisplayable is
obscured by a system screen. TheDisplayable.isShown() 220 method may be called to determine
whether theDisplayable is actually visible on the display.

The value returned bygetCurrent() may benull . This occurs after the application has been
initialized but before the first call tosetCurrent() .

Returns: theMIDlet's currentDisplayable object

See Also:setCurrent(Displayable) 214

getDisplay(MIDlet)

Declaration:
public static javax.microedition.lcdui.Display 205

getDisplay (javax.microedition.midlet.MIDlet 444 m)

Description:
Gets theDisplay object that is unique to thisMIDlet .

Parameters:
m - MIDlet of the application

Returns: the display object that application can use for its user interface

Throws:
NullPointerException - if m is null

isColor()

Declaration:
public boolean isColor ()

Description:
Gets information about color support of the device.

Returns: true if the display supports color,false otherwise

numAlphaLevels()

Declaration:
public int numAlphaLevels ()
213

Display javax.microedition.lcdui

numColors()

return
es
g.

ly
,

 of
Description:
Gets the number of alpha transparency levels supported by this implementation. The minimum legal
value is2, which indicates support for full transparency and full opacity and no blending. Return valu
greater than2 indicate that alpha blending is supported. For further information, see Alpha Processin

Returns: number of alpha levels supported

Since: MIDP 2.0

numColors()

Declaration:
public int numColors ()

Description:
Gets the number of colors (ifisColor() is true) or graylevels (ifisColor() is false) that can be
represented on the device.

Note that the number of colors for a black and white display is2.

Returns: number of colors

setCurrent(Alert, Displayable)

Declaration:
public void setCurrent (javax.microedition.lcdui.Alert 128 alert,

javax.microedition.lcdui.Displayable 218 nextDisplayable)

Description:
Requests that thisAlert be made current, and thatnextDisplayable be made current after the
Alert is dismissed. This call returns immediately regardless of theAlert's timeout value or whether it
is a modal alert. ThenextDisplayable must not be anAlert , and it must not benull .

The automatic advance tonextDisplayable occurs only when theAlert's default listener is present
on theAlert when it is dismissed. See Alert Commands and Listeners for details.

In other respects, this method behaves identically tosetCurrent(Displayable) 214 .

Parameters:
alert - the alert to be shown

nextDisplayable - theDisplayable to be shown after this alert is dismissed

Throws:
NullPointerException - if alert ornextDisplayable is null

IllegalArgumentException - if nextDisplayable is anAlert

See Also:Alert 128 , getCurrent() 213

setCurrent(Displayable)

Declaration:
public void setCurrent (javax.microedition.lcdui.Displayable 218 nextDisplayable)

Description:
Requests that a differentDisplayable object be made visible on the display. The change will typical
not take effect immediately. It may be delayed so that it occurs between event delivery method calls
although it is not guaranteed to occur before the next event delivery method is called. The
setCurrent() method returns immediately, without waiting for the change to take place. Because
214

javax.microedition.lcdui Display

setCurrent(Displayable)

t

n that
ssing
s a

sidered

hese
h these

be

il
this delay, a call togetCurrent() shortly after a call tosetCurrent() is unlikely to return the value
passed tosetCurrent() .

Calls tosetCurrent() are not queued. A delayed request made by asetCurrent() call may be
superseded by a subsequent call tosetCurrent() . For example, if screenS1 is current, then

may eventually result inS3 being made current, bypassingS2 entirely.

When aMIDlet application is first started, there is no currentDisplayable object. It is the
responsibility of the application to ensure that aDisplayable is visible and can interact with the user a
all times. Therefore, the application should always callsetCurrent() as part of its initialization.

The application may passnull as the argument tosetCurrent() . This does not have the effect of
setting the currentDisplayable to null ; instead, the currentDisplayable remains unchanged.
However, the application management software may interpret this call as a request from the applicatio
it is requesting to be placed into the background. Similarly, if the application is in the background, pa
a non-null reference tosetCurrent() may be interpreted by the application management software a
request that the application is requesting to be brought to the foreground. The request should be con
to be made even if the currentDisplayable is passed to thesetCurrent() . For example, the code

generally will have no effect other than requesting that the application be brought to the foreground. T
are only requests, and there is no requirement that the application management software comply wit
requests in a timely fashion if at all.

If the Displayable passed tosetCurrent() is anAlert 128 , the previously current
Displayable , if any, is restored after theAlert has been dismissed. If there is a current
Displayable , the effect is as ifsetCurrent(Alert, getCurrent()) had been called. Note
that this will result in an exception being thrown if the currentDisplayable is already an alert. If there is
no currentDisplayable (which may occur at startup time) the implementation’s previous state will
restored after theAlert has been dismissed. The automatic restoration of the previousDisplayable or
the previous state occurs only when theAlert's default listener is present on theAlert when it is
dismissed. See Alert Commands and Listeners for details.

To specify theDisplayable to be shown after anAlert is dismissed, the application should use the
setCurrent(Alert,

If the application callssetCurrent() while a system screen is active, the effect may be delayed unt
after the system screen is dismissed. The implementation may choose to interpretsetCurrent() in such
a situation as a request to cancel the effect of the system screen, regardless of whethersetCurrent()
has been delayed.

Parameters:
nextDisplayable - theDisplayable requested to be made current;null is allowed

See Also:getCurrent() 213

d.setCurrent(S2);
d.setCurrent(S3);

d.setCurrent(d.getCurrent());
215

Display javax.microedition.lcdui

setCurrentItem(Item)

ested

tention

ration

quest.

alls

 be

d,
setCurrentItem(Item)

Declaration:
public void setCurrentItem (javax.microedition.lcdui.Item 287 item)

Description:
Requests that theDisplayable that contains thisItem be made current, scrolls theDisplayable so
that thisItem is visible, and possibly assigns the focus to thisItem . The containingDisplayable is
first made current as ifsetCurrent(Displayable) 214 had been called. When the containing
Displayable becomes current, or if it is already current, it is scrolled if necessary so that the requ
Item is made visible. Then, if the implementation supports the notion of input focus, and if theItem
accepts the input focus, the input focus is assigned to theItem .

This method always returns immediately, without waiting for the switching of theDisplayable , the
scrolling, and the assignment of input focus to take place.

It is an error for theItem not to be contained within a container. It is also an error if theItem is contained
within anAlert .

Parameters:
item - the item that should be made visible

Throws:
IllegalStateException 37 - if the item is not owned by a container

IllegalStateException 37 - if the item is owned by anAlert

NullPointerException - if item is null

Since: MIDP 2.0

vibrate(int)

Declaration:
public boolean vibrate (int duration)

Description:
Requests operation of the device’s vibrator. The vibrator is intended to be used to attract the user’s at
or as a special effect for games. The return value indicates if the vibrator can be controlled by the
application.

This method switches on the vibrator for the requested duration, or switches it off if the requested du
is zero. If this method is called while the vibrator is still activated from a previous call, the request is
interpreted as setting a new duration. It is not interpreted as adding additional time to the original re
This method returns immediately; that is, it must not block the caller while the vibrator is running.

Calls to this method are honored only if theDisplay is in the foreground. This method MUST perform no
action and returnfalse if theDisplay is in the background.

The device MAY limit or override the duration. For devices that do not include a controllable vibrator, c
to this method returnfalse .

Parameters:
duration - the number of milliseconds the vibrator should be run, or zero if the vibrator should
turned off

Returns: true if the vibrator can be controlled by the application and this display is in the foregroun
false otherwise
216

javax.microedition.lcdui Display

vibrate(int)
Throws:
IllegalArgumentException - if duration is negative

Since: MIDP 2.0
217

Displayable javax.microedition.lcdui

vibrate(int)

ction

le, if
o the
javax.microedition.lcdui

Displayable
Declaration
public abstract class Displayable

Object
|
+-- javax.microedition.lcdui.Displayable

Direct Known Subclasses:Canvas 139 , Screen 315

Description
An object that has the capability of being placed on the display. ADisplayable object may have a title, a
ticker, zero or more commands and a listener associated with it. The contents displayed and their intera
with the user are defined by subclasses.

The title string may contain line breaks. The display of the title string must break accordingly. For examp
only a single line is available for a title and the string contains a line break then only the characters up t
line break are displayed.

Unless otherwise specified by a subclass, the default state of newly createdDisplayable objects is as
follows:

• it is not visible on theDisplay ;

• there is noTicker associated with thisDisplayable ;

• the title isnull ;

• there are noCommands present; and

• there is noCommandListener present.

Since: MIDP 1.0

Member Summary

Methods
 void addCommand(Command cmd)219

 int getHeight() 219

 Ticker getTicker() 219

 java.lang.String getTitle() 220

 int getWidth() 220

 boolean isShown() 220

 void removeCommand(Command cmd) 220

 void setCommandListener(CommandListener l) 221

 void setTicker(Ticker ticker) 221

 void setTitle(String s) 221

protected void sizeChanged(int w, int h) 222
218

javax.microedition.lcdui Displayable

addCommand(Command)

 in the

hould

the
he
Methods

addCommand(Command)

Declaration:
public void addCommand(javax.microedition.lcdui.Command 175 cmd)

Description:
Adds a command to theDisplayable . The implementation may choose, for example, to add the
command to any of the available soft buttons or place it in a menu. If the added command is already
screen (tested by comparing the object references), the method has no effect. If theDisplayable is
actually visible on the display, and this call affects the set of visible commands, the implementation s
update the display as soon as it is feasible to do so.

Parameters:
cmd - the command to be added

Throws:
NullPointerException - if cmd is null

getHeight()

Declaration:
public int getHeight ()

Description:
Gets the height in pixels of the displayable area available to the application. The value returned is
appropriate for the particularDisplayable subclass. This value may depend on how the device uses
display and may be affected by the presence of a title, a ticker, or commands. This method returns t
proper result at all times, even if theDisplayable object has not yet been shown.

Returns: height of the area available to the application

Since: MIDP 2.0

getTicker()

Declaration:
public javax.microedition.lcdui.Ticker 345 getTicker ()

Description:
Gets the ticker used by thisDisplayable .

Returns: ticker object used, ornull if no ticker is present

Since: MIDP 2.0

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
219

Displayable javax.microedition.lcdui

getTitle()

the
he

lay as
See Also:setTicker(Ticker) 221

getTitle()

Declaration:
public String getTitle ()

Description:
Gets the title of theDisplayable . Returnsnull if there is no title.

Returns: the title of the instance, ornull if no title

Since: MIDP 2.0

See Also:setTitle(String) 221

getWidth()

Declaration:
public int getWidth ()

Description:
Gets the width in pixels of the displayable area available to the application. The value returned is
appropriate for the particularDisplayable subclass. This value may depend on how the device uses
display and may be affected by the presence of a title, a ticker, or commands. This method returns t
proper result at all times, even if theDisplayable object has not yet been shown.

Returns: width of the area available to the application

Since: MIDP 2.0

isShown()

Declaration:
public boolean isShown ()

Description:
Checks if theDisplayable is actually visible on the display. In order for aDisplayable to be visible,
all of the following must be true: theDisplay's MIDlet must be running in the foreground, the
Displayable must be theDisplay's current screen, and theDisplayable must not be obscured
by a system screen.

Returns: true if theDisplayable is currently visible

removeCommand(Command)

Declaration:
public void removeCommand(javax.microedition.lcdui.Command 175 cmd)

Description:
Removes a command from theDisplayable . If the command is not in theDisplayable (tested by
comparing the object references), the method has no effect. If theDisplayable is actually visible on the
display, and this call affects the set of visible commands, the implementation should update the disp
soon as it is feasible to do so. Ifcmd is null , this method does nothing.

Parameters:
cmd - the command to be removed
220

javax.microedition.lcdui Displayable

setCommandListener(CommandListener)

his is

 as

. This
setCommandListener(CommandListener)

Declaration:
public void setCommandListener (javax.microedition.lcdui.CommandListener 183 l)

Description:
Sets a listener forCommands175 to thisDisplayable , replacing any previousCommandListener .
A null reference is allowed and has the effect of removing any existing listener.

Parameters:
l - the new listener, ornull .

setTicker(Ticker)

Declaration:
public void setTicker (javax.microedition.lcdui.Ticker 345 ticker)

Description:
Sets a ticker for use with thisDisplayable , replacing any previous ticker. Ifnull , removes the ticker
object from thisDisplayable . The same ticker may be shared by severalDisplayable objects within
an application. This is done by callingsetTicker() with the sameTicker object on several different
Displayable objects. If theDisplayable is actually visible on the display, the implementation
should update the display as soon as it is feasible to do so.

The existence of a ticker may affect the size of the area available forDisplayable's contents. Addition,
removal, or the setting of the ticker at runtime may dynamically change the size of the content area. T
most important to be aware of when using theCanvas class. If the available area does change, the
application will be notified via a call tosizeChanged() 222 .

Parameters:
ticker - the ticker object used on this screen

Since: MIDP 2.0

See Also:getTicker() 219

setTitle(String)

Declaration:
public void setTitle (String s)

Description:
Sets the title of theDisplayable . If null is given, removes the title.

If the Displayable is actually visible on the display, the implementation should update the display
soon as it is feasible to do so.

The existence of a title may affect the size of the area available forDisplayable content. Addition,
removal, or the setting of the title text at runtime may dynamically change the size of the content area
is most important to be aware of when using theCanvas class. If the available area does change, the
application will be notified via a call tosizeChanged() 222 .

Parameters:
s - the new title, ornull for no title

Since: MIDP 2.0

See Also:getTitle() 220
221

Displayable javax.microedition.lcdui

sizeChanged(int, int)

ch as

dition,

e

 This
sizeChanged(int, int)

Declaration:
protected void sizeChanged (int w, int h)

Description:
The implementation calls this method when the available area of theDisplayable has been changed.
The “available area” is the area of the display that may be occupied by the application’s contents, su
Items in aForm or graphics within aCanvas . It does not include space occupied by a title, a ticker,
command labels, scroll bars, system status area, etc. A size change can occur as a result of the ad
removal, or changed contents of any of these display features.

This method is called at least once before theDisplayable is shown for the first time. If the size of a
Displayable changes while it is visible,sizeChanged will be called. If the size of aDisplayable
changes while it isnot visible, calls tosizeChanged may be deferred. If the size had changed while th
Displayable was not visible,sizeChanged will be called at least once at the time the
Displayable becomes visible once again.

The default implementation of this method inDisplayable and its subclasses defined in this
specification must be empty. This method is intended solely for being overridden by the application.
method is defined onDisplayable even though applications are prohibited from creating direct
subclasses ofDisplayable . It is defined here so that applications can override it in subclasses of
Canvas andForm. This is useful forCanvas subclasses to tailor their graphics and forForms to modify
Item sizes and layout directives in order to fit their contents within the the available display area.

Parameters:
w - the new width in pixels of the available area

h - the new height in pixels of the available area

Since: MIDP 2.0
222

javax.microedition.lcdui Font

sizeChanged(int, int)

atches

ic

ecify a
javax.microedition.lcdui

Font
Declaration
public final class Font

Object
|
+-- javax.microedition.lcdui.Font

Description
TheFont class represents fonts and font metrics.Fonts cannot be created by applications. Instead,
applications query for fonts based on font attributes and the system will attempt to provide a font that m
the requested attributes as closely as possible.

A Font's attributes are style, size, and face. Values for attributes must be specified in terms of symbol
constants. Values for the style attribute may be combined using the bit-wiseORoperator, whereas values for the
other attributes may not be combined. For example, the value

STYLE_BOLD | STYLE_ITALIC

may be used to specify a bold-italic font; however

SIZE_LARGE | SIZE_SMALL

is illegal.

The values of these constants are arranged so that zero is valid for each attribute and can be used to sp
reasonable default font for the system. For clarity of programming, the following symbolic constants are
provided and are defined to have values of zero:

• STYLE_PLAIN

• SIZE_MEDIUM

• FACE_SYSTEM

Values for other attributes are arranged to have disjoint bit patterns in order to raise errors if they are
inadvertently misused (for example, usingFACE_PROPORTIONAL where a style is required). However, the
values for the different attributes are not intended to be combined with each other.

Since: MIDP 1.0

Member Summary

Fields
static int FACE_MONOSPACE224

static int FACE_PROPORTIONAL224

static int FACE_SYSTEM225

static int FONT_INPUT_TEXT225

static int FONT_STATIC_TEXT225

static int SIZE_LARGE225

static int SIZE_MEDIUM225

static int SIZE_SMALL226
223

Font javax.microedition.lcdui

FACE_MONOSPACE
Fields

FACE_MONOSPACE

Declaration:
public static final int FACE_MONOSPACE

Description:
The “monospace” font face.

Value32 is assigned toFACE_MONOSPACE.

FACE_PROPORTIONAL

Declaration:
public static final int FACE_PROPORTIONAL

Description:
The “proportional” font face.

static int STYLE_BOLD226

static int STYLE_ITALIC 226

static int STYLE_PLAIN226

static int STYLE_UNDERLINED226

Methods
 int charsWidth(char[] ch, int offset, int length) 226

 int charWidth(char ch) 227

 int getBaselinePosition() 227

static Font getDefaultFont() 227

 int getFace() 228

static Font getFont(int fontSpecifier) 228

static Font getFont(int face, int style, int size) 228

 int getHeight() 228

 int getSize() 229

 int getStyle() 229

 boolean isBold() 229

 boolean isItalic() 229

 boolean isPlain() 229

 boolean isUnderlined() 230

 int stringWidth(String str) 230

 int substringWidth(String str, int offset, int len) 230

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
224

javax.microedition.lcdui Font

FACE_SYSTEM
Value64 is assigned toFACE_PROPORTIONAL.

FACE_SYSTEM

Declaration:
public static final int FACE_SYSTEM

Description:
The “system” font face.

Value0 is assigned toFACE_SYSTEM.

FONT_INPUT_TEXT

Declaration:
public static final int FONT_INPUT_TEXT

Description:
Font specifier used by the implementation to draw text input by a user.FONT_INPUT_TEXThas the value
1.

Since: MIDP 2.0

See Also:getFont(int) 228

FONT_STATIC_TEXT

Declaration:
public static final int FONT_STATIC_TEXT

Description:
Default font specifier used to draw Item and Screen contents.FONT_STATIC_TEXT has the value0.

Since: MIDP 2.0

See Also:getFont(int) 228

SIZE_LARGE

Declaration:
public static final int SIZE_LARGE

Description:
The “large” system-dependent font size.

Value16 is assigned toSIZE_LARGE.

SIZE_MEDIUM

Declaration:
public static final int SIZE_MEDIUM

Description:
The “medium” system-dependent font size.

Value0 is assigned toSTYLE_MEDIUM.
225

Font javax.microedition.lcdui

SIZE_SMALL

.

SIZE_SMALL

Declaration:
public static final int SIZE_SMALL

Description:
The “small” system-dependent font size.

Value8 is assigned toSTYLE_SMALL.

STYLE_BOLD

Declaration:
public static final int STYLE_BOLD

Description:
The bold style constant. This may be combined with the other style constants for mixed styles.

Value1 is assigned toSTYLE_BOLD.

STYLE_ITALIC

Declaration:
public static final int STYLE_ITALIC

Description:
The italicized style constant. This may be combined with the other style constants for mixed styles.

Value2 is assigned toSTYLE_ITALIC .

STYLE_PLAIN

Declaration:
public static final int STYLE_PLAIN

Description:
The plain style constant. This may be combined with the other style constants for mixed styles.

Value0 is assigned toSTYLE_PLAIN.

STYLE_UNDERLINED

Declaration:
public static final int STYLE_UNDERLINED

Description:
The underlined style constant. This may be combined with the other style constants for mixed styles

Value4 is assigned toSTYLE_UNDERLINED.

Methods

charsWidth(char[], int, int)

Declaration:
public int charsWidth (char[] ch, int offset, int length)
226

javax.microedition.lcdui Font

charWidth(char)

 if the

rray

stance
Description:
Returns the advance width of the characters inch , starting at the specified offset and for the specified
number of characters (length). The advance width is the horizontal distance that would be occupied
characters were to be drawn using thisFont , including inter-character spacing following the characters
necessary for proper positioning of subsequent text.

Theoffset andlength parameters must specify a valid range of characters within the character a
ch . Theoffset parameter must be within the range[0..(ch.length)] , inclusive. Thelength
parameter must be a non-negative integer such that(offset + length) <= ch.length .

Parameters:
ch - the array of characters

offset - the index of the first character to measure

length - the number of characters to measure

Returns: the width of the character range

Throws:
ArrayIndexOutOfBoundsException - if offset andlength specify an invalid range

NullPointerException - if ch is null

charWidth(char)

Declaration:
public int charWidth (char ch)

Description:
Gets the advance width of the specified character in this Font. The advance width is the horizontal di
that would be occupied ifch were to be drawn using thisFont , including inter-character spacing
following ch necessary for proper positioning of subsequent text.

Parameters:
ch - the character to be measured

Returns: the total advance width (a non-negative value)

getBaselinePosition()

Declaration:
public int getBaselinePosition ()

Description:
Gets the distance in pixels from the top of the text to the text’s baseline.

Returns: the distance in pixels from the top of the text to the text’s baseline

getDefaultFont()

Declaration:
public static javax.microedition.lcdui.Font 223 getDefaultFont ()

Description:
Gets the default font of the system.

Returns: the default font
227

Font javax.microedition.lcdui

getFace()

es not

 that
nt
getFace()

Declaration:
public int getFace ()

Description:
Gets the face of the font.

Returns: one ofFACE_SYSTEM, FACE_PROPORTIONAL, FACE_MONOSPACE

getFont(int)

Declaration:
public static javax.microedition.lcdui.Font 223 getFont (int fontSpecifier)

Description:
Gets theFont used by the high level user interface for thefontSpecifier passed in. It should be used
by subclasses ofCustomItem andCanvas to match user interface on the device.

Parameters:
fontSpecifier - one ofFONT_INPUT_TEXT, orFONT_STATIC_TEXT

Returns: font that corresponds to the passed in font specifier

Throws:
IllegalArgumentException - if fontSpecifier is not a valid fontSpecifier

Since: MIDP 2.0

getFont(int, int, int)

Declaration:
public static javax.microedition.lcdui.Font 223 getFont (int face, int style, int size)

Description:
Obtains an object representing a font having the specified face, style, and size. If a matching font do
exist, the system will attempt to provide the closest match. This methodalways returns a valid font object,
even if it is not a close match to the request.

Parameters:
face - one ofFACE_SYSTEM, FACE_MONOSPACE, orFACE_PROPORTIONAL

style - STYLE_PLAIN, or a combination ofSTYLE_BOLD, STYLE_ITALIC , and
STYLE_UNDERLINED

size - one ofSIZE_SMALL, SIZE_MEDIUM, or SIZE_LARGE

Returns: instance the nearest font found

Throws:
IllegalArgumentException - if face , style , orsize are not legal values

getHeight()

Declaration:
public int getHeight ()

Description:
Gets the standard height of a line of text in this font. This value includes sufficient spacing to ensure
lines of text painted this distance from anchor point to anchor point are spaced as intended by the fo
designer and the device. This extra space (leading) occurs below the text.
228

javax.microedition.lcdui Font

getSize()
Returns: standard height of a line of text in this font (a non-negative value)

getSize()

Declaration:
public int getSize ()

Description:
Gets the size of the font.

Returns: one ofSIZE_SMALL, SIZE_MEDIUM, SIZE_LARGE

getStyle()

Declaration:
public int getStyle ()

Description:
Gets the style of the font. The value is anOR'ed combination ofSTYLE_BOLD, STYLE_ITALIC , and
STYLE_UNDERLINED; or the value is zero (STYLE_PLAIN).

Returns: style of the current font

See Also: isPlain() 229 , isBold() 229 , isItalic() 229

isBold()

Declaration:
public boolean isBold ()

Description:
Returnstrue if the font is bold.

Returns: true if font is bold

See Also:getStyle() 229

isItalic()

Declaration:
public boolean isItalic ()

Description:
Returnstrue if the font is italic.

Returns: true if font is italic

See Also:getStyle() 229

isPlain()

Declaration:
public boolean isPlain ()

Description:
Returnstrue if the font is plain.

Returns: true if font is plain

See Also:getStyle() 229
229

Font javax.microedition.lcdui

isUnderlined()
isUnderlined()

Declaration:
public boolean isUnderlined ()

Description:
Returnstrue if the font is underlined.

Returns: true if font is underlined

See Also:getStyle() 229

stringWidth(String)

Declaration:
public int stringWidth (String str)

Description:
Gets the total advance width for showing the specifiedString in thisFont . The advance width is the
horizontal distance that would be occupied ifstr were to be drawn using thisFont , including inter-
character spacing followingstr necessary for proper positioning of subsequent text.

Parameters:
str - theString to be measured

Returns: the total advance width

Throws:
NullPointerException - if str is null

substringWidth(String, int, int)

Declaration:
public int substringWidth (String str, int offset, int len)

Description:
Gets the total advance width for showing the specified substring in thisFont . The advance width is the
horizontal distance that would be occupied if the substring were to be drawn using thisFont , including
inter-character spacing following the substring necessary for proper positioning of subsequent text.

Theoffset andlen parameters must specify a valid range of characters withinstr . Theoffset
parameter must be within the range[0..(str.length())] , inclusive. Thelen parameter must be a
non-negative integer such that(offset + len) <= str.length() .

Parameters:
str - theString to be measured

offset - zero-based index of first character in the substring

len - length of the substring

Returns: the total advance width

Throws:
StringIndexOutOfBoundsException - if offset andlength specify an invalid range

NullPointerException - if str is null
230

javax.microedition.lcdui Form

substringWidth(String, int, int)

xt

entire

tes to
ke any

ights to

lar

ut
javax.microedition.lcdui

Form
Declaration
public class Form extends Screen 315

Object
|
+-- javax.microedition.lcdui.Displayable 218

|
+-- javax.microedition.lcdui.Screen 315

|
+-- javax.microedition.lcdui.Form

Description
A Form is aScreen that contains an arbitrary mixture of items: images, read-only text fields, editable te
fields, editable date fields, gauges, choice groups, and custom items. In general, any subclass of theItem 287
class may be contained within a form. The implementation handles layout, traversal, and scrolling. The
contents of theForm scrolls together.

Item Management
The items contained within aForm may be edited using append, delete, insert, and set methods.Items within
aForm are referred to by their indexes, which are consecutive integers in the range from zero tosize()-1 ,
with zero referring to the first item andsize()-1 to the last item.

An item may be placed within at most oneForm. If the application attempts to place an item into aForm, and
the item is already owned by this or anotherForm, anIllegalStateException is thrown. The
application must remove the item from its currently containingForm before inserting it into the newForm.

If the Form is visible on the display when changes to its contents are requested by the application, upda
the display take place as soon as it is feasible for the implementation to do so. Applications need not ta
special action to refresh aForm's display after its contents have been modified.

Layout
Layout policy inForm is organized around rows. Rows are typically related to the width of the screen,
respective of margins, scroll bars, and such. All rows in a particularForm will have the same width. Rows do
not vary in width based on theItems contained within theForm, although they may all change width in
certain circumstances, such as when a scroll bar needs to be added or removed.Forms generally do not scroll
horizontally.

Forms grow vertically and scroll vertically as necessary. The height of aForm varies depending upon the
number of rows and the height of each row. The height of each row is determined by the items that are
positioned on that row. Rows need not all have the same height. Implementations may also vary row he
provide proper padding or vertical alignment ofItem labels.

An implementation may choose to lay outItems in a left-to-right or right-to-left direction depending upon the
language conventions in use. The same choice of layout direction must apply to all rows within a particu
Form.

Prior to the start of the layout algorithm, theForm is considered to have one empty row at the top. The layo
algorithm considers each Item in turn, starting atItem zero and proceeding in order through eachItem until
231

Form javax.microedition.lcdui

substringWidth(String, int, int)

 the

 in

until

m

t

ertain
the

ar

ty
the lastItem in theForm has been processed. If the layout direction (as described above) is left-to-right,
beginning of the row is the left edge of theForm. If the layout direction is right-to-left, the beginning of the row
is the right edge of theForm. Items are laid out at the beginning of each row, proceeding across each row
the chosen layout direction, packing as manyItems onto each row as will fit, unless a condition occurs that
causes the packing of a row to be terminated early. A new row is then added, andItems are packed onto it as
described above.Items are packed onto rows, and new rows are added below existing rows as necessary
all Items have been processed by the layout algorithm.

The layout algorithm has a concept of acurrent alignment. It can have the valueLAYOUT_LEFT,
LAYOUT_CENTER, or LAYOUT_RIGHT. The value of the current alignment at the start of the layout algorith
depends upon the layout direction in effect for thisForm. If the layout direction is left-to-right, the initial
alignment value must beLAYOUT_LEFT. If the layout direction is right-to-left, the initial alignment value mus
beLAYOUT_RIGHT. The current alignment changes when the layout algorithm encounters anItem that has
one of the layout directivesLAYOUT_LEFT, LAYOUT_CENTER, orLAYOUT_RIGHT. If none of these
directives is present on anItem , the current layout directive does not change. This rule has the effect of
grouping the contents of theForm into sequences of consecutiveItems sharing an alignment value. The
alignment value of eachItem is maintained internally to theForm and does not affect theItems' layout
value as reported by theItem.getLayout 295 method.

The layout algorithm generally attempts to place an item on the same row as the previous item, unless c
conditions occur that cause a “row break.” When there is a row break, the current item will be placed at
beginning of a new row instead of being placed after the previous item, even if there is room.

A row break occurs before an item if any of the following conditions occurs:

• the previous item has a row break after it;

• it has theLAYOUT_NEWLINE_BEFORE directive; or

• it is aStringItem whose contents starts with “\n”;

• it is aChoiceGroup , DateField , Gauge, or aTextField , and theLAYOUT_2 directive is not set;
or

• this Item has aLAYOUT_LEFT, LAYOUT_CENTER, or LAYOUT_RIGHT directive that differs from the
Form's current alignment.

A row break occurs after an item if any of the following conditions occurs:

• it is aStringItem whose contents ends with “\n”; or

• it has theLAYOUT_NEWLINE_AFTER directive; or

• it is aChoiceGroup , DateField , Gauge, or aTextField , and theLAYOUT_2 directive is not set.

The presence of theLAYOUT_NEWLINE_BEFORE or LAYOUT_NEWLINE_AFTER directive does not cause
an additional row break if there is one already present. For example, if aLAYOUT_NEWLINE_BEFORE
directive appears on aStringItem whose contents starts with “\n”, there is only a single row break. A simil
rule applies with a trailing “\n” andLAYOUT_NEWLINE_AFTER. Also, there is only a single row break if an
item has theLAYOUT_NEWLINE_AFTER directive and the next item has theLAYOUT_NEWLINE_BEFORE
directive. However, the presence of consecutive “\n” characters, either within a singleStringItem or in
adjacentStringItems , will cause as many row breaks as there are “\n” characters. This will cause emp
rows to be present. The height of an empty row is determined by the prevailing font height of theStringItem
within which the “\n” that ends the row occurs.

Implementations may provide additional conditions under which a row break occurs. For example, an
implementation’s layout policy may lay out labels specially, implicitly causing a break before everyItem that
has a label. Or, as another example, a particular implementation’s user interface style may dictate that a
232

javax.microedition.lcdui Form

substringWidth(String, int, int)

ks to

for
.

 For

nding

ms
,

s

e

ow. If

d the

nd
DateField item always appears on a row by itself. In this case, this implementation may cause row brea
occur both before and after everyDateField item.

Given two items with adjacentForm indexes, if none of the specified or implementation-specific conditions
a row break between them occurs, and if space permits, these items should be placed on the same row

When packingItems onto a row, the width of the item is compared with the remaining space on the row.
this purpose, the width used is theItem's preferred width, unless theItem has theLAYOUT_SHRINK
directive, in which case theItem's minimum width is used. If theItem is too wide to fit in the space
remaining on the row, the row is considered to be full, a new row is added beneath this one, and theItem is laid
out on this new row.

Once the contents of a row have been determined, the space available on the row is distributed by expa
items and by adding space between items. If any items on this row have theLAYOUT_SHRINK directive (that
is, they are shrinkable), space is first distributed to these items. Space is distributed to each of these ite
proportionally to the difference between the eachItem's preferred size and its minimum size. At this stage
no shrinkable item is expanded beyond its preferred width.

For example, consider a row that has30 pixels of space available and that has two shrinkable itemsA andB.
ItemA's preferred size is15 and its minimum size is10 . ItemB's preferred size is30 and its minimum size
is 20 . The difference betweenA's preferred and minimum size is5, andB's difference is10 . The30 pixels
are distributed to these items proportionally to these differences. Therefore,10 pixels are distributed to itemA
and20 pixels to itemB.

If after expanding all the shrinkable items to their preferred widths, there is still space left on the row, thi
remaining space is distributed equally among the Items that have theLAYOUT_EXPAND directive (the
stretchableItems). The presence of any stretchable items on a row will cause theItems on this row to
occupy the full width of the row.

If there are no stretchable items on this row, and there is still space available on this row, theItems are packed
as tightly as possible and are placed on the row according to the alignment value shared by theItems on this
row. (Since changing the current alignment causes a row break, allItems on the same row must share the sam
alignment value.) If the alignment value isLAYOUT_LEFT, theItems are positioned at the left end of the row
and the remaining space is placed at the right end of the row. If the alignment value isLAYOUT_RIGHT, the
Items are positioned at the right end of the row and the remaining space is placed at the left end of the r
the alignment value isLAYOUT_CENTER, theItems are positioned in the middle of the row such that the
remaining space on the row is divided evenly between the left and right ends of the row.

Given the set of items on a particular row, the heights of theseItems are inspected. For eachItem , the height
that is used is the preferred height, unless theItem has theLAYOUT_VSHRINK directive, in which case the
Item's minimum height is used. The height of the tallestItem determines the height of the row.Items that
have theLAYOUT_VSHRINK directive are expanded to their preferred height or to the height of the row,
whichever is smaller.Items that are still shorter than the row height and that have theLAYOUT_VEXPAND
directive will expand to the height of the row. TheLAYOUT_VEXPANDdirective on an item will never increase
the height of a row.

RemainingItems shorter than the row height will be positioned vertically within the row using the
LAYOUT_TOP, LAYOUT_BOTTOM, andLAYOUT_VCENTER directives. If no vertical layout directive is
specified, the item must be aligned along the bottom of the row.

StringItems are treated specially in the above algorithm. If the contents of aStringItem (its string
value, exclusive of its label) contain a newline character (“\n”), the string should be split at that point an
remainder laid out starting on the next row.

If one or both dimensions of the preferred size of aStringItem have been locked, theStringItem is
wrapped to fit that width and height and is treated as a rectangle whose minimum and preferred width a
233

Form javax.microedition.lcdui

substringWidth(String, int, int)

he

. The

ing to

alue is

the

ontal

Item’s
on

e no
o word

shown.

use
ractive

rs
height are the width and height of this rectangle. In this case, theLAYOUT_SHRINK, LAYOUT_EXPAND, and
LAYOUT_VEXPAND directives are ignored.

If both dimensions of the preferred size of aStringItem are unlocked, the text from theStringItem may
be wrapped across multiple rows. At the point in the layout algorithm where the width of theItem is compared
to the remaining space on the row, as much text is taken from the beginning of theStringItem as will fit onto
the current row. The contents of this row are then positioned according to the current alignment value. T
remainder of the text in theStringItem is line-wrapped to the full width of as many new rows as are
necessary to accommodate the text. Each full row is positioned according to the current alignment value
last line of the text might leave space available on its row. If there is no row break following thisStringItem ,
subsequentItems are packed into the remaining space and the contents of the row are positioned accord
the current alignment value. This rule has the effect of displaying the contents of aStringItem as a
paragraph of text set flush-left, flush-right, or centered, depending upon whether the current alignment v
LAYOUT_LEFT, LAYOUT_RIGHT, orLAYOUT_CENTER, respectively. The preferred width and height of a
StringItem wrapped across multiple rows, as reported by theItem.getPreferredWidth 296 and
Item.getPreferredHeight 296 methods, describe the width and height of the bounding rectangle of
wrapped text.

ImageItems are also treated specially by the above algorithm. The foregoing rules concerning the horiz
alignment value and theLAYOUT_LEFT, LAYOUT_RIGHT, andLAYOUT_CENTER directives, apply to
ImageItems only when theLAYOUT_2 directive is also present on that item. If theLAYOUT_2 directive is
not present on anImageItem , the behavior of theLAYOUT_LEFT, LAYOUT_RIGHT, and
LAYOUT_CENTER directives is implementation-specific.

A Form's layout is recomputed automatically as necessary. This may occur because of a change in an
Item's size caused by a change in its contents or because of a request by the application to change the
preferred size. It may also occur if anItem's layout directives are changed by the application. The applicati
does not need to perform any specific action to cause theForm's layout to be updated.

Line Breaks and Wrapping
For all cases where text is wrapped, line breaks must occur at each newline character ('\n' = Unicode
'U+000A'). If space does not permit the full text to be displayed it is truncated at line breaks. If there ar
suitable line breaks, it is recommended that implementations break text at word boundaries. If there are n
boundaries, it is recommended that implementations break text at character boundaries.

Labels that contain line breaks may be truncated at the line break and cause the rest of the label not to be

User Interaction
When aForm is present on the display the user can interact with it and itsItems indefinitely (for instance,
traversing fromItem to Item and possibly scrolling). These traversing and scrolling operations do not ca
application-visible events. The system notifies the application when the user modifies the state of an inte
Item contained within theForm. This notification is accomplished by calling the
itemStateChanged() 301 method of the listener declared to theForm with the
setItemStateListener() 239 method.

As with otherDisplayable objects, aForm can declarecommands175 and declare a command listener
with thesetCommandListener() 221 method.CommandListener 183 objects are distinct from
ItemStateListener 301 objects, and they are declared and invoked separately.

Notes for Application Developers
• Although this class allows creation of arbitrary combination of components the application develope

should keep the small screen size in mind.Form is designed to contain asmall number of closely relatedUI
234

javax.microedition.lcdui Form

Form(String)

or to
elements.

• If the number of items does not fit on the screen, the implementation may choose to make it scrollable
fold some components so that a separate screen appears when the element is edited.

Since: MIDP 1.0

See Also: Item 287

Constructors

Form(String)

Declaration:
public Form(String title)

Member Summary

Constructors
Form(String title) 235

Form(String title, Item items) 236

Methods
 int append(Image img) 236

 int append(Item item) 236

 int append(String str) 237

 void delete(int itemNum) 237

 void deleteAll() 237

 Item get(int itemNum) 237

 int getHeight() 238

 int getWidth() 238

 void insert(int itemNum, Item item) 238

 void set(int itemNum, Item item) 239

 void setItemStateListener(ItemStateListener iListener) 239

 int size() 239

Inherited Member Summary

Methods inherited from classDisplayable 218

addCommand(Command)219, getTicker() 219, getTitle() 220, isShown() 220,
removeCommand(Command)220, setCommandListener(CommandListener) 221,
setTicker(Ticker) 221, setTitle(String) 221, sizeChanged(int, int) 222

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
235

Form javax.microedition.lcdui

Form(String, Item[])
Description:
Creates a new, emptyForm.

Parameters:
title - theForm's title, ornull for no title

Form(String, Item[])

Declaration:
public Form(String title, javax.microedition.lcdui.Item[] 287 items)

Description:
Creates a newForm with the specified contents. This is identical to creating an emptyForm and then using
a set ofappend methods. The items array may benull , in which case theForm is created empty. If the
items array is non-null, each element must be a validItem not already contained within anotherForm.

Parameters:
title - theForm's title string

items - the array of items to be placed in theForm, or null if there are no items

Throws:
IllegalStateException 37 - if one of the items is already owned by another container

NullPointerException - if an element of the items array isnull

Methods

append(Image)

Declaration:
public int append (javax.microedition.lcdui.Image 270 img)

Description:
Adds an item consisting of oneImage to theForm. The effect of this method is identical to

append(new ImageItem(null, img, ImageItem.LAYOUT_DEFAULT, null))

Parameters:
img - the image to be added

Returns: the assigned index of theItem

Throws:
NullPointerException - if img is null

append(Item)

Declaration:
public int append (javax.microedition.lcdui.Item 287 item)

Description:
Adds anItem into theForm. The newly addedItem becomes the lastItem in theForm, and the size of
theForm grows by one.

Parameters:
item - theItem 287 to be added.

Returns: the assigned index of theItem
236

javax.microedition.lcdui Form

append(String)
Throws:
IllegalStateException 37 - if the item is already owned by a container

NullPointerException - if item isnull

append(String)

Declaration:
public int append (String str)

Description:
Adds an item consisting of oneString to theForm. The effect of this method is identical to

append(new StringItem(null, str))

Parameters:
str - theString to be added

Returns: the assigned index of theItem

Throws:
NullPointerException - if str isnull

delete(int)

Declaration:
public void delete (int itemNum)

Description:
Deletes theItem referenced byitemNum . The size of theForm shrinks by one. It is legal to delete all
items from aForm. TheitemNum parameter must be within the range[0..size()-1] , inclusive.

Parameters:
itemNum - the index of the item to be deleted

Throws:
IndexOutOfBoundsException - if itemNum is invalid

deleteAll()

Declaration:
public void deleteAll ()

Description:
Deletes all the items from thisForm, leaving it with zero items. This method does nothing if theForm is
already empty.

Since: MIDP 2.0

get(int)

Declaration:
public javax.microedition.lcdui.Item 287 get (int itemNum)

Description:
Gets the item at given position. The contents of theForm are left unchanged. TheitemNum parameter
must be within the range[0..size()-1] , inclusive.

Parameters:
itemNum - the index of item
237

Form javax.microedition.lcdui

getHeight()

 form
nd may

w the
ds. The
Returns: the item at the given position

Throws:
IndexOutOfBoundsException - if itemNum is invalid

getHeight()

Declaration:
public int getHeight ()

Description:
Returns the height in pixels of the displayable area available for items. This value is the height of the
that can be displayed without scrolling. The value may depend on how the device uses the screen a
be affected by the presence or absence of the ticker, title, or commands.

Overrides: getHeight 219 in classDisplayable 218

Returns: the height of the displayable area of theForm in pixels

Since: MIDP 2.0

getWidth()

Declaration:
public int getWidth ()

Description:
Returns the width in pixels of the displayable area available for items. The value may depend on ho
device uses the screen and may be affected by the presence or absence of the ticker, title, or comman
Items of theForm are laid out to fit within this width.

Overrides: getWidth 220 in classDisplayable 218

Returns: the width of theForm in pixels

Since: MIDP 2.0

insert(int, Item)

Declaration:
public void insert (int itemNum, javax.microedition.lcdui.Item 287 item)

Description:
Inserts an item into theForm just prior to the item specified. The size of theForm grows by one. The
itemNum parameter must be within the range[0..size()] , inclusive. The index of the last item is
size()-1 , and so there is actually no item whose index issize() . If this value is used foritemNum ,
the new item is inserted immediately after the last item. In this case, the effect is identical to
append(Item) 236 .

The semantics are otherwise identical toappend(Item) 236 .

Parameters:
itemNum - the index where insertion is to occur

item - the item to be inserted

Throws:
IndexOutOfBoundsException - if itemNum is invalid

IllegalStateException 37 - if the item is already owned by a container
238

javax.microedition.lcdui Form

set(int, Item)

m

s.
NullPointerException - if item is null

set(int, Item)

Declaration:
public void set (int itemNum, javax.microedition.lcdui.Item 287 item)

Description:
Sets the item referenced byitemNum to the specified item, replacing the previous item. The previous ite
is removed from thisForm. TheitemNum parameter must be within the range[0..size()-1] ,
inclusive.

The end result is equal toinsert(n, item); delete(n+1);
 although the implementation may optimize the repainting and usage of the array that stores the item

Parameters:
itemNum - the index of the item to be replaced

item - the new item to be placed in theForm

Throws:
IndexOutOfBoundsException - if itemNum is invalid

IllegalStateException 37 - if the item is already owned by a container

NullPointerException - if item is null

setItemStateListener(ItemStateListener)

Declaration:
public void setItemStateListener (javax.microedition.lcdui.ItemStateListener 301 iListener)

Description:
Sets theItemStateListener for theForm, replacing any previousItemStateListener . If
iListener is null , simply removes the previousItemStateListener .

Parameters:
iListener - the new listener, ornull to remove it

size()

Declaration:
public int size ()

Description:
Gets the number of items in theForm.

Returns: the number of items
239

Gauge javax.microedition.lcdui

size()

inct

for

r graph

ge the
user is
cation
not

crease
zen

ractive
ning

n will

ntal-
 some
there

e user
n
ics for
ist for
ous-
javax.microedition.lcdui

Gauge
Declaration
public class Gauge extends Item 287

Object
|
+-- javax.microedition.lcdui.Item 287

|
+-- javax.microedition.lcdui.Gauge

Description
Implements a graphical display, such as a bar graph, of an integer value. TheGauge contains acurrent value
that lies between zero and themaximum value, inclusive. The application can control the current value and
maximum value. The range of values specified by the application may be larger than the number of dist
visual states possible on the device, so more than one value may have the same visual representation.

For example, consider aGauge object that has a range of values from zero to99 , running on a device that
displays theGauge's approximate value using a set of one to ten bars. The device might show one bar
values zero through nine, two bars for values ten through19 , three bars for values20 through29 , and so forth.

A Gauge may be interactive or non-interactive. Applications may set or retrieve theGauge's value at any
time regardless of the interaction mode. The implementation may change the visual appearance of the ba
depending on whether the object is created in interactive mode.

In interactive mode, the user is allowed to modify the value. The user will always have the means to chan
value up or down by one and may also have the means to change the value in greater increments. The
prohibited from moving the value outside the established range. The expected behavior is that the appli
sets the initial value and then allows the user to modify the value thereafter. However, the application is
prohibited from modifying the value even while the user is interacting with it.

In many cases the only means for the user to modify the value will be to press a button to increase or de
the value by one unit at a time. Therefore, applications should specify a range of no more than a few do
values.

In non-interactive mode, the user is prohibited from modifying the value. Non-interactive mode is used to
provide feedback to the user on the state of a long-running operation. One expected use of the non-inte
mode is as a “progress indicator” or “activity indicator” to give the user some feedback during a long-run
operation. The application may update the value periodically using thesetValue() method.

A non-interactiveGauge can have a definite or indefinite range. If aGauge has definite range, it will have an
integer value between zero and the maximum value set by the application, inclusive. The implementatio
provide a graphical representation of this value such as described above.

A non-interactiveGauge that has indefinite range will exist in one of four states: continuous-idle, increme
idle, continuous-running, or incremental-updating. These states are intended to indicate to the user that
level of activity is occurring. With incremental-updating, progress can be indicated to the user even though
is no known endpoint to the activity. With continuous-running, there is no progress that gets reported to th
and there is no known endpoint; continuous-running is merely a busy state indicator. The implementatio
should use a graphical display that shows this appropriately. The implementation may use different graph
indefinite continuous gauges and indefinite incremental gauges. Because of this, separate idle states ex
each mode. For example, the implementation might show an hourglass or spinning watch in the continu
240

javax.microedition.lcdui Gauge

size()

the

wn in
r

er

e

at

a non-

erver
running state, but show an animation with different states, like a beach ball or candy-striped bar, in the
incremental-updating state.

In the continuous-idle or incremental-idle state, theGauge indicates that no activity is occurring. In the
incremental-updating state, theGauge indicates activity, but its graphical representation should be updated
only when the application requests an update with a call tosetValue() . In the continuous-running state, the
Gauge indicates activity by showing an animation that runs continuously, without update requests from
application.

The valuesCONTINUOUS_IDLE, INCREMENTAL_IDLE, CONTINUOUS_RUNNING, and
INCREMENTAL_UPDATINGhave their special meaning only when theGauge is non-interactive and has been
set to have indefinite range. They are treated as ordinary values if theGauge is interactive or if it has been set to
have a definite range.

An application using theGauge as a progress indicator should typically also attach aSTOP180 command to
the container containing theGauge to allow the user to halt the operation in progress.

Notes for Application Developers
As mentioned above, a non-interactiveGauge may be used to give user feedback during a long-running
operation. If the application can observe the progress of the operation as it proceeds to an endpoint kno
advance, then the application should use a non-interactiveGauge with a definite range. For example, conside
an application that is downloading a file known to be20 kilobytes in size. The application could set the
Gauge's maximum value to be20 and set its value to the number of kilobytes downloaded so far. The us
will be presented with aGauge that shows the portion of the task completed at any given time.

If, on the other hand, the application is downloading a file of unknown size, it should use a non-interactiv
Gauge with indefinite range. Ideally, the application should callsetValue(INCREMENTAL_UPDATING)
periodically, perhaps each time its input buffer has filled. This will give the user an indication of the rate
which progress is occurring.

Finally, if the application is performing an operation but has no means of detecting progress, it should set
interactiveGauge to have indefinite range and set its value toCONTINUOUS_RUNNING or
CONTINUOUS_IDLE as appropriate. For example, if the application has issued a request to a network s
and is about to block waiting for the server to respond, it should set theGauge's state to
CONTINUOUS_RUNNING before awaiting the response, and it should set the state toCONTINUOUS_IDLE
after it has received the response.

Since: MIDP 1.0

Member Summary

Fields
static int CONTINUOUS_IDLE242

static int CONTINUOUS_RUNNING242

static int INCREMENTAL_IDLE243

static int INCREMENTAL_UPDATING243

static int INDEFINITE 243

Constructors
Gauge(String label, boolean interactive, int maxValue, int
initialValue) 244

Methods
 int getMaxValue() 244
241

Gauge javax.microedition.lcdui

CONTINUOUS_IDLE

 an
Fields

CONTINUOUS_IDLE

Declaration:
public static final int CONTINUOUS_IDLE

Description:
The value representing the continuous-idle state of a non-interactiveGauge with indefinite range. In the
continuous-idle state, the gauge shows a graphic indicating that no work is in progress.

This value has special meaning only for non-interactive gauges with indefinite range. It is treated as
ordinary value for interactive gauges and for non-interactive gauges with definite range.

The value ofCONTINUOUS_IDLE is 0.

Since: MIDP 2.0

CONTINUOUS_RUNNING

Declaration:
public static final int CONTINUOUS_RUNNING

 int getValue() 245

 boolean isInteractive() 245

 void setMaxValue(int maxValue) 245

 void setValue(int value) 246

Inherited Member Summary

Fields inherited from classItem 287

BUTTON291, HYPERLINK292, LAYOUT_2292, LAYOUT_BOTTOM292, LAYOUT_CENTER292,
LAYOUT_DEFAULT292, LAYOUT_EXPAND293, LAYOUT_LEFT293, LAYOUT_NEWLINE_AFTER293,
LAYOUT_NEWLINE_BEFORE293, LAYOUT_RIGHT293, LAYOUT_SHRINK294, LAYOUT_TOP294,
LAYOUT_VCENTER294, LAYOUT_VEXPAND294, LAYOUT_VSHRINK294, PLAIN295

Methods inherited from classItem 287

addCommand(Command)295, getLabel() 295, getLayout() 295, getMinimumHeight() 296,
getMinimumWidth() 296, getPreferredHeight() 296, getPreferredWidth() 296,
notifyStateChanged() 297, removeCommand(Command)297, setDefaultCommand(Command) 298,
setItemCommandListener(ItemCommandListener) 298, setLabel(String) 298,
setLayout(int) 299, setPreferredSize(int, int) 299

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
242

javax.microedition.lcdui Gauge

INCREMENTAL_IDLE

cates
mation

 an

 an

ly one
 only

 an
Description:
The value representing the continuous-running state of a non-interactiveGauge with indefinite range. In
the continuous-running state, the gauge shows a continually-updating animation sequence that indi
that work is in progress. Once the application sets a gauge into the continuous-running state, the ani
should proceed without further requests from the application.

This value has special meaning only for non-interactive gauges with indefinite range. It is treated as
ordinary value for interactive gauges and for non-interactive gauges with definite range.

The value ofCONTINUOUS_RUNNING is 2.

Since: MIDP 2.0

INCREMENTAL_IDLE

Declaration:
public static final int INCREMENTAL_IDLE

Description:
The value representing the incremental-idle state of a non-interactiveGauge with indefinite range. In the
incremental-idle state, the gauge shows a graphic indicating that no work is in progress.

This value has special meaning only for non-interactive gauges with indefinite range. It is treated as
ordinary value for interactive gauges and for non-interactive gauges with definite range.

The value ofINCREMENTAL_IDLE is 1.

Since: MIDP 2.0

INCREMENTAL_UPDATING

Declaration:
public static final int INCREMENTAL_UPDATING

Description:
The value representing the incremental-updating state of a non-interactiveGauge with indefinite range. In
the incremental-updating state, the gauge shows a graphic indicating that work is in progress, typical
frame of an animation sequence. The graphic should be updated to the next frame in the sequence
when the application callssetValue(INCREMENTAL_UPDATING) .

This value has special meaning only for non-interactive gauges with indefinite range. It is treated as
ordinary value for interactive gauges and for non-interactive gauges with definite range.

The value ofINCREMENTAL_UPDATING is 3.

Since: MIDP 2.0

INDEFINITE

Declaration:
public static final int INDEFINITE

Description:
A special value used for the maximum value in order to indicate that theGauge has indefinite range. This
value may be used as themaxValue parameter to the constructor, the parameter passed to
setMaxValue() , and as the return value ofgetMaxValue() .

The value ofINDEFINITE is -1 .

Since: MIDP 2.0
243

Gauge javax.microedition.lcdui

Gauge(String, boolean, int, int)

e

ust be
ro.
Constructors

Gauge(String, boolean, int, int)

Declaration:
public Gauge(String label, boolean interactive, int maxValue, int initialValue)

Description:
Creates a newGauge object with the given label, in interactive or non-interactive mode, with the given
maximum and initial values. In interactive mode (whereinteractive is true) the maximum value
must be greater than zero, otherwise an exception is thrown. In non-interactive mode (where
interactive is false) the maximum value must be greater than zero or equal to the special valu
INDEFINITE , otherwise an exception is thrown.

If the maximum value is greater than zero, the gauge has definite range. In this case the initial value m
within the range zero tomaxValue , inclusive. If the initial value is less than zero, the value is set to ze
If the initial value is greater thanmaxValue , it is set tomaxValue .

If interactive is false and the maximum value isINDEFINITE , this creates a non-interactive
gauge with indefinite range. The initial value must be one ofCONTINUOUS_IDLE,
INCREMENTAL_IDLE, CONTINUOUS_RUNNING, or INCREMENTAL_UPDATING.

Parameters:
label - theGauge's label

interactive - tells whether the user can change the value

maxValue - the maximum value, orINDEFINITE

initialValue - the initial value in the range[0..maxValue] , or one ofCONTINUOUS_IDLE,
INCREMENTAL_IDLE, CONTINUOUS_RUNNING, or INCREMENTAL_UPDATING if maxValue
is INDEFINITE .

Throws:
IllegalArgumentException - if maxValue is not positive for interactive gauges

IllegalArgumentException - if maxValue is neither positive norINDEFINITE for non-
interactive gauges

IllegalArgumentException - if initialValue is not one ofCONTINUOUS_IDLE,
INCREMENTAL_IDLE, CONTINUOUS_RUNNING, or INCREMENTAL_UPDATING for a non-
interactive gauge with indefinite range

See Also: INDEFINITE 243 , CONTINUOUS_IDLE242 , INCREMENTAL_IDLE243 ,
CONTINUOUS_RUNNING242 , INCREMENTAL_UPDATING243

Methods

getMaxValue()

Declaration:
public int getMaxValue ()

Description:
Gets the maximum value of thisGauge object.
244

javax.microedition.lcdui Gauge

getValue()

, the
l value

f

is
he

auge
rent
 if the

, this
ingly,
If this gauge is interactive, the maximum value will be a positive integer. If this gauge is non-interactive
maximum value will be a positive integer (indicating that the gauge has definite range) or the specia
INDEFINITE (indicating that the gauge has indefinite range).

Returns: the maximum value of theGauge, or INDEFINITE

See Also: INDEFINITE 243 , setMaxValue(int) 245

getValue()

Declaration:
public int getValue ()

Description:
Gets the current value of thisGauge object.

If this Gauge object is a non-interactive gauge with indefinite range, the value returned will be one o
CONTINUOUS_IDLE, INCREMENTAL_IDLE, CONTINUOUS_RUNNING, or
INCREMENTAL_UPDATING. Otherwise, it will be an integer between zero and the gauge’s maximum
value, inclusive.

Returns: current value of theGauge

See Also:CONTINUOUS_IDLE242 , INCREMENTAL_IDLE243 , CONTINUOUS_RUNNING242 ,
INCREMENTAL_UPDATING243 , setValue(int) 246

isInteractive()

Declaration:
public boolean isInteractive ()

Description:
Tells whether the user is allowed to change the value of theGauge.

Returns: a boolean indicating whether theGauge is interactive

setMaxValue(int)

Declaration:
public void setMaxValue (int maxValue)

Description:
Sets the maximum value of thisGauge object.

For interactive gauges, the new maximum value must be greater than zero, otherwise an exception
thrown. For non-interactive gauges, the new maximum value must be greater than zero or equal to t
special valueINDEFINITE , otherwise an exception is thrown.

If the new maximum value is greater than zero, this provides the gauge with a definite range. If the g
previously had a definite range, and if the current value is greater than new maximum value, the cur
value is set to be equal to the new maximum value. If the gauge previously had a definite range, and
current value is less than or equal to the new maximum value, the current value is left unchanged.

If the new maximum value is greater than zero, and if the gauge had previously had indefinite range
new maximum value provides it with a definite range. Its graphical representation must change accord
the previous state ofCONTINUOUS_IDLE, INCREMENTAL_IDLE, CONTINUOUS_RUNNING, or
INCREMENTAL_UPDATING is ignored, and the current value is set to zero.
245

Gauge javax.microedition.lcdui

setValue(int)

ge

rent
If this gauge is non-interactive and the new maximum value isINDEFINITE , this gives the gauge
indefinite range. If the gauge previously had a definite range, its graphical representation must chan
accordingly, the previous value is ignored, and the current state is set toCONTINUOUS_IDLE. If the gauge
previously had an indefinite range, setting the maximum value toINDEFINITE will have no effect.

Parameters:
maxValue - the new maximum value

Throws:
IllegalArgumentException - if maxValue is invalid

See Also: INDEFINITE 243 , getMaxValue() 244

setValue(int)

Declaration:
public void setValue (int value)

Description:
Sets the current value of thisGauge object.

If the gauge is interactive, or if it is non-interactive with definite range, the following rules apply. If the
value is less than zero, zero is used. If the current value is greater than the maximum value, the cur
value is set to be equal to the maximum value.

If this Gauge object is a non-interactive gauge with indefinite range, then value must be one of
CONTINUOUS_IDLE, INCREMENTAL_IDLE, CONTINUOUS_RUNNING, or
INCREMENTAL_UPDATING. Other values will cause an exception to be thrown.

Parameters:
value - the new value

Throws:
IllegalArgumentException - if value is not one ofCONTINUOUS_IDLE,
INCREMENTAL_IDLE, CONTINUOUS_RUNNING, or INCREMENTAL_UPDATING for non-
interactive gauges with indefinite range

See Also:CONTINUOUS_IDLE242 , INCREMENTAL_IDLE243 , CONTINUOUS_RUNNING242 ,
INCREMENTAL_UPDATING243 , getValue() 245
246

javax.microedition.lcdui Graphics

setValue(int)

lso be

ll
o

ations
d
dence.

s

 the
aque.

t.

n rule

 in the
uired.
source

rty of
ys

dered
ay is
ay
ject

ly by
javax.microedition.lcdui

Graphics
Declaration
public class Graphics

Object
|
+-- javax.microedition.lcdui.Graphics

Description
Provides simple 2D geometric rendering capability.

Drawing primitives are provided for text, images, lines, rectangles, and arcs. Rectangles and arcs may a
filled with a solid color. Rectangles may also be specified with rounded corners.

A 24-bit color model is provided, with8 bits for each of red, green, and blue components of a color. Not a
devices support a full24 bits’ worth of color and thus they will map colors requested by the application int
colors available on the device. Facilities are provided in theDisplay 205 class for obtaining device
characteristics, such as whether color is available and how many distinct gray levels are available. Applic
may also usegetDisplayColor() 265 to obtain the actual color that would be displayed for a requeste
color. This enables applications to adapt their behavior to a device without compromising device indepen

For all rendering operations, source pixels are always combined with destination pixels using theSource Over
Destination rule [Porter-Duff]. Other schemes for combining source pixels with destination pixels, such a
raster-ops, are not provided.

For the text, line, rectangle, and arc drawing and filling primitives, the source pixel is a pixel representing
current color of the graphics object being used for rendering. This pixel is always considered to be fully op
With source pixel that is always fully opaque, the Source Over Destination rule has the effect of pixel
replacement, where destination pixels are simply replaced with the source pixel from the graphics objec

ThedrawImage() 257 anddrawRegion() 258 methods use an image as the source for rendering
operations instead of the current color of the graphics object. In this context, the Source Over Destinatio
has the following properties: a fully opaque pixel in the source must replace the destination pixel, a fully
transparent pixel in the source must leave the destination pixel unchanged, and a semitransparent pixel
source must be alpha blended with the destination pixel. Alpha blending of semitransparent pixels is req
If an implementation does not support alpha blending, it must remove all semitransparency from image
data at the time the image is created. See Alpha Processing for further discussion.

The destinations of all graphics rendering are considered to consist entirely of fully opaque pixels. A prope
the Source Over Destination rule is that compositing any pixel with a fully opaque destination pixel alwa
results in a fully opaque destination pixel. This has the effect of confining full and partial transparency to
immutable images, which may only be used as the source for rendering operations.

Graphics may be rendered directly to the display or to an off-screen image buffer. The destination of ren
graphics depends on the provenance of the graphics object. A graphics object for rendering to the displ
passed to theCanvas object’spaint() 151 method. This is the only means by which a graphics object m
be obtained whose destination is the display. Furthermore, applications may draw using this graphics ob
only for the duration of thepaint() method.

A graphics object for rendering to an off-screen image buffer may be obtained by calling the
getGraphics() 277 method on the desired image. A graphics object so obtained may be held indefinite
the application, and requests may be issued on this graphics object at any time.
247

Graphics javax.microedition.lcdui

setValue(int)

tion is

display,

rst pixel

ixels,
. For

r is

ns.

l
ts.

ed
nts of
 drawn.

ea

d
utside
The default coordinate system’s origin is at the upper left-hand corner of the destination. The X-axis direc
positive towards the right, and the Y-axis direction is positive downwards. Applications may assume that
horizontal and vertical distances in the coordinate system represent equal distances on the actual device
that is, pixels are square. A facility is provided for translating the origin of the coordinate system. All
coordinates are specified as integers.

The coordinate system represents locations between pixels, not the pixels themselves. Therefore, the fi
in the upper left corner of the display lies in the square bounded by coordinates(0,0) , (1,0) , (0,1)
, (1,1) .

Under this definition, the semantics for fill operations are clear. Since coordinate grid lines lie between p
fill operations affect pixels that lie entirely within the region bounded by the coordinates of the operation
example, the operation

paints exactly six pixels. (In this example, and in all subsequent examples, the variableg is assumed to contain
a reference to aGraphics object.)

Each character of a font contains a set of pixels that forms the shape of the character. When a characte
painted, the pixels forming the character’s shape are filled with theGraphics object’s current color, and the
pixels not part of the character’s shape are left untouched. The text drawing callsdrawChar() 256 ,
drawChars() 257 , drawString() 261 , anddrawSubstring() 262 all draw text in this manner.

Lines, arcs, rectangles, and rounded rectangles may be drawn with either aSOLID or aDOTTEDstroke style, as
set by thesetStrokeStyle() 268 method. The stroke style does not affect fill, text, and image operatio

For theSOLID stroke style, drawing operations are performed with a one-pixel wide pen that fills the pixe
immediately below and to the right of the specified coordinate. Drawn lines touch pixels at both endpoin
Thus, the operation

paints exactly one pixel, the first pixel in the upper left corner of the display.

Drawing operations under theDOTTED stroke style will touch a subset of pixels that would have been touch
under theSOLID stroke style. The frequency and length of dots is implementation-dependent. The endpoi
lines and arcs are not guaranteed to be drawn, nor are the corner points of rectangles guaranteed to be
Dots are drawn by painting with the current color; spaces between dots are left untouched.

An artifact of the coordinate system is that the area affected by a fill operation differs slightly from the ar
affected by a draw operation given the same coordinates. For example, consider the operations

Statement (1) fills a rectanglew pixels wide andh pixels high. Statement (2) draws a rectangle whose left an
top edges are within the area filled by statement (1). However, the bottom and right edges lie one pixel o
the filled area. This is counterintuitive, but it preserves the invariant that

g.fillRect(0, 0, 3, 2)

g.drawLine(0, 0, 0, 0);

g.fillRect(x, y, w, h); // 1
g.drawRect(x, y, w, h); // 2
248

javax.microedition.lcdui Graphics

setValue(int)

. A fill
raw
ration.

t lie

t clip
the

dered
r such

 is
ified

with the

es that
 the
has an effect identical to statement (2) above.

The exact pixels painted bydrawLine() anddrawArc() are not specified. Pixels touched by a fill
operation must either exactly overlap or directly abut pixels touched by the corresponding draw operation
operation must never leave a gap between the filled area and the pixels touched by the corresponding d
operation, nor may the fill operation touch pixels outside the area bounded by the corresponding draw ope

Clipping
The clip is the set of pixels in the destination of theGraphics object that may be modified by graphics
rendering operations.

There is a single clip perGraphics object. The only pixels modified by graphics operations are those tha
within the clip. Pixels outside the clip are not modified by any graphics operations.

Operations are provided for intersecting the current clip with a given rectangle and for setting the curren
outright. The application may specify the clip by supplying a clip rectangle using coordinates relative to
current coordinate system.

It is legal to specify a clip rectangle whose width or height is zero or negative. In this case the clip is consi
to be empty, that is, no pixels are contained within it. Therefore, if any graphics operations are issued unde
a clip, no pixels will be modified.

It is legal to specify a clip rectangle that extends beyond or resides entirely beyond the bounds of the
destination. No pixels exist outside the bounds of the destination, and the area of the clip rectangle that
outside the destination is ignored. Only the pixels that lie both within the destination and within the spec
clip rectangle are considered to be part of the clip.

Operations on the coordinate system, such astranslate() 269 , do not modify the clip. The methods
getClipX() 265 , getClipY() 265 , getClipWidth() 264 andgetClipHeight() 264 must return a
rectangle that, if passed tosetClip without an intervening change to theGraphics object’s coordinate
system, must result in the identical set of pixels in the clip. The rectangle returned from thegetClip family of
methods may differ from the clip rectangle that was requested insetClip() 267 . This can occur if the
coordinate system has been changed or if the implementation has chosen to intersect the clip rectangle
bounds of the destination of theGraphics object.

If a graphics operation is affected by the clip, the pixels touched by that operation must be the same on
would be touched as if the clip did not affect the operation. For example, consider a clip represented by
rectangle(cx, cy, cw, ch) and a point(x1, y1) that lies outside this rectangle and a point(x2, y2)
that lies within this rectangle. In the following code fragment,

g.drawLine(x, y, x+w, y);
g.drawLine(x+w, y, x+w, y+h);
g.drawLine(x+w, y+h, x, y+h);
g.drawLine(x, y+h, x, y);

g.setClip(0, 0, canvas.getWidth(),
canvas.getHeight());

g.drawLine(x1, y1, x2, y2); // 3
g.setClip(cx, cy, cw, ch);
g.drawLine(x1, y1, x2, y2); // 4
249

Graphics javax.microedition.lcdui

setValue(int)

tation

lts

s

luded
The pixels touched by statement (4) must be identical to the pixels within(cx, cy, cw, ch) touched by
statement (3).

Anchor Points
The drawing of text is based on “anchor points”. Anchor points are used to minimize the amount of compu
required when placing text. For example, in order to center a piece of text, an application needs to call
stringWidth() or charWidth() to get the width and then perform a combination of subtraction and
division to compute the proper location. The method to draw text is defined as follows:

public void drawString(String text, int x, int y, int anchor);

This method draws text in the current color, using the current font with its anchor point at(x,y) . The
definition of the anchor point must be one of the horizontal constants(LEFT, HCENTER, RIGHT)
combined with one of the vertical constants(TOP, BASELINE, BOTTOM) using the bit-wiseOR operator.
Zero may also be used as the value of an anchor point. Using zero for the anchor point value gives resu
identical to usingTOP | LEFT .

Vertical centering of the text is not specified since it is not considered useful, it is hard to specify, and it i
burdensome to implement. Thus, theVCENTER value is not allowed in the anchor point parameter of text
drawing calls.

The actual position of the bounding box of the text relative to the(x, y) location is determined by the anchor
point. These anchor points occur at named locations along the outer edge of the bounding box. Thus, iff is g’s
current font (as returned byg.getFont() , the following calls will all have identical results:

For text drawing, the inter-character and inter-line spacing (leading) specified by the font designer are inc
as part of the values returned in thestringWidth() 230 andgetHeight() 228 calls of classFont 223 .
For example, given the following code:

g.drawString(str, x, y, TOP|LEFT);
g.drawString(str, x + f.stringWidth(str)/2, y, TOP|HCENTER);
g.drawString(str, x + f.stringWidth(str), y, TOP|RIGHT);
g.drawString(str, x,

y + f.getBaselinePosition(), BASELINE|LEFT);
g.drawString(str, x + f.stringWidth(str)/2,

y + f.getBaselinePosition(), BASELINE|HCENTER);
g.drawString(str, x + f.stringWidth(str),

y + f.getBaselinePosition(), BASELINE|RIGHT);
drawString(str, x,

y + f.getHeight(), BOTTOM|LEFT);
drawString(str, x + f.stringWidth(str)/2,

y + f.getHeight(), BOTTOM|HCENTER);
drawString(str, x + f.stringWidth(str),

y + f.getHeight(), BOTTOM|RIGHT);

// (5)
g.drawString(string1+string2, x, y, TOP|LEFT);
// (6)
g.drawString(string1, x, y, TOP|LEFT);
g.drawString(string2, x + f.stringWidth(string1), y, TOP|LEFT);
250

javax.microedition.lcdui Graphics

setValue(int)

upports

 of

acing.
e
 paint

d that

age

ion of a
ests.
Code fragments (5) and (6) behave similarly if not identically. This occurs becausef.stringWidth()
includes the inter-character spacing. The exact spacing of may differ between these calls if the system s
font kerning.

Similarly, reasonable vertical spacing may be achieved simply by adding the font height to the Y-position
subsequent lines. For example:

drawsstring1 andstring2 on separate lines with an appropriate amount of inter-line spacing.

ThestringWidth() of the string and thefontHeight() of the font in which it is drawn define the size of
the bounding box of a piece of text. As described above, this box includes inter-line and inter-character sp
The implementation is required to put this space below and to right of the pixels actually belonging to th
characters drawn. Applications that wish to position graphics closely with respect to text (for example, to
a rectangle around a string of text) may assume that there is space below and to the right of a string an
there isno space above and to the left of the string.

Anchor points are also used for positioning of images. Similar to text drawing, the anchor point for an im
specifies the point on the bounding rectangle of the destination that is to positioned at the(x,y) location given
in the graphics request. Unlike text, vertical centering of images is well-defined, and thus theVCENTER value
may be used within the anchor point parameter of image drawing requests. Because images have no not
baseline, theBASELINE value may not be used within the anchor point parameter of image drawing requ

Reference
Porter-Duff

Porter, T., and T. Duff. “Compositing Digital Images.”Computer Graphics V18 N3 (SIGGRAPH
1984), p. 253-259.

Since: MIDP 1.0

g.drawString(string1, x, y, TOP|LEFT);
g.drawString(string2, x, y + f.fontHeight(), TOP|LEFT);

Member Summary

Fields
static int BASELINE253

static int BOTTOM253

static int DOTTED253

static int HCENTER253

static int LEFT253

static int RIGHT254

static int SOLID254

static int TOP254

static int VCENTER254

Methods
 void clipRect(int x, int y, int width, int height) 254

 void copyArea(int x_src, int y_src, int width, int height, int
x_dest, int y_dest, int anchor) 255
251

Graphics javax.microedition.lcdui

setValue(int)
 void drawArc(int x, int y, int width, int height, int startAngle,
int arcAngle) 256

 void drawChar(char character, int x, int y, int anchor) 256

 void drawChars(char[] data, int offset, int length, int x, int y,
int anchor) 257

 void drawImage(Image img, int x, int y, int anchor) 257

 void drawLine(int x1, int y1, int x2, int y2) 258

 void drawRect(int x, int y, int width, int height) 258

 void drawRegion(Image src, int x_src, int y_src, int width, int
height, int transform, int x_dest, int y_dest, int anchor) 258

 void drawRGB(int[] rgbData, int offset, int scanlength, int x, int
y, int width, int height, boolean processAlpha) 260

 void drawRoundRect(int x, int y, int width, int height, int
arcWidth, int arcHeight) 261

 void drawString(String str, int x, int y, int anchor) 261

 void drawSubstring(String str, int offset, int len, int x, int y,
int anchor) 262

 void fillArc(int x, int y, int width, int height, int startAngle,
int arcAngle) 262

 void fillRect(int x, int y, int width, int height) 263

 void fillRoundRect(int x, int y, int width, int height, int
arcWidth, int arcHeight) 263

 void fillTriangle(int x1, int y1, int x2, int y2, int x3, int
y3) 264

 int getBlueComponent() 264

 int getClipHeight() 264

 int getClipWidth() 264

 int getClipX() 265

 int getClipY() 265

 int getColor() 265

 int getDisplayColor(int color) 265

 Font getFont() 266

 int getGrayScale() 266

 int getGreenComponent() 266

 int getRedComponent() 266

 int getStrokeStyle() 266

 int getTranslateX() 267

 int getTranslateY() 267

 void setClip(int x, int y, int width, int height) 267

 void setColor(int RGB) 267

 void setColor(int red, int green, int blue) 267

 void setFont(Font font) 268

 void setGrayScale(int value) 268

 void setStrokeStyle(int style) 268

 void translate(int x, int y) 269

Inherited Member Summary

Methods inherited from classObject

Member Summary
252

javax.microedition.lcdui Graphics

BASELINE
Fields

BASELINE

Declaration:
public static final int BASELINE

Description:
Constant for positioning the anchor point at the baseline of text.

Value64 is assigned toBASELINE.

BOTTOM

Declaration:
public static final int BOTTOM

Description:
Constant for positioning the anchor point of text and images below the text or image.

Value32 is assigned toBOTTOM.

DOTTED

Declaration:
public static final int DOTTED

Description:
Constant for theDOTTED stroke style.

Value1 is assigned toDOTTED.

HCENTER

Declaration:
public static final int HCENTER

Description:
Constant for centering text and images horizontally around the anchor point

Value1 is assigned toHCENTER.

LEFT

Declaration:
public static final int LEFT

Description:
Constant for positioning the anchor point of text and images to the left of the text or image.

Value4 is assigned toLEFT.

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Inherited Member Summary
253

Graphics javax.microedition.lcdui

RIGHT

 of the
t clip
RIGHT

Declaration:
public static final int RIGHT

Description:
Constant for positioning the anchor point of text and images to the right of the text or image.

Value8 is assigned toRIGHT.

SOLID

Declaration:
public static final int SOLID

Description:
Constant for theSOLID stroke style.

Value0 is assigned toSOLID.

TOP

Declaration:
public static final int TOP

Description:
Constant for positioning the anchor point of text and images above the text or image.

Value16 is assigned toTOP.

VCENTER

Declaration:
public static final int VCENTER

Description:
Constant for centering images vertically around the anchor point.

Value2 is assigned toVCENTER.

Methods

clipRect(int, int, int, int)

Declaration:
public void clipRect (int x, int y, int width, int height)

Description:
Intersects the current clip with the specified rectangle. The resulting clipping area is the intersection
current clipping area and the specified rectangle. This method can only be used to make the curren
smaller. To set the current clip larger, use thesetClip method. Rendering operations have no effect
outside of the clipping area.

Parameters:
x - the x coordinate of the rectangle to intersect the clip with

y - the y coordinate of the rectangle to intersect the clip with

width - the width of the rectangle to intersect the clip with
254

javax.microedition.lcdui Graphics

copyArea(int, int, int, int, int, int, int)

s

al

age
height - the height of the rectangle to intersect the clip with

See Also:setClip(int, int, int, int) 267

copyArea(int, int, int, int, int, int, int)

Declaration:
public void copyArea (int x_src, int y_src, int width, int height, int x_dest, int y_dest,

int anchor)

Description:
Copies the contents of a rectangular area(x_src, y_src, width, height) to a destination area,
whose anchor point identified by anchor is located at(x_dest, y_dest) . The effect must be that the
destination area contains an exact copy of the contents of the source area immediately prior to the
invocation of this method. This result must occur even if the source and destination areas overlap.

The points(x_src, y_src) and(x_dest, y_dest) are both specified relative to the coordinate
system of theGraphics object. It is illegal for the source region to extend beyond the bounds of the
graphic object. This requires that:

wheretx andty represent the X and Y coordinates of the translated origin of this graphics object, a
returned bygetTranslateX() andgetTranslateY() , respectively.

However, it is legal for the destination area to extend beyond the bounds of theGraphics object. Pixels
outside of the bounds of theGraphics object will not be drawn.

ThecopyArea method is allowed on allGraphics objects except those whose destination is the actu
display device. This restriction is necessary because allowing acopyArea method on the display would
adversely impact certain techniques for implementing double-buffering.

Like other graphics operations, thecopyArea method uses the Source Over Destination rule for
combining pixels. However, since it is defined only for mutable images, which can contain only fully
opaque pixels, this is effectively the same as pixel replacement.

Parameters:
x_src - the x coordinate of upper left corner of source area

y_src - the y coordinate of upper left corner of source area

width - the width of the source area

height - the height of the source area

x_dest - the x coordinate of the destination anchor point

y_dest - the y coordinate of the destination anchor point

anchor - the anchor point for positioning the region within the destination image

Throws:
IllegalStateException 37 - if the destination of thisGraphics object is the display device

IllegalArgumentException - if the region to be copied exceeds the bounds of the source im

x_src + tx >= 0
y_src + ty >= 0
x_src + tx + width <= width of Graphics object's destination
y_src + ty + height <= height of Graphics object's destination
255

Graphics javax.microedition.lcdui

drawArc(int, int, int, int, int, int)

r and

r-

e. As
tart and
Since: MIDP 2.0

drawArc(int, int, int, int, int, int)

Declaration:
public void drawArc (int x, int y, int width, int height, int startAngle, int arcAngle)

Description:
Draws the outline of a circular or elliptical arc covering the specified rectangle, using the current colo
stroke style.

The resulting arc begins atstartAngle and extends forarcAngle degrees, using the current color.
Angles are interpreted such that0 degrees is at the3 o’clock position. A positive value indicates a counte
clockwise rotation while a negative value indicates a clockwise rotation.

The center of the arc is the center of the rectangle whose origin is (x, y) and whose size is specified by the
width andheight arguments.

The resulting arc covers an areawidth + 1 pixels wide byheight + 1 pixels tall. If eitherwidth or
height is less than zero, nothing is drawn.

The angles are specified relative to the non-square extents of the bounding rectangle such that45 degrees
always falls on the line from the center of the ellipse to the upper right corner of the bounding rectangl
a result, if the bounding rectangle is noticeably longer in one axis than the other, the angles to the s
end of the arc segment will be skewed farther along the longer axis of the bounds.

Parameters:
x - thex coordinate of the upper-left corner of the arc to be drawn

y - they coordinate of the upper-left corner of the arc to be drawn

width - the width of the arc to be drawn

height - the height of the arc to be drawn

startAngle - the beginning angle

arcAngle - the angular extent of the arc, relative to the start angle

See Also: fillArc(int, int, int, int, int, int) 262

drawChar(char, int, int, int)

Declaration:
public void drawChar (char character, int x, int y, int anchor)

Description:
Draws the specified character using the current font and color.

Parameters:
character - the character to be drawn

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the text; see anchor points

Throws:
IllegalArgumentException - if anchor is not a legal value

See Also:drawString(String, int, int, int) 261 , drawChars(char[], int, int,
int, int, int) 257
256

javax.microedition.lcdui Graphics

drawChars(char[], int, int, int, int, int)

rray

lative

ust be
st be

as
drawChars(char[], int, int, int, int, int)

Declaration:
public void drawChars (char[] data, int offset, int length, int x, int y, int anchor)

Description:
Draws the specified characters using the current font and color.

Theoffset andlength parameters must specify a valid range of characters within the character a
data . Theoffset parameter must be within the range[0..(data.length)] , inclusive. The
length parameter must be a non-negative integer such that(offset + length) <=
data.length .

Parameters:
data - the array of characters to be drawn

offset - the start offset in the data

length - the number of characters to be drawn

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the text; see anchor points

Throws:
ArrayIndexOutOfBoundsException - if offset andlength do not specify a valid range
within the data array

IllegalArgumentException - if anchor is not a legal value

NullPointerException - if data is null

See Also:drawString(String, int, int, int) 261

drawImage(Image, int, int, int)

Declaration:
public void drawImage (javax.microedition.lcdui.Image 270 img, int x, int y, int anchor)

Description:
Draws the specified image by using the anchor point. The image can be drawn in different positions re
to the anchor point by passing the appropriate position constants. See anchor points.

If the source image contains transparent pixels, the corresponding pixels in the destination image m
left untouched. If the source image contains partially transparent pixels, a compositing operation mu
performed with the destination pixels, leaving all pixels of the destination image fully opaque.

If img is the same as the destination of this Graphics object, the result is undefined. For copying are
within an Image , copyArea 255 should be used instead.

Parameters:
img - the specified image to be drawn

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the image

Throws:
IllegalArgumentException - if anchor is not a legal value
257

Graphics javax.microedition.lcdui

drawLine(int, int, int, int)

tangle

ing

tion is
d,

.
es.
es.
NullPointerException - if img is null

See Also: Image 270

drawLine(int, int, int, int)

Declaration:
public void drawLine (int x1, int y1, int x2, int y2)

Description:
Draws a line between the coordinates(x1,y1) and(x2,y2) using the current color and stroke style.

Parameters:
x1 - the x coordinate of the start of the line

y1 - the y coordinate of the start of the line

x2 - the x coordinate of the end of the line

y2 - the y coordinate of the end of the line

drawRect(int, int, int, int)

Declaration:
public void drawRect (int x, int y, int width, int height)

Description:
Draws the outline of the specified rectangle using the current color and stroke style. The resulting rec
will cover an area(width + 1) pixels wide by(height + 1) pixels tall. If either width or height is
less than zero, nothing is drawn.

Parameters:
x - the x coordinate of the rectangle to be drawn

y - the y coordinate of the rectangle to be drawn

width - the width of the rectangle to be drawn

height - the height of the rectangle to be drawn

See Also: fillRect(int, int, int, int) 263

drawRegion(Image, int, int, int, int, int, int, int, int)

Declaration:
public void drawRegion (javax.microedition.lcdui.Image 270 src, int x_src, int y_src,

int width, int height, int transform, int x_dest, int y_dest, int anchor)

Description:
Copies a region of the specified source image to a location within the destination, possibly transform
(rotating and reflecting) the image data using the chosen transform function.

The destination, if it is an image, must not be the same image as the source image. If it is, an excep
thrown. This restriction is present in order to avoid ill-defined behaviors that might occur if overlappe
transformed copies were permitted.

The transform function used must be one of the following, as defined in theSprite 365 class:
Sprite.TRANS_NONE - causes the specified image region to be copied unchanged
Sprite.TRANS_ROT90 - causes the specified image region to be rotated clockwise by 90 degrees
Sprite.TRANS_ROT180 - causes the specified image region to be rotated clockwise by 180 degre
Sprite.TRANS_ROT270 - causes the specified image region to be rotated clockwise by 270 degre
258

javax.microedition.lcdui Graphics

drawRegion(Image, int, int, int, int, int, int, int, int)

er.
ical

ical

ical

ust be
st be

l for

It is

dered
Sprite.TRANS_MIRROR - causes the specified image region to be reflected about its vertical cent
Sprite.TRANS_MIRROR_ROT90 - causes the specified image region to be reflected about its vert
center and then rotated clockwise by 90 degrees.
Sprite.TRANS_MIRROR_ROT180 - causes the specified image region to be reflected about its vert
center and then rotated clockwise by 180 degrees.
Sprite.TRANS_MIRROR_ROT270 - causes the specified image region to be reflected about its vert
center and then rotated clockwise by 270 degrees.

If the source region contains transparent pixels, the corresponding pixels in the destination region m
left untouched. If the source region contains partially transparent pixels, a compositing operation mu
performed with the destination pixels, leaving all pixels of the destination region fully opaque.

The(x_src, y_src) coordinates are relative to the upper left corner of the source image. Thex_src ,
y_src , width , andheight parameters specify a rectangular region of the source image. It is illega
this region to extend beyond the bounds of the source image. This requires that:

The(x_dest, y_dest) coordinates are relative to the coordinate system of this Graphics object.
legal for the destination area to extend beyond the bounds of theGraphics object. Pixels outside of the
bounds of theGraphics object will not be drawn.

The transform is applied to the image data from the region of the source image, and the result is ren
with its anchor point positioned at location(x_dest, y_dest) in the destination.

Parameters:
src - the source image to copy from

x_src - the x coordinate of the upper left corner of the region within the source image to copy

y_src - the y coordinate of the upper left corner of the region within the source image to copy

width - the width of the region to copy

height - the height of the region to copy

transform - the desired transformation for the selected region being copied

x_dest - the x coordinate of the anchor point in the destination drawing area

y_dest - the y coordinate of the anchor point in the destination drawing area

anchor - the anchor point for positioning the region within the destination image

Throws:
IllegalArgumentException - if src is the same image as the destination of thisGraphics
object

NullPointerException - if src is null

IllegalArgumentException - if transform is invalid

IllegalArgumentException - if anchor is invalid

x_src >= 0
y_src >= 0
x_src + width <= source width
y_src + height <= source height
259

Graphics javax.microedition.lcdui

drawRGB(int[], int, int, int, int, int, int, boolean)

age

 are

ed in
d

rd from

d to

ending
IllegalArgumentException - if the region to be copied exceeds the bounds of the source im

Since: MIDP 2.0

drawRGB(int[], int, int, int, int, int, int, boolean)

Declaration:
public void drawRGB(int[] rgbData, int offset, int scanlength, int x, int y, int width,

int height, boolean processAlpha)

Description:
Renders a series of device-independent RGB+transparency values in a specified region. The values
stored inrgbData in a format with24 bits of RGB and an eight-bit alpha value (0xAARRGGBB), with the
first value stored at the specified offset. Thescanlength specifies the relative offset within the array
between the corresponding pixels of consecutive rows. Any value forscanlength is acceptable (even
negative values) provided that all resulting references are within the bounds of thergbData array. The
ARGB data is rasterized horizontally from left to right within each row. The ARGB values are render
the region specified byx , y, width andheight , and the operation is subject to the current clip region an
translation for thisGraphics object.

ConsiderP(a,b) to be the value of the pixel located at columna and rowb of the Image, where rows and
columns are numbered downward from the top starting at zero, and columns are numbered rightwa
the left starting at zero. This operation can then be defined as:

for

This capability is provided in theGraphics class so that it can be used to render both to the screen an
offscreenImage objects. The ability to retrieve ARGB values is provided by the
Image.getRGB(int[], int, int, int, int, int, int) 278 method.

If processAlpha is true , the high-order byte of the ARGB format specifies opacity; that is,
0x00RRGGBB specifies a fully transparent pixel and0xFFRRGGBB specifies a fully opaque pixel.
Intermediate alpha values specify semitransparency. If the implementation does not support alpha bl
for image rendering operations, it must remove any semitransparency from the source data prior to
performing any rendering. (See Alpha Processing for further discussion.) IfprocessAlpha is false ,
the alpha values are ignored and all pixels must be treated as completely opaque.

The mapping from ARGB values to the device-dependent pixels is platform-specific and may require
significant computation.

Parameters:
rgbData - an array of ARGB values in the format0xAARRGGBB

offset - the array index of the first ARGB value

P(a, b) = rgbData[offset + (a - x) + (b - y) * scanlength]

x <= a < x + width
y <= b < y + height
260

javax.microedition.lcdui Graphics

drawRoundRect(int, int, int, int, int, int)

 the

 The
scanlength - the relative array offset between the corresponding pixels in consecutive rows in
rgbData array

x - the horizontal location of the region to be rendered

y - the vertical location of the region to be rendered

width - the width of the region to be rendered

height - the height of the region to be rendered

processAlpha - true if rgbData has an alpha channel, false if all pixels are fully opaque

Throws:
ArrayIndexOutOfBoundsException - if the requested operation will attempt to access an
element ofrgbData whose index is either negative or beyond its length

NullPointerException - if rgbData is null

Since: MIDP 2.0

drawRoundRect(int, int, int, int, int, int)

Declaration:
public void drawRoundRect (int x, int y, int width, int height, int arcWidth,

int arcHeight)

Description:
Draws the outline of the specified rounded corner rectangle using the current color and stroke style.
resulting rectangle will cover an area(width + 1) pixels wide by(height + 1) pixels tall. If either
width or height is less than zero, nothing is drawn.

Parameters:
x - the x coordinate of the rectangle to be drawn

y - the y coordinate of the rectangle to be drawn

width - the width of the rectangle to be drawn

height - the height of the rectangle to be drawn

arcWidth - the horizontal diameter of the arc at the four corners

arcHeight - the vertical diameter of the arc at the four corners

See Also: fillRoundRect(int, int, int, int, int, int) 263

drawString(String, int, int, int)

Declaration:
public void drawString (String str, int x, int y, int anchor)

Description:
Draws the specifiedString using the current font and color. Thex,y position is the position of the
anchor point. See anchor points.

Parameters:
str - theString to be drawn

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the text
261

Graphics javax.microedition.lcdui

drawSubstring(String, int, int, int, int, int)

h
 a
Throws:
NullPointerException - if str is null

IllegalArgumentException - if anchor is not a legal value

See Also:drawChars(char[], int, int, int, int, int) 257

drawSubstring(String, int, int, int, int, int)

Declaration:
public void drawSubstring (String str, int offset, int len, int x, int y, int anchor)

Description:
Draws the specifiedString using the current font and color. Thex,y position is the position of the
anchor point. See anchor points.

Theoffset andlen parameters must specify a valid range of characters within the stringstr . The
offset parameter must be within the range[0..(str.length())] , inclusive. Thelen parameter
must be a non-negative integer such that(offset + len) <= str.length() .

Parameters:
str - theString to be drawn

offset - zero-based index of first character in the substring

len - length of the substring

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the text

Throws:
StringIndexOutOfBoundsException - if offset andlength do not specify a valid range
within theString str

IllegalArgumentException - if anchor is not a legal value

NullPointerException - if str is null

See Also:drawString(String, int, int, int) 261

fillArc(int, int, int, int, int, int)

Declaration:
public void fillArc (int x, int y, int width, int height, int startAngle, int arcAngle)

Description:
Fills a circular or elliptical arc covering the specified rectangle.

The resulting arc begins atstartAngle and extends forarcAngle degrees. Angles are interpreted suc
that0 degrees is at the3 o’clock position. A positive value indicates a counter-clockwise rotation while
negative value indicates a clockwise rotation.

The center of the arc is the center of the rectangle whose origin is (x, y) and whose size is specified by the
width andheight arguments.

If eitherwidth or height is zero or less, nothing is drawn.

The filled region consists of the “pie wedge” region bounded by the arc segment as if drawn by
drawArc() , the radius extending from the center to this arc atstartAngle degrees, and radius
extending from the center to this arc atstartAngle + arcAngle degrees.
262

javax.microedition.lcdui Graphics

fillRect(int, int, int, int)

e. As
tart and

awn.
The angles are specified relative to the non-square extents of the bounding rectangle such that45 degrees
always falls on the line from the center of the ellipse to the upper right corner of the bounding rectangl
a result, if the bounding rectangle is noticeably longer in one axis than the other, the angles to the s
end of the arc segment will be skewed farther along the longer axis of the bounds.

Parameters:
x - thex coordinate of the upper-left corner of the arc to be filled.

y - they coordinate of the upper-left corner of the arc to be filled.

width - the width of the arc to be filled

height - the height of the arc to be filled

startAngle - the beginning angle.

arcAngle - the angular extent of the arc, relative to the start angle.

See Also:drawArc(int, int, int, int, int, int) 256

fillRect(int, int, int, int)

Declaration:
public void fillRect (int x, int y, int width, int height)

Description:
Fills the specified rectangle with the current color. If either width or height is zero or less, nothing is dr

Parameters:
x - the x coordinate of the rectangle to be filled

y - the y coordinate of the rectangle to be filled

width - the width of the rectangle to be filled

height - the height of the rectangle to be filled

See Also:drawRect(int, int, int, int) 258

fillRoundRect(int, int, int, int, int, int)

Declaration:
public void fillRoundRect (int x, int y, int width, int height, int arcWidth,

int arcHeight)

Description:
Fills the specified rounded corner rectangle with the current color. If eitherwidth or height is zero or
less, nothing is drawn.

Parameters:
x - the x coordinate of the rectangle to be filled

y - the y coordinate of the rectangle to be filled

width - the width of the rectangle to be filled

height - the height of the rectangle to be filled

arcWidth - the horizontal diameter of the arc at the four corners

arcHeight - the vertical diameter of the arc at the four corners

See Also:drawRoundRect(int, int, int, int, int, int) 261
263

Graphics javax.microedition.lcdui

fillTriangle(int, int, int, int, int, int)

n the
fillTriangle(int, int, int, int, int, int)

Declaration:
public void fillTriangle (int x1, int y1, int x2, int y2, int x3, int y3)

Description:
Fills the specified triangle will the current color. The lines connecting each pair of points are included i
filled triangle.

Parameters:
x1 - the x coordinate of the first vertex of the triangle

y1 - the y coordinate of the first vertex of the triangle

x2 - the x coordinate of the second vertex of the triangle

y2 - the y coordinate of the second vertex of the triangle

x3 - the x coordinate of the third vertex of the triangle

y3 - the y coordinate of the third vertex of the triangle

Since: MIDP 2.0

getBlueComponent()

Declaration:
public int getBlueComponent ()

Description:
Gets the blue component of the current color.

Returns: integer value in range0-255

See Also:setColor(int, int, int) 267

getClipHeight()

Declaration:
public int getClipHeight ()

Description:
Gets the height of the current clipping area.

Returns: height of the current clipping area.

See Also:clipRect(int, int, int, int) 254 , setClip(int, int, int, int) 267

getClipWidth()

Declaration:
public int getClipWidth ()

Description:
Gets the width of the current clipping area.

Returns: width of the current clipping area.

See Also:clipRect(int, int, int, int) 254 , setClip(int, int, int, int) 267
264

javax.microedition.lcdui Graphics

getClipX()

nd

nd

eloper
n

getClipX()

Declaration:
public int getClipX ()

Description:
Gets the X offset of the current clipping area, relative to the coordinate system origin of this graphics
context. Separating thegetClip operation into two methods returning integers is more performance a
memory efficient than onegetClip() call returning an object.

Returns: X offset of the current clipping area

See Also:clipRect(int, int, int, int) 254 , setClip(int, int, int, int) 267

getClipY()

Declaration:
public int getClipY ()

Description:
Gets the Y offset of the current clipping area, relative to the coordinate system origin of this graphics
context. Separating thegetClip operation into two methods returning integers is more performance a
memory efficient than onegetClip() call returning an object.

Returns: Y offset of the current clipping area

See Also:clipRect(int, int, int, int) 254 , setClip(int, int, int, int) 267

getColor()

Declaration:
public int getColor ()

Description:
Gets the current color.

Returns: an integer in form0x00RRGGBB

See Also:setColor(int, int, int) 267

getDisplayColor(int)

Declaration:
public int getDisplayColor (int color)

Description:
Gets the color that will be displayed if the specified color is requested. This method enables the dev
to check the manner in which RGB values are mapped to the set of distinct colors that the device ca
actually display. For example, with a monochrome device, this method will return either0xFFFFFF
(white) or0x000000 (black) depending on the brightness of the specified color.

Parameters:
color - the desired color (in0x00RRGGBB format, the high-order byte is ignored)

Returns: the corresponding color that will be displayed on the device’s screen (in0x00RRGGBB format)

Since: MIDP 2.0
265

Graphics javax.microedition.lcdui

getFont()

t by
ws

or.
getFont()

Declaration:
public javax.microedition.lcdui.Font 223 getFont ()

Description:
Gets the current font.

Returns: current font

See Also:Font 223 , setFont(Font) 268

getGrayScale()

Declaration:
public int getGrayScale ()

Description:
Gets the current grayscale value of the color being used for rendering operations. If the color was se
setGrayScale() , that value is simply returned. If the color was set by one of the methods that allo
setting of the red, green, and blue components, the value returned is computed from the RGB color
components (possibly in a device-specific fashion) that best approximates the brightness of that col

Returns: integer value in range0-255

See Also:setGrayScale(int) 268

getGreenComponent()

Declaration:
public int getGreenComponent ()

Description:
Gets the green component of the current color.

Returns: integer value in range0-255

See Also:setColor(int, int, int) 267

getRedComponent()

Declaration:
public int getRedComponent ()

Description:
Gets the red component of the current color.

Returns: integer value in range0-255

See Also:setColor(int, int, int) 267

getStrokeStyle()

Declaration:
public int getStrokeStyle ()

Description:
Gets the stroke style used for drawing operations.

Returns: stroke style,SOLID or DOTTED

See Also:setStrokeStyle(int) 268
266

javax.microedition.lcdui Graphics

getTranslateX()

o effect

 blue

 of
getTranslateX()

Declaration:
public int getTranslateX ()

Description:
Gets the X coordinate of the translated origin of this graphics context.

Returns: X of current origin

getTranslateY()

Declaration:
public int getTranslateY ()

Description:
Gets the Y coordinate of the translated origin of this graphics context.

Returns: Y of current origin

setClip(int, int, int, int)

Declaration:
public void setClip (int x, int y, int width, int height)

Description:
Sets the current clip to the rectangle specified by the given coordinates. Rendering operations have n
outside of the clipping area.

Parameters:
x - the x coordinate of the new clip rectangle

y - the y coordinate of the new clip rectangle

width - the width of the new clip rectangle

height - the height of the new clip rectangle

See Also:clipRect(int, int, int, int) 254

setColor(int)

Declaration:
public void setColor (int RGB)

Description:
Sets the current color to the specified RGB values. All subsequent rendering operations will use this
specified color. The RGB value passed in is interpreted with the least significant eight bits giving the
component, the next eight more significant bits giving the green component, and the next eight more
significant bits giving the red component. That is to say, the color component is specified in the form
0x00RRGGBB. The high order byte of this value is ignored.

Parameters:
RGB - the color being set

See Also:getColor() 265

setColor(int, int, int)

Declaration:
public void setColor (int red, int green, int blue)
267

Graphics javax.microedition.lcdui

setFont(Font)

ays, the
 gray

t affect
Description:
Sets the current color to the specified RGB values. All subsequent rendering operations will use this
specified color.

Parameters:
red - the red component of the color being set in range0-255

green - the green component of the color being set in range0-255

blue - the blue component of the color being set in range0-255

Throws:
IllegalArgumentException - if any of the color components are outside of range0-255

See Also:getColor() 265

setFont(Font)

Declaration:
public void setFont (javax.microedition.lcdui.Font 223 font)

Description:
Sets the font for all subsequent text rendering operations. If font isnull , it is equivalent to
setFont(Font.getDefaultFont()) .

Parameters:
font - the specified font

See Also:Font 223 , getFont() 266 , drawString(String, int, int, int) 261 ,
drawChars(char[], int, int, int, int, int) 257

setGrayScale(int)

Declaration:
public void setGrayScale (int value)

Description:
Sets the current grayscale to be used for all subsequent rendering operations. For monochrome displ
behavior is clear. For color displays, this sets the color for all subsequent drawing operations to be a
color equivalent to the value passed in. The value must be in the range0-255 .

Parameters:
value - the desired grayscale value

Throws:
IllegalArgumentException - if the gray value is out of range

See Also:getGrayScale() 266

setStrokeStyle(int)

Declaration:
public void setStrokeStyle (int style)

Description:
Sets the stroke style used for drawing lines, arcs, rectangles, and rounded rectangles. This does no
fill, text, and image operations.

Parameters:
style - can beSOLID or DOTTED
268

javax.microedition.lcdui Graphics

translate(int, int)

 new
Throws:
IllegalArgumentException - if thestyle is illegal

See Also:getStrokeStyle() 266

translate(int, int)

Declaration:
public void translate (int x, int y)

Description:
Translates the origin of the graphics context to the point(x, y) in the current coordinate system. All
coordinates used in subsequent rendering operations on this graphics context will be relative to this
origin.

The effect of calls totranslate() are cumulative. For example, callingtranslate(1, 2) and then
translate(3, 4) results in a translation of(4, 6) .

The application can set an absolute origin(ax, ay) using the following technique:

g.translate(ax - g.getTranslateX(), ay - g.getTranslateY())

Parameters:
x - the x coordinate of the new translation origin

y - the y coordinate of the new translation origin

See Also:getTranslateX() 267 , getTranslateY() 267
269

Image javax.microedition.lcdui

translate(int, int)

mand

rally

age.

 of the
n must

n of

arent
 an
javax.microedition.lcdui

Image
Declaration
public class Image

Object
|
+-- javax.microedition.lcdui.Image

Description
TheImage class is used to hold graphical image data.Image objects exist independently of the display
device. They exist only in off-screen memory and will not be painted on the display unless an explicit com
is issued by the application (such as within thepaint() method of aCanvas) or when anImage object is
placed within aForm screen or anAlert screen and that screen is made current.

Images are eithermutableor immutabledepending upon how they are created. Immutable images are gene
created by loading image data from resource bundles, from files, or from the network. They may not be
modified once created. Mutable images are created as blank images containing only white pixels. The
application may render on a mutable image by callinggetGraphics() 277 on theImage to obtain a
Graphics object expressly for this purpose.

Images may be placed withinAlert , Choice , Form, or ImageItem objects. The high-level user interface
implementation may need to update the display at any time, without notifying the application. In order to
provide predictable behavior, the high-level user interface objects provide snapshot semantics for the im
That is, when a mutable image is placed within anAlert , Choice , Form, or ImageItem object, the effect
is as if a snapshot is taken of its current contents. This snapshot is then used for all subsequent painting
high-level user interface component. If the application modifies the contents of the image, the applicatio
update the component containing the image (for example, by callingImageItem.setImage) in order to
make the modified contents visible.

An immutable image may be created from a mutable image through the use of thecreateImage 274 method.
It is possible to create a mutable copy of an immutable image using a technique similar to the following:

Alpha Processing
Every pixel within a mutable image is always fully opaque. Immutable images may contain a combinatio
fully opaque pixels(alpha = 2bitdepth - 1) , fully transparent pixels (alpha = 0), and
semitransparent pixels (0 < alpha < 2bitdepth - 1), wherebitdepthis the number of bits per sample
in the source data.

Implementations must support storage, processing, and rendering of fully opaque pixels and fully transp
pixels in immutable images. When creating an image from source data (whether from a PNG file or from

Image source; // the image to be copied
source = Image.createImage(...);
Image copy = Image

.createImage(source.getWidth(), source.getHeight());
Graphics g = copy.getGraphics();
g.drawImage(source, 0, 0, TOP|LEFT);
270

javax.microedition.lcdui Image

translate(int, int)

 the
l in the

rts alpha
source
 to

y
e.

 listed

ritical

ble

ities of

t be
alpha

 values

lib”
 shared

he
ta.

on. The

o

age

 may
array of ARGB data), a fully opaque pixel in the source data must always result in a fully opaque pixel in
new image, and a fully transparent pixel in the source data must always result in a fully transparent pixe
new image.

The required treatment of semitransparent pixel data depends upon whether the implementation suppo
blending at rendering time. If the implementation supports alpha blending, a semitransparent pixel in the
data must result in a semitransparent pixel in the new image. The resulting alpha value may be modified
accommodate the number of levels of semitransparency supported by the platform. (See the
Display.numAlphaLevels() 213 method.) If an implementation does not support alpha blending, an
semitransparent pixels in the source data must be replaced with fully transparent pixels in the new imag

PNG Image Format
Implementations are required to support images stored in the PNG format, as specified by thePNG (Portable
Network Graphics) Specification, Version 1.0. All conforming MIDP implementations are also conformant to
the minimum set of requirements given by thePNG Specification. MIDP implementations also must conform to
additional requirements given here with respect to handling of PNG images. Note that the requirements
here take precedence over any conflicting recommendations given in thePNG Specification.

Critical Chunks
All of the ’critical’ chunks specified by PNG must be supported. The paragraphs below describe these c
chunks.

The IHDR chunk. MIDP devices must handle the following values in the IHDR chunk:

• All positive values of width and height are supported; however, a very large image may not be reada
because of memory constraints. The dimensions of the resultingImage object must match the dimensions
of the PNG image. That is, the values returned bygetWidth() 279 andgetHeight() 278 and the

rendered width and height must equal the width and height specified in the IHDR chunk.

• All color types are supported, although the appearance of the image will be dependent on the capabil
the device’s screen. Color types that include alpha channel data are supported.

• For color types4 & 6 (grayscale with alpha and RGB with alpha, respectively) the alpha channel mus
decoded. Any pixels with an alpha value of zero must be treated as transparent. Any pixels with an
value of255 (for images with8 bits per sample) or65535 (for images with16 bits per sample) must be
treated as opaque. If rendering with alpha blending is supported, any pixels with intermediate alpha
must be carried through to the resulting image. If alpha blending is not supported, any pixels with
intermediate alpha values must be replaced with fully transparent pixels.

• All bit depth values for the given color type are supported.

• Compression method0 (deflate) is the only supported compression method. This method utilizes the “z
compression scheme, which is also used for jar files; thus, the decompression (inflate) code may be
between the jar decoding and PNG decoding implementations. As noted in the PNG specification, t
compressed data stream may comprised internally of both compressed and uncompressed (raw) da

• The filter method represents a series of encoding schemes that may be used to optimize compressi
PNG spec currently defines a single filter method (method0) that is an adaptive filtering scheme with five
basic filter types. Filtering is essential for optimal compression since it allows the deflate algorithm t
exploit spatial similarities within the image. Therefore, MIDP devices must support all five filter types
defined by filter method0.

• MIDP devices are required to read PNG images that are encoded with either interlace method0 (None) or
interlace method1 (Adam7). Image loading in MIDP is synchronous and cannot be overlapped with im
rendering, and so there is no advantage for an application to use interlace method1. Support for decoding
interlaced images is required for compatibility with PNG and for the convenience of developers who
271

Image javax.microedition.lcdui

translate(int, int)

e

value
sample
isplay
h

f alpha
rent

tion

//
already have interlaced images available.

The PLTE chunk. Palette-based images must be supported.

The IDAT chunk. Image data may be encoded using any of the5 filter types defined by filter method0 (None,
Sub, Up, Average, Paeth).

The IEND chunk. This chunk must be found in order for the image to be considered valid.

Ancillary Chunks
PNG defines several ’ancillary’ chunks that may be present in a PNG image but are not critical for imag
decoding.

The tRNS chunk. All implementations must support the tRNS chunk. This chunk is used to implement
transparency without providing alpha channel data for each pixel. For color types0 and2, a particular gray or
RGB value is defined to be a transparent pixel. In this case, the implementation must treat pixels with this
as fully transparent. Pixel value comparison must be based on the actual pixel values using the original
depth; that is, this comparison must be performed before the pixel values are resampled to reflect the d
capabilities of the device. For color type3 (indexed color),8-bit alpha values are potentially provided for eac
entry in the color palette. In this case, the implementation must treat pixels with an alpha value of0 as fully
transparent, and it must treat pixels with an alpha value of255 as fully opaque. If rendering with alpha blending
is supported, any pixels with intermediate alpha values must be carried through to the resulting image. I
blending is not supported, any pixels with intermediate alpha values must be replaced with fully transpa
pixels.

The implementationmay(but is not required to) support any of the other ancillary chunks. The implementa
must silently ignore any unsupported ancillary chunks that it encounters. The currently defined optional
ancillary chunks are:

cHRM gAMA hIST iCCP iTXt pHYs
sBIT sPLT sRGB tEXt tIME zTXt

Reference
PNG (Portable Network Graphics) Specification, Version 1.0. W3C Recommendation, October 1, 1996. http:
www.w3.org/TR/REC-png.html. Also available as RFC 2083, http://www.ietf.org/rfc/rfc2083.txt.

Since: MIDP 1.0

Member Summary

Methods
static Image createImage(byte[] imageData, int imageOffset, int

imageLength) 273

static Image createImage(Image source) 274

static Image createImage(Image image, int x, int y, int width, int height,
int transform) 274

static Image createImage(java.io.InputStream stream) 275

static Image createImage(int width, int height) 276

static Image createImage(String name) 276

static Image createRGBImage(int[] rgb, int width, int height, boolean
processAlpha) 276

 Graphics getGraphics() 277

 int getHeight() 278
272

javax.microedition.lcdui Image

createImage(byte[], int, int)

e

d. It

ange to

sistent
Methods

createImage(byte[], int, int)

Declaration:
public static javax.microedition.lcdui.Image 270 createImage (byte[] imageData,

int imageOffset, int imageLength)

Description:
Creates an immutable image which is decoded from the data stored in the specified byte array at th
specified offset and length. The data must be in a self-identifying image file format supported by the
implementation, such as PNG.

The imageoffset andimagelength parameters specify a range of data within theimageData byte
array. TheimageOffset parameter specifies the offset into the array of the first data byte to be use
must therefore lie within the range[0..(imageData.length-1)] . TheimageLength parameter
specifies the number of data bytes to be used. It must be a positive integer and it must not cause the r
extend beyond the end of the array. That is, it must be true thatimageOffset + imageLength <
imageData.length .

This method is intended for use when loading an image from a variety of sources, such as from per
storage or from the network.

Parameters:
imageData - the array of image data in a supported image format

imageOffset - the offset of the start of the data in the array

imageLength - the length of the data in the array

Returns: the created image

Throws:
ArrayIndexOutOfBoundsException - if imageOffset andimageLength specify an
invalid range

NullPointerException - if imageData is null

IllegalArgumentException - if imageData is incorrectly formatted or otherwise cannot be
decoded

 void getRGB(int[] rgbData, int offset, int scanlength, int x, int
y, int width, int height) 278

 int getWidth() 279

 boolean isMutable() 280

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
273

Image javax.microedition.lcdui

createImage(Image)

py is
out

tion is

is

ed as

ation,

ed on
 this

.
es.
es.

er.
ical

ical

ical
createImage(Image)

Declaration:
public static javax.microedition.lcdui.Image 270

createImage (javax.microedition.lcdui.Image 270 source)

Description:
Creates an immutable image from a source image. If the source image is mutable, an immutable co
created and returned. If the source image is immutable, the implementation may simply return it with
creating a new image. If an immutable source image contains transparency information, this informa
copied to the new image unchanged.

This method is useful for placing the contents of mutable images intoChoice objects. The application can
create an off-screen image using thecreateImage(w, h) 276 method, draw into it using aGraphics
object obtained with thegetGraphics() 277 method, and then create an immutable copy of it with th
method. The immutable copy may then be placed intoChoice objects.

Parameters:
source - the source image to be copied

Returns: the new, immutable image

Throws:
NullPointerException - if source is null

createImage(Image, int, int, int, int, int)

Declaration:
public static javax.microedition.lcdui.Image 270

createImage (javax.microedition.lcdui.Image 270 image, int x, int y,

int width, int height, int transform)

Description:
Creates an immutable image using pixel data from the specified region of a source image, transform
specified.

The source image may be mutable or immutable. For immutable source images, transparency inform
if any, is copied to the new image unchanged.

On some devices, pre-transformed images may render more quickly than images that are transform
the fly usingdrawRegion . However, creating such images does consume additional heap space, so
technique should be applied only to images whose rendering speed is critical.

The transform function used must be one of the following, as defined in theSprite 365 class:
Sprite.TRANS_NONE - causes the specified image region to be copied unchanged
Sprite.TRANS_ROT90 - causes the specified image region to be rotated clockwise by 90 degrees
Sprite.TRANS_ROT180 - causes the specified image region to be rotated clockwise by 180 degre
Sprite.TRANS_ROT270 - causes the specified image region to be rotated clockwise by 270 degre
Sprite.TRANS_MIRROR - causes the specified image region to be reflected about its vertical cent
Sprite.TRANS_MIRROR_ROT90 - causes the specified image region to be reflected about its vert
center and then rotated clockwise by 90 degrees.
Sprite.TRANS_MIRROR_ROT180 - causes the specified image region to be reflected about its vert
center and then rotated clockwise by 180 degrees.
Sprite.TRANS_MIRROR_ROT270 - causes the specified image region to be reflected about its vert
center and then rotated clockwise by 270 degrees.
274

javax.microedition.lcdui Image

createImage(InputStream)

r

age

turning

mats

ge
The size of the returned image will be the size of the specified region with the transform applied. Fo
example, if the region is100 x 50 pixels and the transform isTRANS_ROT90, the returned image will
be50 x 100 pixels.

Note: If all of the following conditions are met, this method may simply return the sourceImage without
creating a new one:

• the source image is immutable;

• the region represents the entire source image; and

• the transform isTRANS_NONE.

Parameters:
image - the source image to be copied from

x - the horizontal location of the region to be copied

y - the vertical location of the region to be copied

width - the width of the region to be copied

height - the height of the region to be copied

transform - the transform to be applied to the region

Returns: the new, immutable image

Throws:
NullPointerException - if image is null

IllegalArgumentException - if the region to be copied exceeds the bounds of the source im

IllegalArgumentException - if eitherwidth or height is zero or less

IllegalArgumentException - if the transform is not valid

Since: MIDP 2.0

createImage(InputStream)

Declaration:
public static javax.microedition.lcdui.Image 270 createImage (java.io.InputStream stream)

throws IOException

Description:
Creates an immutable image from decoded image data obtained from anInputStream . This method
blocks until all image data has been read and decoded. After this method completes (whether by re
or by throwing an exception) the stream is left open and its current position is undefined.

Parameters:
stream - the name of the resource containing the image data in one of the supported image for

Returns: the created image

Throws:
NullPointerException - if stream is null

java.io.IOException - if an I/O error occurs, if the image data cannot be loaded, or if the ima
data cannot be decoded

Since: MIDP 2.0
275

Image javax.microedition.lcdui

createImage(int, int)

hite.

e

ts

ge

p

lpha
createImage(int, int)

Declaration:
public static javax.microedition.lcdui.Image 270 createImage (int width, int height)

Description:
Creates a new, mutable image for off-screen drawing. Every pixel within the newly created image is w
The width and height of the image must both be greater than zero.

Parameters:
width - the width of the new image, in pixels

height - the height of the new image, in pixels

Returns: the created image

Throws:
IllegalArgumentException - if eitherwidth or height is zero or less

createImage(String)

Declaration:
public static javax.microedition.lcdui.Image 270 createImage (String name)

throws IOException

Description:
Creates an immutable image from decoded image data obtained from the named resource. The nam
parameter is a resource name as defined byClass.getResourceAsStream(name) . The rules for
resolving resource names are defined in the Application Resource Files section of thejava.lang
package documentation.

Parameters:
name - the name of the resource containing the image data in one of the supported image forma

Returns: the created image

Throws:
NullPointerException - if name is null

java.io.IOException - if the resource does not exist, the data cannot be loaded, or the ima
data cannot be decoded

createRGBImage(int[], int, int, boolean)

Declaration:
public static javax.microedition.lcdui.Image 270 createRGBImage (int[] rgb, int width,

int height, boolean processAlpha)

Description:
Creates an immutable image from a sequence of ARGB values, specified as0xAARRGGBB. The ARGB
data within thergb array is arranged horizontally from left to right within each row, row by row from to
to bottom. IfprocessAlpha is true , the high-order byte specifies opacity; that is,0x00RRGGBB
specifies a fully transparent pixel and0xFFRRGGBB specifies a fully opaque pixel. Intermediate alpha
values specify semitransparency. If the implementation does not support alpha blending for image
rendering operations, it must replace any semitransparent pixels with fully transparent pixels. (See A
Processing for further discussion.) IfprocessAlpha is false , the alpha values are ignored and all
pixels must be treated as fully opaque.
276

javax.microedition.lcdui Image

getGraphics()

rd from

call
ConsiderP(a,b) to be the value of the pixel located at columna and rowb of the Image, where rows and
columns are numbered downward from the top starting at zero, and columns are numbered rightwa
the left starting at zero. This operation can then be defined as:

for

Parameters:
rgb - an array of ARGB values that composes the image

width - the width of the image

height - the height of the image

processAlpha - true if rgb has an alpha channel,false if all pixels are fully opaque

Returns: the created image

Throws:
NullPointerException - if rgb is null .

IllegalArgumentException - if eitherwidth or height is zero or less

ArrayIndexOutOfBoundsException - if the length ofrgb is less than width * height .

Since: MIDP 2.0

getGraphics()

Declaration:
public javax.microedition.lcdui.Graphics 247 getGraphics ()

Description:
Creates a newGraphics object that renders to this image. This image must be mutable; it is illegal to
this method on an immutable image. The mutability of an image may be tested with theisMutable()
method.

The newly createdGraphics object has the following properties:

• the destination is thisImage object;

• the clip region encompasses the entireImage ;

• the current color is black;

• the font is the same as the font returned byFont.getDefaultFont() 227 ;

• the stroke style isSOLID254 ; and

• the origin of the coordinate system is located at the upper-left corner of the Image.

P(a, b) = rgb[a + b * width];

0 <= a < width
0 <= b < height
277

Image javax.microedition.lcdui

getHeight()

ime,

 when

f
a
e alpha
t

om

 gray

es
 of

rd from
The lifetime ofGraphics objects created using this method is indefinite. They may be used at any t
by any thread.

Returns: aGraphics object with this image as its destination

Throws:
IllegalStateException 37 - if the image is immutable

getHeight()

Declaration:
public int getHeight ()

Description:
Gets the height of the image in pixels. The value returned must reflect the actual height of the image
rendered.

Returns: height of the image

getRGB(int[], int, int, int, int, int, int)

Declaration:
public void getRGB(int[] rgbData, int offset, int scanlength, int x, int y, int width,

int height)

Description:
Obtains ARGB pixel data from the specified region of this image and stores it in the provided array o
integers. Each pixel value is stored in0xAARRGGBB format, where the high-order byte contains the alph
channel and the remaining bytes contain color components for red, green and blue, respectively. Th
channel specifies the opacity of the pixel, where a value of0x00 represents a pixel that is fully transparen
and a value of0xFF represents a fully opaque pixel.

The returned values are not guaranteed to be identical to values from the original source, such as fr
createRGBImage or from a PNG image. Color values may be resampled to reflect the display
capabilities of the device (for example, red, green or blue pixels may all be represented by the same
value on a grayscale device). On devices that do not support alpha blending, the alpha value will be0xFF
for opaque pixels and0x00 for all other pixels (see Alpha Processing for further discussion.) On devic
that support alpha blending, alpha channel values may be resampled to reflect the number of levels
semitransparency supported.

Thescanlength specifies the relative offset within the array between the corresponding pixels of
consecutive rows. In order to prevent rows of stored pixels from overlapping, the absolute value of
scanlength must be greater than or equal towidth . Negative values ofscanlength are allowed. In
all cases, this must result in every reference being within the bounds of thergbData array.

ConsiderP(a,b) to be the value of the pixel located at columna and rowb of the Image, where rows and
columns are numbered downward from the top starting at zero, and columns are numbered rightwa
the left starting at zero. This operation can then be defined as:

for

rgbData[offset + (a - x) + (b - y) * scanlength] = P(a, b);
278

javax.microedition.lcdui Image

getWidth()

f the

n
f the

hen
The source rectangle is required to not exceed the bounds of the image. This means:

If any of these conditions is not met anIllegalArgumentException is thrown. Otherwise, in cases
wherewidth <= 0 or height <= 0 , no exception is thrown, and no pixel data is copied torgbData .

Parameters:
rgbData - an array of integers in which the ARGB pixel data is stored

offset - the index into the array where the first ARGB value is stored

scanlength - the relative offset in the array between corresponding pixels in consecutive rows o
region

x - the x-coordinate of the upper left corner of the region

y - the y-coordinate of the upper left corner of the region

width - the width of the region

height - the height of the region

Throws:
ArrayIndexOutOfBoundsException - if the requested operation would attempt to access a
element in thergbData array whose index is either negative or beyond its length (the contents o
array are unchanged)

IllegalArgumentException - if the area being retrieved exceeds the bounds of the source
image

IllegalArgumentException - if the absolute value ofscanlength is less thanwidth

NullPointerException - if rgbData is null

Since: MIDP 2.0

getWidth()

Declaration:
public int getWidth ()

Description:
Gets the width of the image in pixels. The value returned must reflect the actual width of the image w
rendered.

Returns: width of the image

x <= a < x + width
y <= b < y + height

x >= 0
y >= 0
x + width <= image width
y + height <= image height
279

Image javax.microedition.lcdui

isMutable()
isMutable()

Declaration:
public boolean isMutable ()

Description:
Check if this image is mutable. Mutable images can be modified by rendering to them through a
Graphics object obtained from thegetGraphics() method of this object.

Returns: true if the image is mutable,false otherwise
280

javax.microedition.lcdui ImageItem

isMutable()

ws

the
e

have

e

javax.microedition.lcdui

ImageItem
Declaration
public class ImageItem extends Item 287

Object
|
+-- javax.microedition.lcdui.Item 287

|
+-- javax.microedition.lcdui.ImageItem

Description
An item that can contain an image.

EachImageItem object contains a reference to anImage 270 object. ThisImage may be mutable or
immutable. If theImage is mutable, the effect is as if snapshot of its contents is taken at the time the
ImageItem is constructed with thisImage and whensetImage is called with anImage . The snapshot is
used whenever the contents of theImageItem are to be displayed. Even if the application subsequently dra
into theImage , the snapshot is not modified until the next call tosetImage . The snapshot isnot updated
when the container of theImageItem becomes current or becomes visible on the display. (This is because
application does not have control over exactly whenDisplayables and Items appear and disappear from th
display.)

The valuenull may be specified for the image contents of anImageItem . If this occurs (and if the label is
alsonull) theImageItem will occupy no space on the screen.

ImageItem contains layout directives that were originally defined in MIDP 1.0. These layout directives
been moved to theItem 287 class and now apply to all items. The declarations are left inImageItem for
source compatibility purposes.

ThealtText parameter specifies a string to be displayed in place of the image if the image exceeds th
capacity of the display. ThealtText parameter may benull .

Since: MIDP 1.0

Member Summary

Fields
static int LAYOUT_CENTER282

static int LAYOUT_DEFAULT282

static int LAYOUT_LEFT283

static int LAYOUT_NEWLINE_AFTER283

static int LAYOUT_NEWLINE_BEFORE283

static int LAYOUT_RIGHT283

Constructors
ImageItem(String label, Image img, int layout, String
altText) 283

ImageItem(String label, Image image, int layout, String
altText, int appearanceMode) 284
281

ImageItem javax.microedition.lcdui

LAYOUT_CENTER
Fields

LAYOUT_CENTER

Declaration:
public static final int LAYOUT_CENTER

Description:
SeeItem.LAYOUT_CENTER292 .

Value3 is assigned toLAYOUT_CENTER.

LAYOUT_DEFAULT

Declaration:
public static final int LAYOUT_DEFAULT

Description:
SeeItem.LAYOUT_DEFAULT292 .

Value0 is assigned toLAYOUT_DEFAULT.

Methods
 java.lang.String getAltText() 285

 int getAppearanceMode() 285

 Image getImage() 285

 int getLayout() 285

 void setAltText(String text) 285

 void setImage(Image img) 286

 void setLayout(int layout) 286

Inherited Member Summary

Fields inherited from classItem 287

BUTTON291, HYPERLINK292, LAYOUT_2292, LAYOUT_BOTTOM292, LAYOUT_EXPAND293,
LAYOUT_SHRINK294, LAYOUT_TOP294, LAYOUT_VCENTER294, LAYOUT_VEXPAND294,
LAYOUT_VSHRINK294, PLAIN295

Methods inherited from classItem 287

addCommand(Command)295, getLabel() 295, getMinimumHeight() 296, getMinimumWidth() 296,
getPreferredHeight() 296, getPreferredWidth() 296, notifyStateChanged() 297,
removeCommand(Command)297, setDefaultCommand(Command) 298,
setItemCommandListener(ItemCommandListener) 298, setLabel(String) 298,
setPreferredSize(int, int) 299

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
282

javax.microedition.lcdui ImageItem

LAYOUT_LEFT

ng
LAYOUT_LEFT

Declaration:
public static final int LAYOUT_LEFT

Description:
SeeItem.LAYOUT_LEFT 293 .

Value1 is assigned toLAYOUT_LEFT.

LAYOUT_NEWLINE_AFTER

Declaration:
public static final int LAYOUT_NEWLINE_AFTER

Description:
SeeItem.LAYOUT_NEWLINE_AFTER293 .

Value0x200 is assigned toLAYOUT_NEWLINE_AFTER.

LAYOUT_NEWLINE_BEFORE

Declaration:
public static final int LAYOUT_NEWLINE_BEFORE

Description:
SeeItem.LAYOUT_NEWLINE_BEFORE293 .

Value0x100 is assigned toLAYOUT_NEWLINE_BEFORE.

LAYOUT_RIGHT

Declaration:
public static final int LAYOUT_RIGHT

Description:
SeeItem.LAYOUT_RIGHT 293 .

Value2 is assigned toLAYOUT_RIGHT.

Constructors

ImageItem(String, Image, int, String)

Declaration:
public ImageItem (String label, javax.microedition.lcdui.Image 270 img, int layout,

String altText)

Description:
Creates a newImageItem with the given label, image, layout directive, and alternate text string. Calli
this constructor is equivalent to calling

ImageItem(label, image, layout, altText, PLAIN);
283

ImageItem javax.microedition.lcdui

ImageItem(String, Image, int, String, int)

d

n’s
Parameters:
label - the label string

img - the image, can be mutable or immutable

layout - a combination of layout directives

altText - the text that may be used in place of the image

Throws:
IllegalArgumentException - if the layout value is not a legal combination of directives

See Also: ImageItem(String, Image, int, String, int) 284

ImageItem(String, Image, int, String, int)

Declaration:
public ImageItem (String label, javax.microedition.lcdui.Image 270 image, int layout,

String altText, int appearanceMode)

Description:
Creates a newImageItem object with the given label, image, layout directive, alternate text string, an
appearance mode. Either label or alternative text may be present ornull .

TheappearanceMode parameter (see Appearance Modes) is a hint to the platform of the applicatio
intended use for thisImageItem . To provide hyperlink- or button-like behavior, the application should
associate a defaultCommand with thisImageItem and add anItemCommandListener to this
ImageItem .

Here is an example showing the use of anImageItem as a button:

Parameters:
label - the label string

image - the image, can be mutable or immutable

layout - a combination of layout directives

altText - the text that may be used in place of the image

appearanceMode - the appearance mode of theImageItem , one ofItem.PLAIN 295 ,
Item.HYPERLINK 292 , or Item.BUTTON 291

Throws:
IllegalArgumentException - if the layout value is not a legal combination of directives

IllegalArgumentException - if appearanceMode invalid

Since: MIDP 2.0

ImageItem imgItem =
new ImageItem(“Default: ”, img,

Item.LAYOUT_CENTER, null,
Item.BUTTON);

imgItem.setDefaultCommand(
new Command(“Set”, Command.ITEM, 1);

// icl is ItemCommandListener
imgItem.setItemCommandListener(icl);
284

javax.microedition.lcdui ImageItem

getAltText()
Methods

getAltText()

Declaration:
public String getAltText ()

Description:
Gets the text string to be used if the image exceeds the device’s capacity to display it.

Returns: the alternate text value, ornull if none

See Also:setAltText(String) 285

getAppearanceMode()

Declaration:
public int getAppearanceMode ()

Description:
Returns the appearance mode of theImageItem . See Appearance Modes.

Returns: the appearance mode value, one ofItem.PLAIN 295 , Item.HYPERLINK 292 , or
Item.BUTTON 291

Since: MIDP 2.0

getImage()

Declaration:
public javax.microedition.lcdui.Image 270 getImage ()

Description:
Gets the image contained within theImageItem , ornull if there is no contained image.

Returns: image used by theImageItem

See Also:setImage(Image) 286

getLayout()

Declaration:
public int getLayout ()

Description:
Gets the layout directives used for placing the image.

Overrides: getLayout 295 in classItem 287

Returns: a combination of layout directive values

See Also:setLayout(int) 286

setAltText(String)

Declaration:
public void setAltText (String text)

Description:
Sets the alternate text of theImageItem , ornull if no alternate text is provided.
285

ImageItem javax.microedition.lcdui

setImage(Image)

n

tained
Parameters:
text - the new alternate text

See Also:getAltText() 285

setImage(Image)

Declaration:
public void setImage (javax.microedition.lcdui.Image 270 img)

Description:
Sets theImage object contained within theImageItem . The image may be mutable or immutable. If
img is null , theImageItem is set to be empty. Ifimg is mutable, the effect is as if a snapshot is take
of img's contents immediately prior to the call tosetImage . This snapshot is used whenever the
contents of theImageItem are to be displayed. Ifimg is already theImage of thisImageItem , the
effect is as if a new snapshot of img’s contents is taken. Thus, after painting into a mutable image con
by anImageItem , the application can call

to refresh theImageItem's snapshot of its Image.

If the ImageItem is visible on the display when the snapshot is updated through a call tosetImage , the
display is updated with the new snapshot as soon as it is feasible for the implementation to so do.

Parameters:
img - theImage for thisImageItem , ornull if none

See Also:getImage() 285

setLayout(int)

Declaration:
public void setLayout (int layout)

Description:
Sets the layout directives.

Overrides: setLayout 299 in classItem 287

Parameters:
layout - a combination of layout directive values

Throws:
IllegalArgumentException - if the value oflayout is not a valid combination of layout
directives

See Also:getLayout() 285

imageItem.setImage(imageItem.getImage());
286

javax.microedition.lcdui Item

setLayout(int)

ed
 the
 by
aced
 the

nd
eason
uired,
javax.microedition.lcdui

Item
Declaration
public abstract class Item

Object
|
+-- javax.microedition.lcdui.Item

Direct Known Subclasses:ChoiceGroup 166 , CustomItem 184 , DateField 201 , Gauge240 ,
ImageItem 281 , Spacer 316 , StringItem 319 , TextField 330

Description
A superclass for components that can be added to aForm231 . All Item objects have a label field, which is a
string that is attached to the item. The label is typically displayed near the component when it is display
within a screen. The label should be positioned on the same horizontal row as the item or directly above
item. The implementation should attempt to distinguish label strings from other textual content, possibly
displaying the label in a different font, aligning it to a different margin, or appending a colon to it if it is pl
on the same line as other string content. If the screen is scrolling, the implementation should try to keep
label visible at the same time as theItem .

In some cases, when the user attempts to interact with anItem , the system will switch to a system-generated
screen where the actual interaction takes place. If this occurs, the label will generally be carried along a
displayed within this new screen in order to provide the user with some context for the operation. For this r
it is recommended that applications supply a label to all interactive Item objects. However, this is not req
and anull value for a label is legal and specifies the absence of a label.

Item Layout
An Item's layout within its container is influenced through layout directives:

• LAYOUT_DEFAULT

• LAYOUT_LEFT

• LAYOUT_RIGHT

• LAYOUT_CENTER

• LAYOUT_TOP

• LAYOUT_BOTTOM

• LAYOUT_VCENTER

• LAYOUT_NEWLINE_BEFORE

• LAYOUT_NEWLINE_AFTER

• LAYOUT_SHRINK

• LAYOUT_VSHRINK

• LAYOUT_EXPAND

• LAYOUT_VEXPAND
287

Item javax.microedition.lcdui

setLayout(int)

m.
is

tives
as

is not

t is not

as part

ps

be

-
y the

tion

rred

 the
 fit the
he new
d

• LAYOUT_2

TheLAYOUT_DEFAULTdirective indicates that the container’s default layout policy is to be used for this ite
LAYOUT_DEFAULT has the value zero and has no effect when combined with other layout directives. It
useful within programs in order to document the programmer’s intent.

TheLAYOUT_LEFT, LAYOUT_RIGHT, andLAYOUT_CENTER directives indicate horizontal alignment and
are mutually exclusive. Similarly, theLAYOUT_TOP, LAYOUT_BOTTOM, andLAYOUT_VCENTER directives
indicate vertical alignment and are mutually exclusive.

A horizontal alignment directive, a vertical alignment directive, and any combination of other layout direc
may be combined using the bit-wiseORoperator (|) to compose a layout directive value. Such a value is used
the parameter to thesetLayout(int) 299 method and is the return value from thegetLayout() 295
method.

Some directives have no defined behavior in some contexts. A layout directive is ignored if its behavior
defined for the particular context within which theItem resides.

A complete specification of the layout ofItems within aForm is given here.

Item Sizes
Items have two explicit size concepts: theminimum size and thepreferred size. Both the minimum and the
preferred sizes refer to the total area of theItem , which includes space for theItem's contents, theItem's
label, as well as other space that is significant to the layout policy. These sizes do not include space tha
significant for layout purposes. For example, if the addition of a label to anItem would cause otherItems to
move in order to make room, then the space occupied by this label is significant to layout and is counted
of theItem's minimum and preferred sizes. However, if an implementation were to place the label in a
margin area reserved exclusively for labels, this would not affect the layout of neighboringItems . In this case,
the space occupied by the label would not be considered part of the minimum and preferred sizes.

The minimum size is the smallest size at which theItem can function and display its contents, though perha
not optimally. The minimum size may be recomputed whenever theItem's contents changes.

The preferred size is generally a size based on theItem's contents and is the smallest size at which no
information is clipped and text wrapping (if any) is kept to a tolerable minimum. The preferred size may
recomputed whenever theItem's contents changes. The application canlock the preferred width or preferred
height (or both) by supplying specific values for parameters to thesetPreferredSize 299 method. The
manner in which anItem fits its contents within an application-specified preferred size is implementation
specific. However, it is recommended that textual content be word-wrapped to fit the preferred size set b
application. The application canunlock either or both dimensions by supplying the value-1 for parameters to
thesetPreferredSize method.

When anItem is created, both the preferred width and height are unlocked. In this state, the implementa
computes the preferred width and height based on theItem's contents, possibly including other relevant
factors such as theItem's graphic design and the screen dimensions. After having locked either the prefe
width or height, the application can restore the initial, unlocked state by callingsetPreferredSize(-1,
-1) .

The application can lock one dimension of the preferred size and leave the other unlocked. This causes
system to compute an appropriate value for the unlocked dimension based on arranging the contents to
locked dimension. If the contents changes, the size on the unlocked dimension is recomputed to reflect t
contents, but the size on the locked dimension remains unchanged. For example, if the application calle
setPreferredSize(50, -1) , the preferred width would be locked at50 pixels and the preferred height
would be computed based on theItem's contents. Similarly, if the application called
setPreferredSize(-1, 60) , the preferred height would be locked at60 pixels and the preferred width
288

javax.microedition.lcdui Item

setLayout(int)

d

ally

r than
m or

 values

 initiate

and

 on an

 place

cial
 of an

. For
would be computed based on theItem's contents. This feature is particularly useful forItems with textual
content that can be line wrapped.

The application can also lock both the preferred width and height to specific values. TheItem's contents are
truncated or padded as necessary to honor this request. ForItems containing text, the text should be wrappe
to the specified width, and any truncation should occur at the end of the text.

Items also have an implicit maximum size provided by the implementation. The maximum width is typic
based on the width of the screen space available to aForm. SinceForms can scroll vertically, the maximum
height should typically not be based on the height of the available screen space.

If the application attempts to lock a preferred size dimension to a value smaller than the minimum or large
the maximum, the implementation may disregard the requested value and instead use either the minimu
maximum as appropriate. If this occurs, the actual values used must be visible to the application via the
returned from thegetPreferredWidth 296 andgetPreferredHeight 296 methods.

Commands
A Commandis said to be present on anItem if the Commandhas been added to thisItem with a prior call to
addCommand(Command)295 or setDefaultCommand(Command) 298 and if theCommand has not
been removed with a subsequent call toremoveCommand(Command)297 . Commands present on an item
should have a command type ofITEM. However, it is not an error for a command whose type is other than
ITEM to be added to an item. For purposes of presentation and placement within its user interface, the
implementation is allowed to treat a command’s items as if they were of typeITEM.

Items may have adefaultCommand. This state is controlled by the
setDefaultCommand(Command) 298 method. The defaultCommand is eligible to be bound to a special
platform-dependent user gesture. The implementation chooses which gesture is the most appropriate to
the default command on that particularItem . For example, on a device that has a dedicated selection key,
pressing this key might invoke the item’s default command. Or, on a stylus-based device, tapping on theItem
might invoke its default command. Even if it can be invoked through a special gesture, the default comm
should also be invokable in the same fashion as other item commands.

It is possible that on some devices there is no special gesture suitable for invoking the default command
item. In this case the default command must be accessible to the user in the same fashion as other item
commands. The implementation may use the state of a command being the default in deciding where to
the command in its user interface.

It is possible for anItem not to have a default command. In this case, the implementation may bind its spe
user gesture (if any) for another purpose, such as for displaying a menu of commands. The default state
Item is not to have a default command. AnItem may be set to have no defaultCommandby removing it from
theItem or by passingnull to thesetDefaultCommand() method.

The same command may occur on more than oneItem and also on more than oneDisplayable . If this
situation occurs, the user must be provided with distinct gestures to invoke that command on eachItem or
Displayable on which it occurs, while thoseItems or Displayables are visible on the display. When
the user invokes the command, the listener (CommandListener or ItemCommandListener as
appropriate) of just the object on which the command was invoked will be called.

Adding commands to anItem may affect its appearance, the way it is laid out, and the traversal behavior
example, the presence of commands on anItem may cause row breaks to occur, or it may cause additional
graphical elements (such as a menu icon) to appear. In particular, if aStringItem whose appearance mode is
PLAIN (see below) is given one or moreCommands, the implementation is allowed to treat it as if it had a
different appearance mode.
289

Item javax.microedition.lcdui

setLayout(int)

e
ractive,
e a
do
ce
s if

link,

his
ers must

uch as
n and
nd
he
oked
Appearance Modes
TheStringItem andImageItem classes have anappearance mode attribute that can be set in their
constructors. This attribute can have one of the valuesPLAIN295 , HYPERLINK292 , orBUTTON291 . An
appearance mode ofPLAIN is typically used for non-interactive display of textual or graphical material. Th
appearance mode values do not have any side effects on the interactivity of the item. In order to be inte
the item must have one or moreCommands (preferably with a default command assigned), and it must hav
CommandListener that receives notification ofCommandinvocations. The appearance mode values also
not have any effect on the semantics ofCommand invocation on the item. For example, setting the appearan
mode of aStringItem to beHYPERLINK requests that the implementation display the string contents a
they were a hyperlink in a browser. It is the application’s responsibility to attach aCommand and a listener to
theStringItem that provide behaviors that the user would expect from invoking an operation on a hyper
such as loading the referent of the link or adding the link to the user’s set of bookmarks.

Setting the appearance mode of anItem to be other thanPLAIN may affect its minimum, preferred, and
maximum sizes, as well as the way it is laid out. For example, aStringItem with an appearance mode of
BUTTON should not be wrapped across rows. (However, aStringItem with an appearance mode of
HYPERLINK should be wrapped the same way as if its appearance mode isPLAIN .)

A StringItem or ImageItem in BUTTON mode can be used to create a button-based user interface. T
can easily lead to applications that are inconvenient to use. For example, in a traversal-based system, us
navigate to a button before they can invoke any commands on it. If buttons are spread across a longForm, users
may be required to perform a considerable amount of navigation in order to discover all the available
commands. Furthermore, invoking a command from a button at the other end of theForm can be quite
cumbersome. Traversal-based systems often provide a means of invoking commands from anywhere (s
from a menu), without the need to traverse to a particular item. Instead of adding a command to a butto
placing that button into aForm, it would often be more appropriate and convenient for users if that comma
were added directly to theForm. Buttons should be used only in cases where direct user interaction with t
item’s string or image contents is essential to the user’s understanding of the commands that can be inv
from that item.

Default State
Unless otherwise specified by a subclass, the default state of newly createdItems is as follows:

• theItem is not contained within (“owned by”) any container;

• there are noCommands present;

• the defaultCommand is null ;

• theItemCommandListener is null ;

• the layout directive value isLAYOUT_DEFAULT; and

• both the preferred width and preferred height are unlocked.

Since: MIDP 1.0

Member Summary

Fields
static int BUTTON291

static int HYPERLINK292

static int LAYOUT_2292

static int LAYOUT_BOTTOM292
290

javax.microedition.lcdui Item

BUTTON
Fields

BUTTON

Declaration:
public static final int BUTTON

Description:
An appearance mode value indicating that theItem is to appear as a button.

Value2 is assigned toBUTTON.

Since: MIDP 2.0

static int LAYOUT_CENTER292

static int LAYOUT_DEFAULT292

static int LAYOUT_EXPAND293

static int LAYOUT_LEFT293

static int LAYOUT_NEWLINE_AFTER293

static int LAYOUT_NEWLINE_BEFORE293

static int LAYOUT_RIGHT293

static int LAYOUT_SHRINK294

static int LAYOUT_TOP294

static int LAYOUT_VCENTER294

static int LAYOUT_VEXPAND294

static int LAYOUT_VSHRINK294

static int PLAIN295

Methods
 void addCommand(Command cmd)295

 java.lang.String getLabel() 295

 int getLayout() 295

 int getMinimumHeight() 296

 int getMinimumWidth() 296

 int getPreferredHeight() 296

 int getPreferredWidth() 296

 void notifyStateChanged() 297

 void removeCommand(Command cmd) 297

 void setDefaultCommand(Command cmd) 298

 void setItemCommandListener(ItemCommandListener l) 298

 void setLabel(String label) 298

 void setLayout(int layout) 299

 void setPreferredSize(int width, int height) 299

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
291

Item javax.microedition.lcdui

HYPERLINK
HYPERLINK

Declaration:
public static final int HYPERLINK

Description:
An appearance mode value indicating that theItem is to appear as a hyperlink.

Value1 is assigned toHYPERLINK.

Since: MIDP 2.0

LAYOUT_2

Declaration:
public static final int LAYOUT_2

Description:
A layout directive indicating that new MIDP 2.0 layout rules are in effect for thisItem . If this bit is clear,
indicates that MIDP 1.0 layout behavior applies to thisItem .

Value0x4000 is assigned toLAYOUT_2.

Since: MIDP 2.0

LAYOUT_BOTTOM

Declaration:
public static final int LAYOUT_BOTTOM

Description:
A layout directive indicating that thisItem should have a bottom-aligned layout.

Value0x20 is assigned toLAYOUT_BOTTOM.

Since: MIDP 2.0

LAYOUT_CENTER

Declaration:
public static final int LAYOUT_CENTER

Description:
A layout directive indicating that thisItem should have a horizontally centered layout.

Value3 is assigned toLAYOUT_CENTER.

Since: MIDP 2.0

LAYOUT_DEFAULT

Declaration:
public static final int LAYOUT_DEFAULT

Description:
A layout directive indicating that thisItem should follow the default layout policy of its container.

Value0 is assigned toLAYOUT_DEFAULT.

Since: MIDP 2.0
292

javax.microedition.lcdui Item

LAYOUT_EXPAND
LAYOUT_EXPAND

Declaration:
public static final int LAYOUT_EXPAND

Description:
A layout directive indicating that thisItem's width may be increased to fill available space.

Value0x800 is assigned toLAYOUT_EXPAND.

Since: MIDP 2.0

LAYOUT_LEFT

Declaration:
public static final int LAYOUT_LEFT

Description:
A layout directive indicating that thisItem should have a left-aligned layout.

Value1 is assigned toLAYOUT_LEFT.

Since: MIDP 2.0

LAYOUT_NEWLINE_AFTER

Declaration:
public static final int LAYOUT_NEWLINE_AFTER

Description:
A layout directive indicating that thisItem should the last on its line or row, and that the nextItem (if
any) in the container should be placed on a new line or row.

Value0x200 is assigned toLAYOUT_NEWLINE_AFTER.

Since: MIDP 2.0

LAYOUT_NEWLINE_BEFORE

Declaration:
public static final int LAYOUT_NEWLINE_BEFORE

Description:
A layout directive indicating that thisItem should be placed at the beginning of a new line or row.

Value0x100 is assigned toLAYOUT_NEWLINE_BEFORE.

Since: MIDP 2.0

LAYOUT_RIGHT

Declaration:
public static final int LAYOUT_RIGHT

Description:
A layout directive indicating that thisItem should have a right-aligned layout.

Value2 is assigned toLAYOUT_RIGHT.

Since: MIDP 2.0
293

Item javax.microedition.lcdui

LAYOUT_SHRINK
LAYOUT_SHRINK

Declaration:
public static final int LAYOUT_SHRINK

Description:
A layout directive indicating that thisItem's width may be reduced to its minimum width.

Value0x400 is assigned toLAYOUT_SHRINK

Since: MIDP 2.0

LAYOUT_TOP

Declaration:
public static final int LAYOUT_TOP

Description:
A layout directive indicating that thisItem should have a top-aligned layout.

Value0x10 is assigned toLAYOUT_TOP.

Since: MIDP 2.0

LAYOUT_VCENTER

Declaration:
public static final int LAYOUT_VCENTER

Description:
A layout directive indicating that thisItem should have a vertically centered layout.

Value0x30 is assigned toLAYOUT_VCENTER.

Since: MIDP 2.0

LAYOUT_VEXPAND

Declaration:
public static final int LAYOUT_VEXPAND

Description:
A layout directive indicating that thisItem's height may be increased to fill available space.

Value0x2000 is assigned toLAYOUT_VEXPAND.

Since: MIDP 2.0

LAYOUT_VSHRINK

Declaration:
public static final int LAYOUT_VSHRINK

Description:
A layout directive indicating that thisItem's height may be reduced to its minimum height.

Value0x1000 is assigned toLAYOUT_VSHRINK.

Since: MIDP 2.0
294

javax.microedition.lcdui Item

PLAIN

has no
he
PLAIN

Declaration:
public static final int PLAIN

Description:
An appearance mode value indicating that theItem is to have a normal appearance.

Value0 is assigned toPLAIN .

Since: MIDP 2.0

Methods

addCommand(Command)

Declaration:
public void addCommand(javax.microedition.lcdui.Command 175 cmd)

Description:
Adds a context sensitiveCommand to the item. The semantic type ofCommand should beITEM. The
implementation will present the command only when the item is active, for example, highlighted.

If the added command is already in the item (tested by comparing the object references), the method
effect. If the item is actually visible on the display, and this call affects the set of visible commands, t
implementation should update the display as soon as it is feasible to do so.

It is illegal to call this method if thisItem is contained within anAlert .

Parameters:
cmd - the command to be added

Throws:
IllegalStateException 37 - if this Item is contained within anAlert

NullPointerException - if cmd isnull

Since: MIDP 2.0

getLabel()

Declaration:
public String getLabel ()

Description:
Gets the label of thisItem object.

Returns: the label string

See Also:setLabel(String) 298

getLayout()

Declaration:
public int getLayout ()

Description:
Gets the layout directives used for placing the item.

Returns: a combination of layout directive values
295

Item javax.microedition.lcdui

getMinimumHeight()
Since: MIDP 2.0

See Also:setLayout(int) 299

getMinimumHeight()

Declaration:
public int getMinimumHeight ()

Description:
Gets the minimum height for thisItem . This is a height at which the item can function and display its
contents, though perhaps not optimally. See Item Sizes for a complete discussion.

Returns: the minimum height of the item

Since: MIDP 2.0

getMinimumWidth()

Declaration:
public int getMinimumWidth ()

Description:
Gets the minimum width for thisItem . This is a width at which the item can function and display its
contents, though perhaps not optimally. See Item Sizes for a complete discussion.

Returns: the minimum width of the item

Since: MIDP 2.0

getPreferredHeight()

Declaration:
public int getPreferredHeight ()

Description:
Gets the preferred height of thisItem . If the application has locked the height to a specific value, this
method returns that value. Otherwise, the return value is computed based on theItem's contents, possibly
with respect to theItem's preferred width if it is locked. See Item Sizes for a complete discussion.

Returns: the preferred height of theItem

Since: MIDP 2.0

See Also:getPreferredWidth() 296 , setPreferredSize(int, int) 299

getPreferredWidth()

Declaration:
public int getPreferredWidth ()

Description:
Gets the preferred width of thisItem . If the application has locked the width to a specific value, this
method returns that value. Otherwise, the return value is computed based on theItem's contents, possibly
with respect to theItem's preferred height if it is locked. See Item Sizes for a complete discussion.

Returns: the preferred width of the Item

Since: MIDP 2.0

See Also:getPreferredHeight() 296 , setPreferredSize(int, int) 299
296

javax.microedition.lcdui Item

notifyStateChanged()

on, this

 form

alls to

n as it
nd is
notifyStateChanged()

Declaration:
public void notifyStateChanged ()

Description:
Causes thisItem's containingForm to notify theItem's ItemStateListener 301 . The
application calls this method to inform the listener on theItem that theItem's state has been changed in
response to an action. Even though this method simply causes a call to another part of the applicati
mechanism is useful for decoupling the implementation of anItem (in particular, the implementation of a
CustomItem , though this also applies to subclasses of other items) from the consumer of the item.

If an edit was performed by invoking a separate screen, and the editor now wishes to “return” to the
which contained the selectedItem , the preferred method isDisplay.setCurrent(Item) instead of
Display.setCurrent(Displayable) , because it allows theForm to restore focus to theItem
that initially invoked the editor.

In order to make sure that the documented behavior ofItemStateListener is maintained, it is up to
the caller (application) to guarantee that this function is not called unless:

• theItem's value has actually been changed, and

• the change was the result of a user action (an “edit”) and NOT as a result of state change via c
Item's APIs

The call toItemStateListener.itemStateChanged may be delayed in order to be serialized
with the event stream. ThenotifyStateChanged method does not block awaiting the completion of
the itemStateChanged method.

Throws:
IllegalStateException 37 - if the Item is not owned by aForm

Since: MIDP 2.0

removeCommand(Command)

Declaration:
public void removeCommand(javax.microedition.lcdui.Command 175 cmd)

Description:
Removes the context sensitive command from item. If the command is not in theItem (tested by
comparing the object references), the method has no effect. If theItem is actually visible on the display,
and this call affects the set of visible commands, the implementation should update the display as soo
is feasible to do so. If the command to be removed happens to be the default command, the comma
removed and the default command on this Item is set tonull . The following code:

// Command c is the default command on Item item
item.removeCommand(c);

is equivalent to the following code:

// Command c is the default command on Item item
item.setDefaultCommand(null);
item.removeCommand(c);

Parameters:
cmd - the command to be removed

Since: MIDP 2.0
297

Item javax.microedition.lcdui

setDefaultCommand(Command)
setDefaultCommand(Command)

Declaration:
public void setDefaultCommand (javax.microedition.lcdui.Command 175 cmd)

Description:
Sets defaultCommandfor this Item . If the Item previously had a defaultCommand, thatCommandis no
longer the default, but it remains present on theItem .

If not null , theCommand object passed becomes the defaultCommand for thisItem . If theCommand
object passed is not currently present on thisItem , it is added as ifaddCommand(Command)295 had
been called before it is made the defaultCommand.

If null is passed, theItem is set to have no defaultCommand. The previous defaultCommand, if any,
remains present on theItem .

It is illegal to call this method if thisItem is contained within anAlert .

Parameters:
cmd - the command to be used as thisItem's defaultCommand, or null if there is to be no default
command

Throws:
IllegalStateException 37 - if this Item is contained within anAlert

Since: MIDP 2.0

setItemCommandListener(ItemCommandListener)

Declaration:
public void setItemCommandListener (javax.microedition.lcdui.ItemCommandListener 300 l)

Description:
Sets a listener forCommands to thisItem , replacing any previousItemCommandListener . A null
reference is allowed and has the effect of removing any existing listener.

It is illegal to call this method if thisItem is contained within anAlert .

Parameters:
l - the new listener, ornull .

Throws:
IllegalStateException 37 - if this Item is contained within anAlert

Since: MIDP 2.0

setLabel(String)

Declaration:
public void setLabel (String label)

Description:
Sets the label of theItem . If label is null , specifies that this item has no label.

It is illegal to call this method if thisItem is contained within anAlert .

Parameters:
label - the label string

Throws:
IllegalStateException 37 - if this Item is contained within anAlert
298

javax.microedition.lcdui Item

setLayout(int)

t

eight

e

See Also:getLabel() 295

setLayout(int)

Declaration:
public void setLayout (int layout)

Description:
Sets the layout directives for this item.

It is illegal to call this method if thisItem is contained within anAlert .

Parameters:
layout - a combination of layout directive values for this item

Throws:
IllegalArgumentException - if the value of layout is not a bit-wise OR combination of layou
directives

IllegalStateException 37 - if this Item is contained within anAlert

Since: MIDP 2.0

See Also:getLayout() 295

setPreferredSize(int, int)

Declaration:
public void setPreferredSize (int width, int height)

Description:
Sets the preferred width and height for thisItem . Values for width and height less than-1 are illegal. If the
width is between zero and the minimum width, inclusive, the minimum width is used instead. If the h
is between zero and the minimum height, inclusive, the minimum height is used instead.

Supplying a width or height value greater than the minimum width or heightlocks that dimension to the
supplied value. The implementation may silently enforce a maximum dimension for anItem based on
factors such as the screen size. Supplying a value of-1 for the width or height unlocks that dimension. Se
Item Sizes for a complete discussion.

It is illegal to call this method if thisItem is contained within anAlert .

Parameters:
width - the value to which the width should be locked, or-1 to unlock

height - the value to which the height should be locked, or-1 to unlock

Throws:
IllegalArgumentException - if width or height is less than-1

IllegalStateException 37 - if this Item is contained within anAlert

Since: MIDP 2.0

See Also:getPreferredHeight() 296 , getPreferredWidth() 296
299

ItemCommandListener javax.microedition.lcdui

commandAction(Command, Item)

ving
javax.microedition.lcdui

ItemCommandListener
Declaration
public interface ItemCommandListener

Description
A listener type for receiving notification of commands that have been invoked onItem 287 objects. AnItem
can haveCommandsassociated with it. When such a command is invoked, the application is notified by ha
thecommandAction() 300 method called on theItemCommandListener that had been set on theItem
with a call tosetItemCommandListener() 298 .

Since: MIDP 2.0

Methods

commandAction(Command, Item)

Declaration:
public void commandAction (javax.microedition.lcdui.Command 175 c,

javax.microedition.lcdui.Item 287 item)

Description:
Called by the system to indicate that a command has been invoked on a particular item.

Parameters:
c - theCommand that was invoked

item - theItem on which the command was invoked

Member Summary

Methods
 void commandAction(Command c, Item item) 300
300

javax.microedition.lcdui ItemStateListener

itemStateChanged(Item)

 state of

n
e it is

ld be
listener
javax.microedition.lcdui

ItemStateListener
Declaration
public interface ItemStateListener

Description
This interface is used by applications which need to receive events that indicate changes in the internal
the interactive items within aForm231 screen.

Since: MIDP 1.0

See Also: Form.setItemStateListener(ItemStateListener) 239

Methods

itemStateChanged(Item)

Declaration:
public void itemStateChanged (javax.microedition.lcdui.Item 287 item)

Description:
Called when internal state of anItem has been changed by the user. This happens when the user:

• changes the set of selected values in aChoiceGroup ;

• adjusts the value of an interactiveGauge;

• enters or modifies the value in aTextField ;

• enters a new date or time in aDateField ; and

• Item.notifyStateChanged() 297 was called on anItem .

It is up to the device to decide when it considers a new value to have been entered into anItem . For
example, implementations of text editing within aTextField vary greatly from device to device.

In general, it is not expected that the listener will be called after every change is made. However, if a
item’s value has been changed, the listener will be called to notify the application of the change befor
called for a change on another item, and before a command is delivered to theForm's
CommandListener . For implementations that have the concept of an input focus, the listener shou
called no later than when the focus moves away from an item whose state has been changed. The
should be called only if the item’s value has actually been changed.

The listener is not called if the application changes the value of an interactive item.

Member Summary

Methods
 void itemStateChanged(Item item) 301
301

ItemStateListener javax.microedition.lcdui

itemStateChanged(Item)
Parameters:
item - the item that was changed
302

javax.microedition.lcdui List

itemStateChanged(Item)

d
system

ties of

at key.
ample,

el

ents
 it. The

 the
javax.microedition.lcdui

List
Declaration
public class List extends Screen 315 implements Choice 155

Object
|
+-- javax.microedition.lcdui.Displayable 218

|
+-- javax.microedition.lcdui.Screen 315

|
+-- javax.microedition.lcdui.List

All Implemented Interfaces: Choice 155

Description
A Screen containing list of choices. Most of its behavior is common with classChoiceGroup 166 , and their
common API. The differentList types in particular, are defined in interfaceChoice 155 . When aList is
present on the display, the user can interact with it by selecting elements and possibly by traversing an
scrolling among them. Traversing and scrolling operations do not cause application-visible events. The
notifies the application only when aCommand175 is invoked by notifying itsCommandListener 183 . The
List class also supports a select command that may be invoked specially depending upon the capabili
the device.

The notion of aselect operation on aList element is central to the user’s interaction with theList . On
devices that have a dedicated hardware “select” or “go” key, the select operation is implemented with th
Devices that do not have a dedicated key must provide another means to do the select operation, for ex
using a soft key. The behavior of the select operation within the different types of lists is described in the
following sections.

List objects may be created withChoice types ofChoice.EXCLUSIVE 158 , Choice.MULTIPLE 158 ,
andChoice.IMPLICIT 158 . TheChoice typeChoice.POPUP 158 is not allowed onList objects.

Selection inEXCLUSIVE and MULTIPLE Lists
The select operation is not associated with aCommandobject, so the application has no means of setting a lab
for it or being notified when the operation is performed. InLists of typeEXCLUSIVE, the select operation
selects the target element and deselects the previously selected element. InLists of typeMULTIPLE, the
select operation toggles the selected state of the target element, leaving the selected state of other elem
unchanged. Devices that implement the select operation using a soft key will need to provide a label for
label should be something similar to “Select” forLists of typeEXCLUSIVE, and it should be something
similar to “Mark” or “Unmark” forLists of typeMULTIPLE.

Selection inIMPLICIT Lists
The select operation is associated with aCommand object referred to as theselect command. When the user
performs the select operation, the system will invoke the select command by notifying theList's
CommandListener 183 . The default select command is the system-provided command
SELECT_COMMAND. The select command may be modified by the application through use of the
setSelectCommand 312 method. Devices that implement the select operation using a soft key will use
label from the select command. If the select command isSELECT_COMMAND, the device may choose to
303

List javax.microedition.lcdui

itemStateChanged(Item)

ct
mally

ng

d.
 is

lting
ion on
provide its own label instead of using the label attribute ofSELECT_COMMAND. Applications should generally
provide their own select command to replaceSELECT_COMMAND. This allows applications to provide a
meaningful label, instead of relying on the one provided by the system forSELECT_COMMAND. The
implementation mustnot invoke the select command if there are no elements in theList , because if theList
is empty the selection does not exist. In this case the implementation should remove or disable the sele
command if it would appear explicitly on a soft button or in a menu. Other commands can be invoked nor
when theList is empty.

Use ofIMPLICIT Lists
IMPLICIT Lists can be used to construct menus by providing operations asList elements. The application
provides aCommand that is used to select aList element and then defines thisCommand to be used as the
select command. The application must also register aCommandListener that is called when the user selects
or activates theCommand:

The listener can query theList to determine which element is selected and then perform the correspondi
action. Note that setting a command as the select command adds it to theList as a side effect.

The select command should be considered as adefault operation that takes place when a select key is presse
For example, aList displaying email headers might have three operations: read, reply, and delete. Read
considered to be the default operation.

On a device with a dedicated select key, pressing this key will invokereadCommand. On a device without a
select key, the user is still able to invoke the read command, since it is also provided as an ordinaryCommand.

It should be noted that this kind of default operation must be used carefully, and the usability of the resu
user interface must always kept in mind. The default operation should always be the most intuitive operat
a particular List.

Since: MIDP 1.0

String[] elements = { ... }; //Menu items as List elements
List menuList = new List(“Menu”, List.IMPLICIT, elements, null);
Command selectCommand = new Command(“Open”, Command.ITE

M, 1);
menuList.setSelectCommand(selectCommand);
menuList.setCommandListener(...);

List list = new List(“Email”, List.IMPLICIT, headers);
readCommand = new Command(“Read”, Command.ITEM, 1);
replyCommand = new Command(“Reply”, Command.ITEM, 2);
deleteCommand = new Command(“Delete”, Command.ITEM, 3);
list.setSelectCommand(readCommand);
list.addCommand(replyCommand);
list.addCommand(deleteCommand);
list.setCommandListener(...);
304

javax.microedition.lcdui List

itemStateChanged(Item)
Member Summary

Fields
static Command SELECT_COMMAND306

Constructors
List(String title, int listType) 306

List(String title, int listType, String stringElements, Image
imageElements) 306

Methods
 int append(String stringPart, Image imagePart) 307

 void delete(int elementNum) 307

 void deleteAll() 308

 int getFitPolicy() 308

 Font getFont(int elementNum) 308

 Image getImage(int elementNum) 309

 int getSelectedFlags(boolean[] selectedArray_return) 309

 int getSelectedIndex() 309

 java.lang.String getString(int elementNum) 310

 void insert(int elementNum, String stringPart, Image imagePart) 310

 boolean isSelected(int elementNum) 310

 void removeCommand(Command cmd) 311

 void set(int elementNum, String stringPart, Image imagePart) 311

 void setFitPolicy(int fitPolicy) 312

 void setFont(int elementNum, Font font) 312

 void setSelectCommand(Command command) 312

 void setSelectedFlags(boolean[] selectedArray) 313

 void setSelectedIndex(int elementNum, boolean selected) 313

 int size() 314

Inherited Member Summary

Fields inherited from interface Choice 155

EXCLUSIVE158, IMPLICIT 158, MULTIPLE158, POPUP158, TEXT_WRAP_DEFAULT158,
TEXT_WRAP_OFF159, TEXT_WRAP_ON159

Methods inherited from classDisplayable 218

addCommand(Command)219, getHeight() 219, getTicker() 219, getTitle() 220, getWidth() 220,
isShown() 220, setCommandListener(CommandListener) 221, setTicker(Ticker) 221,
setTitle(String) 221, sizeChanged(int, int) 222

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
305

List javax.microedition.lcdui

SELECT_COMMAND
Fields

SELECT_COMMAND

Declaration:
public static final javax.microedition.lcdui.Command 175 SELECT_COMMAND

Description:
The default select command forIMPLICIT Lists . Applications using anIMPLICIT List should set
their own select command usingsetSelectCommand 312 .

The field values ofSELECT_COMMAND are:
 - label = “” (an empty string)
 - type = SCREEN
 - priority = 0

(It would be more appropriate if the type wereITEM, but the type ofSCREEN is retained for historical
purposes.)

The application should not use these values for recognizing theSELECT_COMMAND. Instead, object
identities of theCommand andDisplayable (List) should be used.

SELECT_COMMAND is treated as an ordinaryCommand if it is used with otherDisplayable types.

Constructors

List(String, int)

Declaration:
public List (String title, int listType)

Description:
Creates a new, emptyList , specifying its title and the type of the list.

Parameters:
title - the screen’s title (seeDisplayable 218)

listType - one ofIMPLICIT , EXCLUSIVE, orMULTIPLE

Throws:
IllegalArgumentException - if listType is not one ofIMPLICIT , EXCLUSIVE, or
MULTIPLE

See Also:Choice 155

List(String, int, String[], Image[])

Declaration:
public List (String title, int listType, String[] stringElements,

javax.microedition.lcdui.Image[] 270 imageElements)

Description:
Creates a newList , specifying its title, the type of theList , and an array ofStrings andImages to
be used as its initial contents.
306

javax.microedition.lcdui List

append(String, Image)

ngth

ing
ThestringElements array must be non-null and every array element must also be non-null. The le
of thestringElements array determines the number of elements in theList . TheimageElements
array may benull to indicate that theList elements have no images. If theimageElements array is
non-null, it must be the same length as thestringElements array. Individual elements of the
imageElements array may benull in order to indicate the absence of an image for the correspond
List element. Non-null elements of theimageElements array may refer to mutable or immutable
images.

Parameters:
title - the screen’s title (seeDisplayable 218)

listType - one ofIMPLICIT , EXCLUSIVE, orMULTIPLE

stringElements - set of strings specifying the string parts of theList elements

imageElements - set of images specifying the image parts of theList elements

Throws:
NullPointerException - if stringElements is null

NullPointerException - if thestringElements array contains any null elements

IllegalArgumentException - if the imageElements array is non-null and has a different
length from thestringElements array

IllegalArgumentException - if listType is not one ofIMPLICIT , EXCLUSIVE, or
MULTIPLE

See Also:Choice.EXCLUSIVE 158 , Choice.MULTIPLE 158 , Choice.IMPLICIT 158

Methods

append(String, Image)

Declaration:
public int append (String stringPart, javax.microedition.lcdui.Image 270 imagePart)

Description:
Appends an element to theList .

Specified By: append 159 in interfaceChoice 155

Parameters:
stringPart - the string part of the element to be added

imagePart - the image part of the element to be added, ornull if there is no image part

Returns: the assigned index of the element

Throws:
NullPointerException - if stringPart is null

delete(int)

Declaration:
public void delete (int elementNum)

Description:
Deletes the element referenced byelementNum .
307

List javax.microedition.lcdui

deleteAll()

e.
garded

 the
to
Specified By: delete 160 in interfaceChoice 155

Parameters:
elementNum - the index of the element to be deleted

Throws:
IndexOutOfBoundsException - if elementNum is invalid

deleteAll()

Declaration:
public void deleteAll ()

Description:
Deletes all elements from this List.

Specified By: deleteAll 160 in interfaceChoice 155

getFitPolicy()

Declaration:
public int getFitPolicy ()

Description:
Gets the application’s preferred policy for fittingChoice element contents to the available screen spac
The value returned is the policy that had been set by the application, even if that value had been disre
by the implementation.

Specified By: getFitPolicy 160 in interfaceChoice 155

Returns: one ofChoice.TEXT_WRAP_DEFAULT158 , Choice.TEXT_WRAP_ON159 , or
Choice.TEXT_WRAP_OFF159

Since: MIDP 2.0

See Also:setFitPolicy(int) 312

getFont(int)

Declaration:
public javax.microedition.lcdui.Font 223 getFont (int elementNum)

Description:
Gets the application’s preferred font for rendering the specified element of thisChoice . The value
returned is the font that had been set by the application, even if that value had been disregarded by
implementation. If no font had been set by the application, or if the application explicitly set the font
null , the value is the default font chosen by the implementation.

TheelementNum parameter must be within the range[0..size()-1] , inclusive.

Specified By: getFont 160 in interfaceChoice 155

Parameters:
elementNum - the index of the element, starting from zero

Returns: the preferred font to use to render the element

Throws:
IndexOutOfBoundsException - if elementNum is invalid

Since: MIDP 2.0
308

javax.microedition.lcdui List

getImage(int)
See Also:setFont(int, Font) 312

getImage(int)

Declaration:
public javax.microedition.lcdui.Image 270 getImage (int elementNum)

Description:
Gets theImage part of the element referenced byelementNum .

Specified By: getImage 161 in interfaceChoice 155

Parameters:
elementNum - the number of the element to be queried

Returns: the image part of the element, ornull if there is no image

Throws:
IndexOutOfBoundsException - if elementNum is invalid

See Also:getString(int) 310

getSelectedFlags(boolean[])

Declaration:
public int getSelectedFlags (boolean[] selectedArray_return)

Description:
Queries the state of aList and returns the state of all elements in the boolean array
selectedArray_return .

Specified By: getSelectedFlags 161 in interfaceChoice 155

Parameters:
selectedArray_return - array to contain the results

Returns: the number of selected elements in theChoice

Throws:
IllegalArgumentException - if selectedArray_return is shorter than the size of the
List

NullPointerException - if selectedArray_return is null

See Also:setSelectedFlags(boolean[]) 313

getSelectedIndex()

Declaration:
public int getSelectedIndex ()

Description:
Returns the index number of an element in theList that is selected.

Specified By: getSelectedIndex 162 in interfaceChoice 155

Returns: index of selected element, or-1 if none

See Also:setSelectedIndex(int, boolean) 313
309

List javax.microedition.lcdui

getString(int)
getString(int)

Declaration:
public String getString (int elementNum)

Description:
Gets theString part of the element referenced byelementNum .

Specified By: getString 162 in interfaceChoice 155

Parameters:
elementNum - the index of the element to be queried

Returns: the string part of the element

Throws:
IndexOutOfBoundsException - if elementNum is invalid

See Also:getImage(int) 309

insert(int, String, Image)

Declaration:
public void insert (int elementNum, String stringPart,

javax.microedition.lcdui.Image 270 imagePart)

Description:
Inserts an element into theList just prior to the element specified.

Specified By: insert 162 in interfaceChoice 155

Parameters:
elementNum - the index of the element where insertion is to occur

stringPart - the string part of the element to be inserted

imagePart - the image part of the element to be inserted, ornull if there is no image part

Throws:
IndexOutOfBoundsException - if elementNum is invalid

NullPointerException - if stringPart is null

isSelected(int)

Declaration:
public boolean isSelected (int elementNum)

Description:
Gets a boolean value indicating whether this element is selected.

Specified By: isSelected 163 in interfaceChoice 155

Parameters:
elementNum - index to element to be queried

Returns: selection state of the element

Throws:
IndexOutOfBoundsException - if elementNum is invalid
310

javax.microedition.lcdui List

removeCommand(Command)
removeCommand(Command)

Declaration:
public void removeCommand(javax.microedition.lcdui.Command 175 cmd)

Description:
The same asDisplayable.removeCommand 220 but with the following additional semantics.

If the command to be removed happens to be the select command, theList is set to have no select
command, and the command is removed from theList .

The following code:

is equivalent to the following code:

Overrides: removeCommand220 in classDisplayable 218

Parameters:
cmd - the command to be removed

Since: MIDP 2.0

set(int, String, Image)

Declaration:
public void set (int elementNum, String stringPart,

javax.microedition.lcdui.Image 270 imagePart)

Description:
Sets theString andImage parts of the element referenced byelementNum , replacing the previous
contents of the element.

Specified By: set 163 in interfaceChoice 155

Parameters:
elementNum - the index of the element to be set

stringPart - the string part of the new element

imagePart - the image part of the element, ornull if there is no image part

Throws:
IndexOutOfBoundsException - if elementNum is invalid

NullPointerException - if stringPart is null

// Command c is the select command on List list
list.removeCommand(c);

// Command c is the select command on List list
list.setSelectCommand(null);
list.removeCommand(c);
311

List javax.microedition.lcdui

setFitPolicy(int)

.

f

If
setFitPolicy(int)

Declaration:
public void setFitPolicy (int fitPolicy)

Description:
Sets the application’s preferred policy for fittingChoice element contents to the available screen space
The set policy applies for all elements of theChoice object. Valid values are
Choice.TEXT_WRAP_DEFAULT158 , Choice.TEXT_WRAP_ON159 , and
Choice.TEXT_WRAP_OFF159 . Fit policy is a hint, and the implementation may disregard the
application’s preferred policy.

Specified By: setFitPolicy 163 in interfaceChoice 155

Parameters:
fitPolicy - preferred content fit policy for choice elements

Throws:
IllegalArgumentException - if fitPolicy is invalid

Since: MIDP 2.0

See Also:getFitPolicy() 308

setFont(int, Font)

Declaration:
public void setFont (int elementNum, javax.microedition.lcdui.Font 223 font)

Description:
Sets the application’s preferred font for rendering the specified element of thisChoice . An element’s font
is a hint, and the implementation may disregard the application’s preferred font.

TheelementNum parameter must be within the range[0..size()-1] , inclusive.

Thefont parameter must be a validFont object ornull . If the font parameter isnull , the
implementation must use its default font to render the element.

Specified By: setFont 164 in interfaceChoice 155

Parameters:
elementNum - the index of the element, starting from zero

font - the preferred font to use to render the element

Throws:
IndexOutOfBoundsException - if elementNum is invalid

Since: MIDP 2.0

See Also:getFont(int) 308

setSelectCommand(Command)

Declaration:
public void setSelectCommand (javax.microedition.lcdui.Command 175 command)

Description:
Sets theCommandto be used for anIMPLICIT List selection action. By default, an implicit selection o
a List will result in the predefinedList.SELECT_COMMAND being used. This behavior may be
overridden by calling theList.setSelectCommand() method with an appropriate parameter value.
312

javax.microedition.lcdui List

setSelectedFlags(boolean[])

is

he
ect” on
anull reference is passed, this indicates that no “select” action is appropriate for the contents of th
List .

If a reference to a command object is passed, and it is not the special command
List.SELECT_COMMAND, and it is not currently present on thisList object, the command object is
added to thisList as ifaddCommand(command) had been called prior to the command being made t
select command. This indicates that this command is to be invoked when the user performs the “sel
an element of thisList .

The select command should have a command type ofITEM to indicate that it operates on the currently
selected object. It is not an error if the command is of some other type. (List.SELECT_COMMAND has a
type ofSCREEN for historical purposes.) For purposes of presentation and placement within its user
interface, the implementation is allowed to treat the select command as if it were of typeITEM.

If the select command is later removed from theList with removeCommand() , theList is set to have
no select command as ifList.setSelectCommand(null) had been called.

The default behavior can be reestablished explicitly by callingsetSelectCommand() with an argument
of List.SELECT_COMMAND.

This method has no effect if the type of theList is notIMPLICIT .

Parameters:
command - the command to be used for anIMPLICIT list selection action, ornull if there is none

Since: MIDP 2.0

setSelectedFlags(boolean[])

Declaration:
public void setSelectedFlags (boolean[] selectedArray)

Description:
Sets the selected state of all elements of theList .

Specified By: setSelectedFlags 164 in interfaceChoice 155

Parameters:
selectedArray - an array in which the method collect the selection status

Throws:
IllegalArgumentException - if selectedArray is shorter than the size of theList

NullPointerException - if selectedArray is null

See Also:getSelectedFlags(boolean[]) 309

setSelectedIndex(int, boolean)

Declaration:
public void setSelectedIndex (int elementNum, boolean selected)

Description:
Sets the selected state of an element.

Specified By: setSelectedIndex 164 in interfaceChoice 155

Parameters:
elementNum - the index of the element, starting from zero

selected - the state of the element, wheretrue means selected andfalse means not selected
313

List javax.microedition.lcdui

size()
Throws:
IndexOutOfBoundsException - if elementNum is invalid

See Also:getSelectedIndex() 309

size()

Declaration:
public int size ()

Description:
Gets the number of elements in theList .

Specified By: size 165 in interfaceChoice 155

Returns: the number of elements in theList
314

javax.microedition.lcdui Screen

size()

ction

s,
e

method
javax.microedition.lcdui

Screen
Declaration
public abstract class Screen extends Displayable 218

Object
|
+-- javax.microedition.lcdui.Displayable 218

|
+-- javax.microedition.lcdui.Screen

Direct Known Subclasses:Alert 128 , Form231 , List 303 , TextBox 323

Description
The common superclass of all high-level user interface classes. The contents displayed and their intera
with the user are defined by subclasses.

Using subclass-defined methods, the application may change the contents of aScreen object while it is shown
to the user. If this occurs, and theScreen object is visible, the display will be updated automatically. That i
the implementation will refresh the display in a timely fashion without waiting for any further action by th
application. For example, suppose aList object is currently displayed, and every element of theList is
visible. If the application inserts a new element at the beginning of theList , it is displayed immediately, and
the other elements will be rearranged appropriately. There is no need for the application to call another
to refresh the display.

It is recommended that applications change the contents of aScreen only while it is not visible (that is, while
anotherDisplayable is current). Changing the contents of aScreen while it is visible may result in
performance problems on some devices, and it may also be confusing if theScreen's contents changes while
the user is interacting with it.

In MIDP 2.0 the fourScreen methods that defined read/write ticker and title properties were moved to
Displayable , Screen's superclass. The semantics of these methods have not changed.

Since: MIDP 1.0

Inherited Member Summary

Methods inherited from classDisplayable 218

addCommand(Command)219, getHeight() 219, getTicker() 219, getTitle() 220, getWidth() 220,
isShown() 220, removeCommand(Command)220, setCommandListener(CommandListener) 221,
setTicker(Ticker) 221, setTitle(String) 221, sizeChanged(int, int) 222

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
315

Spacer javax.microedition.lcdui

size()

g

any

d

e

javax.microedition.lcdui

Spacer
Declaration
public class Spacer extends Item 287

Object
|
+-- javax.microedition.lcdui.Item 287

|
+-- javax.microedition.lcdui.Spacer

Description
A blank, non-interactive item that has a settable minimum size. The minimum width is useful for allocatin
flexible amounts of space betweenItems within the same row of aForm. The minimum height is useful for
enforcing a particular minimum height of a row. The application can set the minimum width or height to
non-negative value. The implementation may enforce implementation-defined maximum values for the
minimum width and height.

The unlocked preferred width of aSpacer is the same as its current minimum width. Its unlocked preferre
height is the same as its current minimum height.

Since aSpacer's primary purpose is to position other items, it is restricted to be non-interactive, and th
application is not allowed to addCommandsto aSpacer . Since the presence of a label on anItem may affect
layout in device-specific ways, the label of aSpacer is restricted to always benull , and the application is not
allowed to change it.

Since: MIDP 2.0

Member Summary

Constructors
Spacer(int minWidth, int minHeight) 317

Methods
 void addCommand(Command cmd)317

 void setDefaultCommand(Command cmd) 318

 void setLabel(String label) 318

 void setMinimumSize(int minWidth, int minHeight) 318

Inherited Member Summary

Fields inherited from classItem 287
316

javax.microedition.lcdui Spacer

Spacer(int, int)

m

Constructors

Spacer(int, int)

Declaration:
public Spacer (int minWidth, int minHeight)

Description:
Creates a newSpacer with the given minimum size. TheSpacer's label isnull . The minimum size
must be zero or greater. IfminWidth is greater than the implementation-defined maximum width, the
maximum width will be used instead. IfminHeight is greater than the implementation-defined maximu
height, the maximum height will be used instead.

Parameters:
minWidth - the minimum width in pixels

minHeight - the minimum height in pixels

Throws:
IllegalArgumentException - if eitherminWidth or minHeight is less than zero

Methods

addCommand(Command)

Declaration:
public void addCommand(javax.microedition.lcdui.Command 175 cmd)

Description:
Spacers are restricted from havingCommands, so this method will always throw
IllegalStateException whenever it is called.

Overrides: addCommand295 in classItem 287

BUTTON291, HYPERLINK292, LAYOUT_2292, LAYOUT_BOTTOM292, LAYOUT_CENTER292,
LAYOUT_DEFAULT292, LAYOUT_EXPAND293, LAYOUT_LEFT293, LAYOUT_NEWLINE_AFTER293,
LAYOUT_NEWLINE_BEFORE293, LAYOUT_RIGHT293, LAYOUT_SHRINK294, LAYOUT_TOP294,
LAYOUT_VCENTER294, LAYOUT_VEXPAND294, LAYOUT_VSHRINK294, PLAIN295

Methods inherited from classItem 287

getLabel() 295, getLayout() 295, getMinimumHeight() 296, getMinimumWidth() 296,
getPreferredHeight() 296, getPreferredWidth() 296, notifyStateChanged() 297,
removeCommand(Command)297, setItemCommandListener(ItemCommandListener) 298,
setLayout(int) 299, setPreferredSize(int, int) 299

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Inherited Member Summary
317

Spacer javax.microedition.lcdui

setDefaultCommand(Command)
Parameters:
cmd - theCommand

Throws:
IllegalStateException 37 - always

setDefaultCommand(Command)

Declaration:
public void setDefaultCommand (javax.microedition.lcdui.Command 175 cmd)

Description:
Spacers are restricted from havingCommands, so this method will always throw
IllegalStateException whenever it is called.

Overrides: setDefaultCommand 298 in classItem 287

Parameters:
cmd - theCommand

Throws:
IllegalStateException 37 - always

setLabel(String)

Declaration:
public void setLabel (String label)

Description:
Spacers are restricted to havingnull labels, so this method will always throw
IllegalStateException whenever it is called.

Overrides: setLabel 298 in classItem 287

Parameters:
label - the label string

Throws:
IllegalStateException 37 - always

setMinimumSize(int, int)

Declaration:
public void setMinimumSize (int minWidth, int minHeight)

Description:
Sets the minimum size for this spacer. TheForm will not be allowed to make the item smaller than this
size. The minimum size must be zero or greater. IfminWidth is greater than the implementation-defined
maximum width, the maximum width will be used instead. IfminHeight is greater than the
implementation-defined maximum height, the maximum height will be used instead.

Parameters:
minWidth - the minimum width in pixels

minHeight - the minimum height in pixels

Throws:
IllegalArgumentException - if eitherminWidth or minHeight is less than zero
318

javax.microedition.lcdui StringItem

setMinimumSize(int, int)

e
on
javax.microedition.lcdui

StringItem
Declaration
public class StringItem extends Item 287

Object
|
+-- javax.microedition.lcdui.Item 287

|
+-- javax.microedition.lcdui.StringItem

Description
An item that can contain a string. AStringItem is display-only; the user cannot edit the contents. Both th
label and the textual content of aStringItem may be modified by the application. The visual representati
of the label may differ from that of the textual contents.

Member Summary

Constructors
StringItem(String label, String text) 320

StringItem(String label, String text, int appearanceMode) 320

Methods
 int getAppearanceMode() 321

 Font getFont() 321

 java.lang.String getText() 321

 void setFont(Font font) 322

 void setText(String text) 322

Inherited Member Summary

Fields inherited from classItem 287

BUTTON291, HYPERLINK292, LAYOUT_2292, LAYOUT_BOTTOM292, LAYOUT_CENTER292,
LAYOUT_DEFAULT292, LAYOUT_EXPAND293, LAYOUT_LEFT293, LAYOUT_NEWLINE_AFTER293,
LAYOUT_NEWLINE_BEFORE293, LAYOUT_RIGHT293, LAYOUT_SHRINK294, LAYOUT_TOP294,
LAYOUT_VCENTER294, LAYOUT_VEXPAND294, LAYOUT_VSHRINK294, PLAIN295

Methods inherited from classItem 287

addCommand(Command)295, getLabel() 295, getLayout() 295, getMinimumHeight() 296,
getMinimumWidth() 296, getPreferredHeight() 296, getPreferredWidth() 296,
notifyStateChanged() 297, removeCommand(Command)297, setDefaultCommand(Command) 298,
setItemCommandListener(ItemCommandListener) 298, setLabel(String) 298,
setLayout(int) 299, setPreferredSize(int, int) 299

Methods inherited from classObject
319

StringItem javax.microedition.lcdui

StringItem(String, String)

r

n’s
ld
Constructors

StringItem(String, String)

Declaration:
public StringItem (String label, String text)

Description:
Creates a newStringItem object. Calling this constructor is equivalent to calling

Parameters:
label - theItem label

text - the text contents

See Also:StringItem(String, String, int) 320

StringItem(String, String, int)

Declaration:
public StringItem (String label, String text, int appearanceMode)

Description:
Creates a newStringItem object with the given label, textual content, and appearance mode. Eithe
label or text may be present ornull .

TheappearanceMode parameter (see Appearance Modes) is a hint to the platform of the applicatio
intended use for thisStringItem . To provide hyperlink- or button-like behavior, the application shou
associate a defaultCommand with thisStringItem and add anItemCommandListener to this
StringItem .

Here is an example showing the use of aStringItem as a button:

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

StringItem(label, text, PLAIN);

StringItem strItem =
new StringItem(“Default: ”, “Set”,

Item.BUTTON);
strItem.setDefaultCommand(

new Command(“Set”, Command.ITEM, 1);
// icl is ItemCommandListener
strItem.setItemCommandListener(icl);

Inherited Member Summary
320

javax.microedition.lcdui StringItem

getAppearanceMode()

o font
Parameters:
label - theStringItem's label, ornull if no label

text - theStringItem's text contents, ornull if the contents are initially empty

appearanceMode - the appearance mode of theStringItem , one ofItem.PLAIN 295 ,
Item.HYPERLINK 292 , or Item.BUTTON 291

Throws:
IllegalArgumentException - if appearanceMode invalid

Since: MIDP 2.0

Methods

getAppearanceMode()

Declaration:
public int getAppearanceMode ()

Description:
Returns the appearance mode of theStringItem . See Appearance Modes.

Returns: the appearance mode value, one ofItem.PLAIN 295 , Item.HYPERLINK 292 , or
Item.BUTTON 291

Since: MIDP 2.0

getFont()

Declaration:
public javax.microedition.lcdui.Font 223 getFont ()

Description:
Gets the application’s preferred font for rendering thisStringItem . The value returned is the font that
had been set by the application, even if that value had been disregarded by the implementation. If n
had been set by the application, or if the application explicitly set the font tonull , the value is the default
font chosen by the implementation.

Returns: the preferred font to use to render thisStringItem

Since: MIDP 2.0

See Also:setFont(Font) 322

getText()

Declaration:
public String getText ()

Description:
Gets the text contents of theStringItem , ornull if theStringItem is empty.

Returns: a string with the content of the item

See Also:setText(String) 322
321

StringItem javax.microedition.lcdui

setFont(Font)
setFont(Font)

Declaration:
public void setFont (javax.microedition.lcdui.Font 223 font)

Description:
Sets the application’s preferred font for rendering thisStringItem . The font is a hint, and the
implementation may disregard the application’s preferred font.

Thefont parameter must be a validFont object ornull . If the font parameter isnull , the
implementation must use its default font to render theStringItem .

Parameters:
font - the preferred font to use to render thisStringItem

Since: MIDP 2.0

See Also:getFont() 321

setText(String)

Declaration:
public void setText (String text)

Description:
Sets the text contents of theStringItem . If text isnull , theStringItem is set to be empty.

Parameters:
text - the new content

See Also:getText() 321
322

javax.microedition.lcdui TextBox

setText(String)

object

of
gement

d may
turned
e

he
tly to
javax.microedition.lcdui

TextBox
Declaration
public class TextBox extends Screen 315

Object
|
+-- javax.microedition.lcdui.Displayable 218

|
+-- javax.microedition.lcdui.Screen 315

|
+-- javax.microedition.lcdui.TextBox

Description
TheTextBox class is aScreen that allows the user to enter and edit text.

A TextBox has a maximum size, which is the maximum number of characters that can be stored in the
at any time (its capacity). This limit is enforced when theTextBox instance is constructed, when the user is
editing text within theTextBox , as well as when the application program calls methods on theTextBox that
modify its contents. The maximum size is the maximum stored capacity and is unrelated to the number
characters that may be displayed at any given time. The number of characters displayed and their arran
into rows and columns are determined by the device.

The implementation may place a boundary on the maximum size, and the maximum size actually assigne
be smaller than the application had requested. The value actually assigned will be reflected in the value re
by getMaxSize() 326 . A defensively-written application should compare this value to the maximum siz
requested and be prepared to handle cases where they differ.

The text contained within aTextBox may be more than can be displayed at one time. If this is the case, t
implementation will let the user scroll to view and edit any part of the text. This scrolling occurs transparen
the application.

If the constraints are set toTextField.ANY 334 The text may contain line breaks. The display of the text
must break accordingly and the user must be able to enter line break characters.

TextBox has the concept ofinput constraints that is identical toTextField . Theconstraints
parameters of methods within theTextBox class use constants defined in theTextField 330 class. See the
description of input constraints in theTextField class for the definition of these constants.TextBox also
has the same notions asTextField of theactual contents and thedisplayed contents, described in the same
section.

TextBox also has the concept ofinput modes that is identical toTextField . See the description of input
modes in theTextField class for more details.

Since: MIDP 1.0

Member Summary

Constructors
TextBox(String title, String text, int maxSize, int
constraints) 324
323

TextBox javax.microedition.lcdui

TextBox(String, String, int, int)

nd

ed
Constructors

TextBox(String, String, int, int)

Declaration:
public TextBox (String title, String text, int maxSize, int constraints)

Description:
Creates a newTextBox object with the given title string, initial contents, maximum size in characters, a
constraints. If the text parameter isnull , theTextBox is created empty. ThemaxSize parameter must
be greater than zero. AnIllegalArgumentException is thrown if the length of the initial contents
string exceedsmaxSize . However, the implementation may assign a maximum size smaller than the
application had requested. If this occurs, and if the length of the contents exceeds the newly assign
maximum size, the contents are truncated from the end in order to fit, and no exception is thrown.

Parameters:
title - the title text to be shown with the display

text - the initial contents of the text editing area,null may be used to indicate no initial content

Methods
 void delete(int offset, int length) 325

 int getCaretPosition() 325

 int getChars(char[] data) 325

 int getConstraints() 326

 int getMaxSize() 326

 java.lang.String getString() 326

 void insert(char[] data, int offset, int length, int position) 326

 void insert(String src, int position) 327

 void setChars(char[] data, int offset, int length) 328

 void setConstraints(int constraints) 328

 void setInitialInputMode(String characterSubset) 328

 int setMaxSize(int maxSize) 329

 void setString(String text) 329

 int size() 329

Inherited Member Summary

Methods inherited from classDisplayable 218

addCommand(Command)219, getHeight() 219, getTicker() 219, getTitle() 220, getWidth() 220,
isShown() 220, removeCommand(Command)220, setCommandListener(CommandListener) 221,
setTicker(Ticker) 221, setTitle(String) 221, sizeChanged(int, int) 222

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
324

javax.microedition.lcdui TextBox

delete(int, int)

um
ation

 the
maxSize - the maximum capacity in characters. The implementation may limit boundary maxim
capacity and the actually assigned capacity may me smaller than requested. A defensive applic
will test the actually given capacity withgetMaxSize() 326 .

constraints - see input constraints

Throws:
IllegalArgumentException - if maxSize is zero or less

IllegalArgumentException - if theconstraints parameter is invalid

IllegalArgumentException - if text is illegal for the specified constraints

IllegalArgumentException - if the length of the string exceeds the requested maximum
capacity

Methods

delete(int, int)

Declaration:
public void delete (int offset, int length)

Description:
Deletes characters from theTextBox .

Theoffset andlength parameters must specify a valid range of characters within the contents of
TextBox . Theoffset parameter must be within the range[0..(size())] , inclusive. Thelength
parameter must be a non-negative integer such that(offset + length) <= size() .

Parameters:
offset - the beginning of the region to be deleted

length - the number of characters to be deleted

Throws:
IllegalArgumentException - if the resulting contents would be illegal for the current input
constraints

StringIndexOutOfBoundsException - if offset andlength do not specify a valid range
within the contents of theTextBox

getCaretPosition()

Declaration:
public int getCaretPosition ()

Description:
Gets the current input position. For some UIs this may block and ask the user for the intended caret
position, and on other UIs this may simply return the current caret position.

Returns: the current caret position,0 if at the beginning

getChars(char[])

Declaration:
public int getChars (char[] data)
325

TextBox javax.microedition.lcdui

getConstraints()

nd

entical
Description:
Copies the contents of theTextBox into a character array starting at index zero. Array elements beyo
the characters copied are left unchanged.

Parameters:
data - the character array to receive the value

Returns: the number of characters copied

Throws:
ArrayIndexOutOfBoundsException - if the array is too short for the contents

NullPointerException - if data is null

See Also:setChars(char[], int, int) 328

getConstraints()

Declaration:
public int getConstraints ()

Description:
Gets the current input constraints of theTextBox .

Returns: the current constraints value (see input constraints)

See Also:setConstraints(int) 328

getMaxSize()

Declaration:
public int getMaxSize ()

Description:
Returns the maximum size (number of characters) that can be stored in thisTextBox .

Returns: the maximum size in characters

See Also:setMaxSize(int) 329

getString()

Declaration:
public String getString ()

Description:
Gets the contents of theTextBox as a string value.

Returns: the current contents

See Also:setString(String) 329

insert(char[], int, int, int)

Declaration:
public void insert (char[] data, int offset, int length, int position)

Description:
Inserts a subrange of an array of characters into the contents of theTextBox . Theoffset andlength
parameters indicate the subrange of the data array to be used for insertion. Behavior is otherwise id
to insert(String, int) 327 .
326

javax.microedition.lcdui TextBox

insert(String, int)

rray

d

cting
rtion

g must

t

Theoffset andlength parameters must specify a valid range of characters within the character a
data . Theoffset parameter must be within the range[0..(data.length)] , inclusive. The
length parameter must be a non-negative integer such that(offset + length) <=
data.length .

Parameters:
data - the source of the character data

offset - the beginning of the region of characters to copy

length - the number of characters to copy

position - the position at which insertion is to occur

Throws:
ArrayIndexOutOfBoundsException - if offset andlength do not specify a valid range
within the data array

IllegalArgumentException - if the resulting contents would be illegal for the current input
constraints

IllegalArgumentException - if the insertion would exceed the current maximum capacity

NullPointerException - if data is null

insert(String, int)

Declaration:
public void insert (String src, int position)

Description:
Inserts a string into the contents of theTextBox . The string is inserted just prior to the character indicate
by theposition parameter, where zero specifies the first character of the contents of theTextBox . If
position is less than or equal to zero, the insertion occurs at the beginning of the contents, thus effe
a prepend operation. Ifposition is greater than or equal to the current size of the contents, the inse
occurs immediately after the end of the contents, thus effecting an append operation. For example,
text.insert(s, text.size()) always appends the strings to the current contents.

The current size of the contents is increased by the number of inserted characters. The resulting strin
fit within the current maximum capacity.

If the application needs to simulate typing of characters it can determining the location of the curren
insertion point (“caret”) using the withgetCaretPosition() 325 method. For example,
text.insert(s, text.getCaretPosition()) inserts the strings at the current caret position.

Parameters:
src - theString to be inserted

position - the position at which insertion is to occur

Throws:
IllegalArgumentException - if the resulting contents would be illegal for the current input
constraints

IllegalArgumentException - if the insertion would exceed the current maximum capacity

NullPointerException - if src is null
327

TextBox javax.microedition.lcdui

setChars(char[], int, int)

are

ed.

rray

iting of
d by
a

setChars(char[], int, int)

Declaration:
public void setChars (char[] data, int offset, int length)

Description:
Sets the contents of theTextBox from a character array, replacing the previous contents. Characters
copied from the region of thedata array starting at array indexoffset and running forlength
characters. If the data array isnull , theTextBox is set to be empty and the other parameters are ignor

Theoffset andlength parameters must specify a valid range of characters within the character a
data . Theoffset parameter must be within the range[0..(data.length)] , inclusive. The
length parameter must be a non-negative integer such that(offset + length) <=
data.length .

Parameters:
data - the source of the character data

offset - the beginning of the region of characters to copy

length - the number of characters to copy

Throws:
ArrayIndexOutOfBoundsException - if offset andlength do not specify a valid range
within the data array

IllegalArgumentException - if data is illegal for the current input constraints

IllegalArgumentException - if the text would exceed the current maximum capacity

See Also:getChars(char[]) 325

setConstraints(int)

Declaration:
public void setConstraints (int constraints)

Description:
Sets the input constraints of theTextBox . If the current contents of theTextBox do not match the new
constraints, the contents are set to empty.

Parameters:
constraints - see input constraints

Throws:
IllegalArgumentException - if the value of the constraints parameter is invalid

See Also:getConstraints() 326

setInitialInputMode(String)

Declaration:
public void setInitialInputMode (String characterSubset)

Description:
Sets a hint to the implementation as to the input mode that should be used when the user initiates ed
thisTextBox . ThecharacterSubset parameter names a subset of Unicode characters that is use
the implementation to choose an initial input mode. Ifnull is passed, the implementation should choose
default input mode.

See Input Modes for a full explanation of input modes.
328

javax.microedition.lcdui TextBox

setMaxSize(int)
Parameters:
characterSubset - a string naming a Unicode character subset, ornull

Since: MIDP 2.0

setMaxSize(int)

Declaration:
public int setMaxSize (int maxSize)

Description:
Sets the maximum size (number of characters) that can be contained in thisTextBox . If the current
contents of theTextBox are larger thanmaxSize , the contents are truncated to fit.

Parameters:
maxSize - the new maximum size

Returns: assigned maximum capacity - may be smaller than requested.

Throws:
IllegalArgumentException - if maxSize is zero or less.

IllegalArgumentException - if the contents after truncation would be illegal for the current
input constraints

See Also:getMaxSize() 326

setString(String)

Declaration:
public void setString (String text)

Description:
Sets the contents of theTextBox as a string value, replacing the previous contents.

Parameters:
text - the new value of theTextBox , ornull if theTextBox is to be made empty

Throws:
IllegalArgumentException - if text is illegal for the current input constraints

IllegalArgumentException - if the text would exceed the current maximum capacity

See Also:getString() 326

size()

Declaration:
public int size ()

Description:
Gets the number of characters that are currently stored in thisTextBox .

Returns: the number of characters
329

TextField javax.microedition.lcdui

size()

the

d to
nd their

d may
turned
e

e

the

For
the

ces or
ct with

er of
javax.microedition.lcdui

TextField
Declaration
public class TextField extends Item 287

Object
|
+-- javax.microedition.lcdui.Item 287

|
+-- javax.microedition.lcdui.TextField

Description
A TextField is an editable text component that may be placed into aForm231 . It can be given a piece of
text that is used as the initial value.

A TextField has a maximum size, which is the maximum number of characters that can be stored in
object at any time (its capacity). This limit is enforced when theTextField instance is constructed, when the
user is editing text within theTextField , as well as when the application program calls methods on the
TextField that modify its contents. The maximum size is the maximum stored capacity and is unrelate
the number of characters that may be displayed at any given time. The number of characters displayed a
arrangement into rows and columns are determined by the device.

The implementation may place a boundary on the maximum size, and the maximum size actually assigne
be smaller than the application had requested. The value actually assigned will be reflected in the value re
by getMaxSize() 340 . A defensively-written application should compare this value to the maximum siz
requested and be prepared to handle cases where they differ.

Input Constraints
TheTextField shares the concept ofinput constraints with theTextBox 323 class. The different
constraints allow the application to request that the user’s input be restricted in a variety of ways. The
implementation is required to restrict the user’s input as requested by the application. For example, if th
application requests theNUMERIC constraint on aTextField , the implementation must allow only numeric
characters to be entered.

Theactual contents of the text object are set and modified by and are reported to the application through
TextBox andTextField APIs. Thedisplayed contents may differ from the actual contents if the
implementation has chosen to provide special formatting suitable for the text object’s constraint setting.
example, aPHONENUMBERfield might be displayed with digit separators and punctuation as appropriate for
phone number conventions in use, grouping the digits into country code, area code, prefix, etc. Any spa
punctuation provided are not considered part of the text object’s actual contents. For example, a text obje
thePHONENUMBER constraint might display as follows:

but the actual contents of the object visible to the application through the APIs would be the string
“4085551212 ”. The size method reflects the number of characters in the actual contents, not the numb
characters that are displayed, so for this example thesize method would return10 .

(408) 555-1212
330

javax.microedition.lcdui TextField

size()

nts
 differ
ssed to
e

ed

e

he
t

t

vice.

 made

ode

r flags

t mode
trictive,
ress,
t at

that
Some constraints, such asDECIMAL, require the implementation to perform syntactic validation of the conte
of the text object. The syntax checking is performed on the actual contents of the text object, which may
from the displayed contents as described above. Syntax checking is performed on the initial contents pa
the constructors, and it is also enforced for all method calls that affect the contents of the text object. Th
methods and constructors throwIllegalArgumentException if they would result in the contents of the
text object not conforming to the required syntax.

The value passed to thesetConstraints() 342 method consists of a restrictive constraint setting describ
above, as well as a variety of flag bits that modify the behavior of text entry and display. The value of the
restrictive constraint setting is in the low order16 bits of the value, and it may be extracted by combining th
constraint value with theCONSTRAINT_MASK constant using the bit-wiseAND (&) operator. The restrictive
constraint settings are as follows:

ANY
 EMAILADDR
 NUMERIC
 PHONENUMBER
 URL
 DECIMAL

The modifier flags reside in the high order16 bits of the constraint value, that is, those in the complement of t
CONSTRAINT_MASK constant. The modifier flags may be tested individually by combining the constrain
value with a modifier flag using the bit-wiseAND (&) operator. The modifier flags are as follows:

PASSWORD
 UNEDITABLE
 SENSITIVE
 NON_PREDICTIVE
 INITIAL_CAPS_WORD
 INITIAL_CAPS_SENTENCE

Input Modes
TheTextField shares the concept ofinput modeswith theTextBox 323 class. The application can reques
that the implementation use a particular input mode when the user initiates editing of aTextField or
TextBox . The input mode is a concept that exists within the user interface for text entry on a particular de
The application does not request an input mode directly, since the user interface for text entry is not
standardized across devices. Instead, the application can request that the entry of certain characters be
convenient. It can do this by passing the name of a Unicode character subset to the
setInitialInputMode() 343 method. Calling this method requests that the implementation set the m
of the text entry user interface so that it is convenient for the user to enter characters in this subset. The
application can also request that the input mode have certain behavioral characteristics by setting modifie
in the constraints value.

The requested input mode should be used whenever the user initiates the editing of aTextBox or TextField
object. If the user had changed input modes in a previous editing session, the application’s requested inpu
should take precedence over the previous input mode set by the user. However, the input mode is not res
and the user is allowed to change the input mode at any time during editing. If editing is already in prog
calls to thesetInitialInputMode method do not affect the current input mode, but instead take effec
the next time the user initiates editing of this text object.

The initial input mode is a hint to the implementation. If the implementation cannot provide an input mode
satisfies the application’s request, it should use a default input mode.
331

TextField javax.microedition.lcdui

size()

user is
within
 the

int

t to
ntry of

riate for

.

 input
.

The input mode that results from the application’s request is not a restriction on the set of characters the
allowed to enter. The user MUST be allowed to switch input modes to enter any character that is allowed
the current constraint setting. The constraint setting takes precedence over an input mode request, and
implementation may refuse to supply a particular input mode if it is inconsistent with the current constra
setting.

For example, if the current constraint isANY, the call

should set the initial input mode to allow entry of uppercase Latin characters. This does not restrict inpu
these characters, and the user will be able to enter other characters by switching the input mode to allow e
numerals or lowercase Latin letters. However, if the current constraint isNUMERIC, the implementation may
ignore the request to set an initial input mode allowingMIDP_UPPERCASE_LATIN characters because these
characters are not allowed in aTextField whose constraint isNUMERIC. In this case, the implementation
may instead use an input mode that allows entry of numerals, since such an input mode is most approp
entry of data under theNUMERIC constraint.

A string is used to name the Unicode character subset passed as a parameter to the
setInitialInputMode() 343 method. String comparison is case sensitive.

Unicode character blocks can be named by adding the prefix “UCB_” to the the string names of fields
representing Unicode character blocks as defined in the J2SE class
java.lang.Character.UnicodeBlock . Any Unicode character block may be named in this fashion
For convenience, the most common Unicode character blocks are listed below.

UCB_BASIC_LATIN
 UCB_GREEK
 UCB_CYRILLIC
 UCB_ARMENIAN
 UCB_HEBREW
 UCB_ARABIC
 UCB_DEVANAGARI
 UCB_BENGALI
 UCB_THAI
 UCB_HIRAGANA
 UCB_KATAKANA
 UCB_HANGUL_SYLLABLES

“Input subsets” as defined by the J2SE classjava.awt.im.InputSubset may be named by adding the
prefix “IS_ ” to the string names of fields representing input subsets as defined in that class. Any defined
subset may be used. For convenience, the names of the currently defined input subsets are listed below

IS_FULLWIDTH_DIGITS
 IS_FULLWIDTH_LATIN
 IS_HALFWIDTH_KATAKANA
 IS_HANJA
 IS_KANJI
 IS_LATIN
 IS_LATIN_DIGITS
 IS_SIMPLIFIED_HANZI

setInitialInputMode(“MIDP_UPPERCASE_LATIN”);
332

javax.microedition.lcdui TextField

size()

ame of

cation

e
tion does
t mode
s the
icode
 IS_TRADITIONAL_HANZI

MIDP has also defined the following character subsets:

MIDP_UPPERCASE_LATIN - the subset ofIS_LATIN that corresponds to uppercase Latin letters

MIDP_LOWERCASE_LATIN - the subset ofIS_LATIN that corresponds to lowercase Latin letters

Finally, implementation-specific character subsets may be named with strings that have a prefix of “X_”. In
order to avoid namespace conflicts, it is recommended that implementation-specific names include the n
the defining company or organization after the initial “X_” prefix.

For example, a Japanese language application might have a particularTextField that the application intends
to be used primarily for input of words that are “loaned” from languages other than Japanese. The appli
might request an input mode facilitating Hiragana input by issuing the following method call:

Implementation Note
Implementations need not compile in all the strings listed above. Instead, they need only to compile in th
strings that name Unicode character subsets that they support. If the subset name passed by the applica
not match a known subset name, the request should simply be ignored without error, and a default inpu
should be used. This lets implementations support this feature reasonably inexpensively. However, it ha
consequence that the application cannot tell whether its request has been accepted, nor whether the Un
character subset it has requested is actually a valid subset.

Since: MIDP 1.0

textfield.setInitialInputMode(“UCB_HIRAGANA”);

Member Summary

Fields
static int ANY334

static int CONSTRAINT_MASK335

static int DECIMAL335

static int EMAILADDR335

static int INITIAL_CAPS_SENTENCE336

static int INITIAL_CAPS_WORD336

static int NON_PREDICTIVE336

static int NUMERIC337

static int PASSWORD337

static int PHONENUMBER337

static int SENSITIVE 338

static int UNEDITABLE338

static int URL338

Constructors
TextField(String label, String text, int maxSize, int
constraints) 338

Methods
 void delete(int offset, int length) 339
333

TextField javax.microedition.lcdui

ANY
Fields

ANY

Declaration:
public static final int ANY

Description:
The user is allowed to enter any text. Line breaks may be entered.

Constant0 is assigned toANY.

 int getCaretPosition() 339

 int getChars(char[] data) 340

 int getConstraints() 340

 int getMaxSize() 340

 java.lang.String getString() 340

 void insert(char[] data, int offset, int length, int position) 341

 void insert(String src, int position) 341

 void setChars(char[] data, int offset, int length) 342

 void setConstraints(int constraints) 342

 void setInitialInputMode(String characterSubset) 343

 int setMaxSize(int maxSize) 343

 void setString(String text) 343

 int size() 343

Inherited Member Summary

Fields inherited from classItem 287

BUTTON291, HYPERLINK292, LAYOUT_2292, LAYOUT_BOTTOM292, LAYOUT_CENTER292,
LAYOUT_DEFAULT292, LAYOUT_EXPAND293, LAYOUT_LEFT293, LAYOUT_NEWLINE_AFTER293,
LAYOUT_NEWLINE_BEFORE293, LAYOUT_RIGHT293, LAYOUT_SHRINK294, LAYOUT_TOP294,
LAYOUT_VCENTER294, LAYOUT_VEXPAND294, LAYOUT_VSHRINK294, PLAIN295

Methods inherited from classItem 287

addCommand(Command)295, getLabel() 295, getLayout() 295, getMinimumHeight() 296,
getMinimumWidth() 296, getPreferredHeight() 296, getPreferredWidth() 296,
notifyStateChanged() 297, removeCommand(Command)297, setDefaultCommand(Command) 298,
setItemCommandListener(ItemCommandListener) 298, setLabel(String) 298,
setLayout(int) 299, setPreferredSize(int, int) 299

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
334

javax.microedition.lcdui TextField

CONSTRAINT_MASK

23”,

nding
cific
 only
imal

ust

t of an
al
may

ntents

or this
CONSTRAINT_MASK

Declaration:
public static final int CONSTRAINT_MASK

Description:
The mask value for determining the constraint mode. The application should use the bit-wiseANDoperation
with a value returned bygetConstraints() andCONSTRAINT_MASKin order to retrieve the current
constraint mode, in order to remove any modifier flags such as thePASSWORD flag.

Constant0xFFFF is assigned toCONSTRAINT_MASK.

DECIMAL

Declaration:
public static final int DECIMAL

Description:
The user is allowed to enter numeric values with optional decimal fractions, for example “-123”, “0.1
or “.5”.

The implementation may display a period “.” or a comma “,” for the decimal fraction separator, depe
on the conventions in use on the device. Similarly, the implementation may display other device-spe
characters as part of a decimal string, such as spaces or commas for digit separators. However, the
characters allowed in the actual contents of the text object are period “.”, minus sign “-”, and the dec
digits.

The actual contents of aDECIMALtext object may be empty. If the actual contents are not empty, they m
conform to a subset of the syntax for aFloatingPointLiteral as defined by theJava Language
Specification, section 3.10.2. This subset syntax is defined as follows: the actual contents must consis
optional minus sign “-”, followed by one or more whole-number decimal digits, followed by an option
fraction separator, followed by zero or more decimal fraction digits. The whole-number decimal digits
be omitted if the fraction separator and one or more decimal fraction digits are present.

The syntax defined above is also enforced whenever the application attempts to set or modify the co
of the text object by calling a constructor or a method.

Parsing this string value into a numeric value suitable for computation is the responsibility of the
application. If the contents are not empty, the result can be parsed successfully byDouble.valueOf and
related methods if they are present in the runtime environment.

The sign and the fraction separator consume space in the text object. Applications should account f
when assigning a maximum size for the text object.

Constant5 is assigned toDECIMAL.

Since: MIDP 2.0

EMAILADDR

Declaration:
public static final int EMAILADDR

Description:
The user is allowed to enter an e-mail address.

Constant1 is assigned toEMAILADDR.
335

TextField javax.microedition.lcdui

INITIAL_CAPS_SENTENCE

ld be
riate
ers. The

it-

be
riate
ers. The

ise

ically
d to)
INITIAL_CAPS_SENTENCE

Declaration:
public static final int INITIAL_CAPS_SENTENCE

Description:
This flag is a hint to the implementation that during text editing, the initial letter of each sentence shou
capitalized. This hint should be honored only on devices for which automatic capitalization is approp
and when the character set of the text being edited has the notion of upper case and lower case lett
definition of sentence boundaries is implementation-specific.

If the application specifies both theINITIAL_CAPS_WORDand theINITIAL_CAPS_SENTENCE flags,
INITIAL_CAPS_WORD behavior should be used.

TheINITIAL_CAPS_SENTENCE modifier can be combined with other input constraints by using the b
wiseOR operator (|).

Constant0x200000 is assigned toINITIAL_CAPS_SENTENCE.

Since: MIDP 2.0

INITIAL_CAPS_WORD

Declaration:
public static final int INITIAL_CAPS_WORD

Description:
This flag is a hint to the implementation that during text editing, the initial letter of each word should
capitalized. This hint should be honored only on devices for which automatic capitalization is approp
and when the character set of the text being edited has the notion of upper case and lower case lett
definition of word boundaries is implementation-specific.

If the application specifies both theINITIAL_CAPS_WORDand theINITIAL_CAPS_SENTENCE flags,
INITIAL_CAPS_WORD behavior should be used.

TheINITIAL_CAPS_WORD modifier can be combined with other input constraints by using the bit-w
OR operator (|).

Constant0x100000 is assigned toINITIAL_CAPS_WORD.

Since: MIDP 2.0

NON_PREDICTIVE

Declaration:
public static final int NON_PREDICTIVE

Description:
Indicates that the text entered does not consist of words that are likely to be found in dictionaries typ
used by predictive input schemes. If this bit is clear, the implementation is allowed to (but is not require
use predictive input facilities. If this bit is set, the implementation should not use any predictive input
facilities, but it instead should allow character-by-character text entry.

TheNON_PREDICTIVE modifier can be combined with other input constraints by using the bit-wiseOR
operator (|).

Constant0x80000 is assigned toNON_PREDICTIVE.

Since: MIDP 2.0
336

javax.microedition.lcdui TextField

NUMERIC

r to be
nless

a text

contents
ser. In
 which
ight be

erated

 a

ased

ddress

lude
NUMERIC

Declaration:
public static final int NUMERIC

Description:
The user is allowed to enter only an integer value. The implementation must restrict the contents eithe
empty or to consist of an optional minus sign followed by a string of one or more decimal numerals. U
the value is empty, it will be successfully parsable usingInteger.parseInt(String) .

The minus sign consumes space in the text object. It is thus impossible to enter negative numbers into
object whose maximum size is1.

Constant2 is assigned toNUMERIC.

PASSWORD

Declaration:
public static final int PASSWORD

Description:
Indicates that the text entered is confidential data that should be obscured whenever possible. The
may be visible while the user is entering data. However, the contents must never be divulged to the u
particular, the existing contents must not be shown when the user edits the contents. The means by
the contents are obscured is implementation-dependent. For example, each character of the data m
masked with a “* ” character. ThePASSWORDmodifier is useful for entering confidential information such
as passwords or personal identification numbers (PINs).

Data entered into aPASSWORD field is treated similarly toSENSITIVE in that the implementation must
never store the contents into a dictionary or table for use in predictive, auto-completing, or other accel
input schemes. If thePASSWORDbit is set in a constraint value, theSENSITIVE andNON_PREDICTIVE
bits are also considered to be set, regardless of their actual values. In addition, theINITIAL_CAPS_WORD
andINITIAL_CAPS_SENTENCE flag bits should be ignored even if they are set.

ThePASSWORD modifier can be combined with other input constraints by using the bit-wiseOR operator
(|). ThePASSWORD modifier is not useful with some constraint values such asEMAILADDR,
PHONENUMBER, andURL. These combinations are legal, however, and no exception is thrown if such
constraint is specified.

Constant0x10000 is assigned toPASSWORD.

PHONENUMBER

Declaration:
public static final int PHONENUMBER

Description:
The user is allowed to enter a phone number. The phone number is a special case, since a phone-b
implementation may be linked to the native phone dialing application. The implementation may
automatically start a phone dialer application that is initialized so that pressing a single key would be
enough to make a call. The call must not made automatically without requiring user’s confirmation.
Implementations may also provide a feature to look up the phone number in the device’s phone or a
database.

The exact set of characters allowed is specific to the device and to the device’s network and may inc
non-numeric characters, such as a “+” prefix character.
337

TextField javax.microedition.lcdui

SENSITIVE

ary or
r is an

 the
l

 allow
Some platforms may provide the capability to initiate voice calls using the
MIDlet.platformRequest 447 method.

Constant3 is assigned toPHONENUMBER.

SENSITIVE

Declaration:
public static final int SENSITIVE

Description:
Indicates that the text entered is sensitive data that the implementation must never store into a diction
table for use in predictive, auto-completing, or other accelerated input schemes. A credit card numbe
example of sensitive data.

TheSENSITIVE modifier can be combined with other input constraints by using the bit-wiseORoperator
(|).

Constant0x40000 is assigned toSENSITIVE .

Since: MIDP 2.0

UNEDITABLE

Declaration:
public static final int UNEDITABLE

Description:
Indicates that editing is currently disallowed. When this flag is set, the implementation must prevent
user from changing the text contents of this object. The implementation should also provide a visua
indication that the object’s text cannot be edited. The intent of this flag is that this text object has the
potential to be edited, and that there are circumstances where the application will clear this flag and
the user to edit the contents.

TheUNEDITABLE modifier can be combined with other input constraints by using the bit-wiseOR
operator (|).

Constant0x20000 is assigned toUNEDITABLE.

Since: MIDP 2.0

URL

Declaration:
public static final int URL

Description:
The user is allowed to enter a URL.

Constant4 is assigned toURL.

Constructors

TextField(String, String, int, int)

Declaration:
public TextField (String label, String text, int maxSize, int constraints)
338

javax.microedition.lcdui TextField

delete(int, int)

nd

an
igned

 the
Description:
Creates a newTextField object with the given label, initial contents, maximum size in characters, a
constraints. If the text parameter isnull , theTextField is created empty. ThemaxSize parameter
must be greater than zero. AnIllegalArgumentException is thrown if the length of the initial
contents string exceedsmaxSize . However, the implementation may assign a maximum size smaller th
the application had requested. If this occurs, and if the length of the contents exceeds the newly ass
maximum size, the contents are truncated from the end in order to fit, and no exception is thrown.

Parameters:
label - item label

text - the initial contents, ornull if theTextField is to be empty

maxSize - the maximum capacity in characters

constraints - see input constraints

Throws:
IllegalArgumentException - if maxSize is zero or less

IllegalArgumentException - if the value of the constraints parameter is invalid

IllegalArgumentException - if text is illegal for the specified constraints

IllegalArgumentException - if the length of the string exceeds the requested maximum
capacity

Methods

delete(int, int)

Declaration:
public void delete (int offset, int length)

Description:
Deletes characters from theTextField .

Theoffset andlength parameters must specify a valid range of characters within the contents of
TextField . Theoffset parameter must be within the range[0..(size())] , inclusive. The
length parameter must be a non-negative integer such that(offset + length) <= size() .

Parameters:
offset - the beginning of the region to be deleted

length - the number of characters to be deleted

Throws:
IllegalArgumentException - if the resulting contents would be illegal for the current input
constraints

StringIndexOutOfBoundsException - if offset andlength do not specify a valid range
within the contents of theTextField

getCaretPosition()

Declaration:
public int getCaretPosition ()
339

TextField javax.microedition.lcdui

getChars(char[])

nd
Description:
Gets the current input position. For some UIs this may block and ask the user for the intended caret
position, and on other UIs this may simply return the current caret position.

Returns: the current caret position,0 if at the beginning

getChars(char[])

Declaration:
public int getChars (char[] data)

Description:
Copies the contents of theTextField into a character array starting at index zero. Array elements beyo
the characters copied are left unchanged.

Parameters:
data - the character array to receive the value

Returns: the number of characters copied

Throws:
ArrayIndexOutOfBoundsException - if the array is too short for the contents

NullPointerException - if data is null

See Also:setChars(char[], int, int) 342

getConstraints()

Declaration:
public int getConstraints ()

Description:
Gets the current input constraints of theTextField .

Returns: the current constraints value (see input constraints)

See Also:setConstraints(int) 342

getMaxSize()

Declaration:
public int getMaxSize ()

Description:
Returns the maximum size (number of characters) that can be stored in thisTextField .

Returns: the maximum size in characters

See Also:setMaxSize(int) 343

getString()

Declaration:
public String getString ()

Description:
Gets the contents of theTextField as a string value.

Returns: the current contents

See Also:setString(String) 343
340

javax.microedition.lcdui TextField

insert(char[], int, int, int)

erwise

rray

e
ration.

g must

t

insert(char[], int, int, int)

Declaration:
public void insert (char[] data, int offset, int length, int position)

Description:
Inserts a subrange of an array of characters into the contents of theTextField . Theoffset and
length parameters indicate the subrange of the data array to be used for insertion. Behavior is oth
identical toinsert(String, int) 341 .

Theoffset andlength parameters must specify a valid range of characters within the character a
data . Theoffset parameter must be within the range[0..(data.length)] , inclusive. The
length parameter must be a non-negative integer such that(offset + length) <=
data.length .

Parameters:
data - the source of the character data

offset - the beginning of the region of characters to copy

length - the number of characters to copy

position - the position at which insertion is to occur

Throws:
ArrayIndexOutOfBoundsException - if offset andlength do not specify a valid range
within thedata array

IllegalArgumentException - if the resulting contents would be illegal for the current input
constraints

IllegalArgumentException - if the insertion would exceed the current maximum capacity

NullPointerException - if data is null

insert(String, int)

Declaration:
public void insert (String src, int position)

Description:
Inserts a string into the contents of theTextField . The string is inserted just prior to the character
indicated by theposition parameter, where zero specifies the first character of the contents of the
TextField . If position is less than or equal to zero, the insertion occurs at the beginning of the
contents, thus effecting a prepend operation. Ifposition is greater than or equal to the current size of th
contents, the insertion occurs immediately after the end of the contents, thus effecting an append ope
For example,text.insert(s, text.size()) always appends the strings to the current contents.

The current size of the contents is increased by the number of inserted characters. The resulting strin
fit within the current maximum capacity.

If the application needs to simulate typing of characters it can determining the location of the curren
insertion point (“caret”) using the withgetCaretPosition() 339 method. For example,
text.insert(s, text.getCaretPosition()) inserts the strings at the current caret position.

Parameters:
src - theString to be inserted

position - the position at which insertion is to occur
341

TextField javax.microedition.lcdui

setChars(char[], int, int)

are

rray

nts
Throws:
IllegalArgumentException - if the resulting contents would be illegal for the current input
constraints

IllegalArgumentException - if the insertion would exceed the current maximum capacity

NullPointerException - if src is null

setChars(char[], int, int)

Declaration:
public void setChars (char[] data, int offset, int length)

Description:
Sets the contents of theTextField from a character array, replacing the previous contents. Characters
copied from the region of thedata array starting at array indexoffset and running forlength
characters. If the data array isnull , theTextField is set to be empty and the other parameters are
ignored.

Theoffset andlength parameters must specify a valid range of characters within the character a
data . Theoffset parameter must be within the range[0..(data.length)] , inclusive. The
length parameter must be a non-negative integer such that(offset + length) <=
data.length .

Parameters:
data - the source of the character data

offset - the beginning of the region of characters to copy

length - the number of characters to copy

Throws:
ArrayIndexOutOfBoundsException - if offset andlength do not specify a valid range
within the data array

IllegalArgumentException - if data is illegal for the current input constraints

IllegalArgumentException - if the text would exceed the current maximum capacity

See Also:getChars(char[]) 340

setConstraints(int)

Declaration:
public void setConstraints (int constraints)

Description:
Sets the input constraints of theTextField . If the the current contents of theTextField do not match
the newconstraints , the contents are set to empty.

Parameters:
constraints - see input constraints

Throws:
IllegalArgumentException - if constraints is not any of the ones specified in input constrai

See Also:getConstraints() 340
342

javax.microedition.lcdui TextField

setInitialInputMode(String)

iting of
sed
setInitialInputMode(String)

Declaration:
public void setInitialInputMode (String characterSubset)

Description:
Sets a hint to the implementation as to the input mode that should be used when the user initiates ed
thisTextField . ThecharacterSubset parameter names a subset of Unicode characters that is u
by the implementation to choose an initial input mode. Ifnull is passed, the implementation should
choose a default input mode.

See Input Modes for a full explanation of input modes.

Parameters:
characterSubset - a string naming a Unicode character subset, ornull

Since: MIDP 2.0

setMaxSize(int)

Declaration:
public int setMaxSize (int maxSize)

Description:
Sets the maximum size (number of characters) that can be contained in thisTextField . If the current
contents of theTextField are larger thanmaxSize , the contents are truncated to fit.

Parameters:
maxSize - the new maximum size

Returns: assigned maximum capacity - may be smaller than requested.

Throws:
IllegalArgumentException - if maxSize is zero or less.

IllegalArgumentException - if the contents after truncation would be illegal for the current
input constraints

See Also:getMaxSize() 340

setString(String)

Declaration:
public void setString (String text)

Description:
Sets the contents of theTextField as a string value, replacing the previous contents.

Parameters:
text - the new value of theTextField , ornull if the TextField is to be made empty

Throws:
IllegalArgumentException - if text is illegal for the current input constraints

IllegalArgumentException - if the text would exceed the current maximum capacity

See Also:getString() 340

size()

Declaration:
public int size ()
343

TextField javax.microedition.lcdui

size()
Description:
Gets the number of characters that are currently stored in thisTextField .

Returns: number of characters in theTextField
344

javax.microedition.lcdui Ticker

size()

eed of
at is,

lways
tion

reak

n all
effect is
 the
n.

ven a

reens.
javax.microedition.lcdui

Ticker
Declaration
public class Ticker

Object
|
+-- javax.microedition.lcdui.Ticker

Description
Implements a “ticker-tape”, a piece of text that runs continuously across the display. The direction and sp
scrolling are determined by the implementation. While animating, the ticker string scrolls continuously. Th
when the string finishes scrolling off the display, the ticker starts over at the beginning of the string.

There is no API provided for starting and stopping the ticker. The application model is that the ticker is a
scrolling continuously. However, the implementation is allowed to pause the scrolling for power consump
purposes, for example, if the user doesn’t interact with the device for a certain period of time. The
implementation should resume scrolling the ticker when the user interacts with the device again.

The text of the ticker may contain line breaks. The complete text MUST be displayed in the ticker; line b
characters should not be displayed but may be used as separators.

The same ticker may be shared by severalDisplayable objects (“screens”). This can be accomplished by
callingsetTicker() 221 on each of them. Typical usage is for an application to place the same ticker o
of its screens. When the application switches between two screens that have the same ticker, a desirable
for the ticker to be displayed at the same location on the display and to continue scrolling its contents at
same position. This gives the illusion of the ticker being attached to the display instead of to each scree

An alternative usage model is for the application to use different tickers on different sets of screens or e
different one on each screen. The ticker is an attribute of theDisplayable class so that applications may
implement this model without having to update the ticker to be displayed as the user switches among sc

Since: MIDP 1.0

Member Summary

Constructors
Ticker(String str) 346

Methods
 java.lang.String getString() 346

 void setString(String str) 346

Inherited Member Summary

Methods inherited from classObject
345

Ticker javax.microedition.lcdui

Ticker(String)

ly
Constructors

Ticker(String)

Declaration:
public Ticker (String str)

Description:
Constructs a newTicker object, given its initial contents string.

Parameters:
str - string to be set for theTicker

Throws:
NullPointerException - if str is null

Methods

getString()

Declaration:
public String getString ()

Description:
Gets the string currently being scrolled by the ticker.

Returns: string of the ticker

See Also:setString(String) 346

setString(String)

Declaration:
public void setString (String str)

Description:
Sets the string to be displayed by this ticker. If this ticker is active and is on the display, it immediate
begins showing the new string.

Parameters:
str - string to be set for theTicker

Throws:
NullPointerException - if str is null

See Also:getString() 346

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Inherited Member Summary
346

t for

ce by
cation
itting
ded.

h-level
le to
s

ave
ring
a game
ry game

dition
ery the
pment

s forms

the
e. The

 equal
m

s various
me’s
C H A P T E R 9
Package

javax.microedition.lcdui.game
Description
The Game API package provides a series of classes that enable the development of rich gaming conten
wireless devices.

Wireless devices have minimal processing power, so much of the API is intended to improve performan
minimizing the amount of work done in Java; this approach also has the added benefit of reducing appli
size. The API’s are structured to provide considerable freedom when implementing them, thereby perm
the extensive use of native code, hardware acceleration and device-specific image data formats as nee

The API uses the standard low-level graphics classes from MIDP (Graphics, Image, etc.) so that the hig
Game API classes can be used in conjunction with graphics primitives. For example, it would be possib
render a complex background using the Game API and then render something on top of it using graphic
primitives such as drawLine, etc.

Methods that modify the state of Layer, LayerManager, Sprite, and TiledLayer objects generally do not h
any immediately visible side effects. Instead, this state is merely stored within the object and is used du
subsequent calls to the paint() method. This approach is suitable for gaming applications where there is
cycle within which objects’ states are updated, and where the entire screen is redrawn at the end of eve
cycle.

API Overview
The API is comprised of five classes:

GameCanvas
This class is a subclass of LCDUI’s Canvas and provides the basic ’screen’ functionality for a game. In ad
to the methods inherited from Canvas, this class also provides game-centric features such the ability to qu
current state of the game keys and synchronous graphics flushing; these features simplify game develo
and improve performance.

Layer
The Layer class represents a visual element in a game such as a Sprite or a TiledLayer. This abstract clas
the basis for the Layer framework and provides basic attributes such as location, size, and visibility.

LayerManager
For games that employ several Layers, the LayerManager simplifies game development by automating
rendering process. It allows the developer set a view window that represents the user’s view of the gam
LayerManager automatically renders the game’s Layers to implement the desired view.

Sprite
A Sprite is basic animated Layer that can display one of several graphical frames. The frames are all of
size and are provided by a single Image object. In addition to animating the frames sequentially, a custo
sequence can also be set to animation the frames in an arbitrary manner. The Sprite class also provide
transformations (flip and rotation) and collision detection methods that simplify the implementation of a ga
logic.
347

javax.microedition.lcdui.game

at a large
s that
pixel
reas of

ored

set
TiledLayer
This class enables a developer to create large areas of graphical content without the resource usage th
Image object would require. It is a comprised of a grid of cells, and each cell can display one of several tile
are provided by a single Image object. Cells can also be filled with animated tiles whose corresponding
data can be changed very rapidly; this feature is very useful for animating large groups of cells such as a
water.

@since MIDP 2.0

Class Summary

Classes

GameCanvas349 The GameCanvas class provides the basis for a game user interface.

Layer 356 A Layer is an abstract class representing a visual element of a game.

LayerManager 360 The LayerManager manages a series of Layers.

Sprite 365 A Sprite is a basic visual element that can be rendered with one of several frames st
in an Image; different frames can be shown to animate the Sprite.

TiledLayer 382 A TiledLayer is a visual element composed of a grid of cells that can be filled with a
of tile images.
348

javax.microedition.lcdui.game GameCanvas

d from
raphics

izing
raphics
ch as

flushed
ands,

ng

the
 typcial
javax.microedition.lcdui.game

GameCanvas
Declaration
public abstract class GameCanvas extends javax.microedition.lcdui.Canvas 139

Object
|
+-- javax.microedition.lcdui.Displayable 218

|
+-- javax.microedition.lcdui.Canvas 139

|
+-- javax.microedition.lcdui.game.GameCanvas

Description
The GameCanvas class provides the basis for a game user interface. In addition to the features inherite
Canvas (commands, input events, etc.) it also provides game-specific capabilities such as an off-screen g
buffer and the ability to query key status.

A dedicated buffer is created for each GameCanvas instance. Since a unique buffer is provided for each
GameCanvas instance, it is preferable to re-use a single GameCanvas instance in the interests of minim
heap usage. The developer can assume that the contents of this buffer are modified only by calls to the G
object(s) obtained from the GameCanvas instance; the contents are not modified by external sources su
other MIDlets or system-level notifications. The buffer is initially filled with white pixels.

The buffer’s size is set to the maximum dimensions of the GameCanvas. However, the area that may be
is limited by the current dimensions of the GameCanvas (as influenced by the presence of a Ticker, Comm
etc.) when the flush is requested. The current dimensions of the GameCanvas may be obtained by calli
getWidth 149 andgetHeight 148 .

A game may provide its own thread to run the game loop. A typical loop will check for input, implement
game logic, and then render the updated user interface. The following code illustrates the structure of a
game loop:

// Get the Graphics object for the off-screen buffer
Graphic s g = getGraphics();
while (true) {

// Check user input and update positions if necessary
int keyState = getKeyStates();
if ((keyState & LEFT_PRESSED) != 0) {

sprite.move(-1, 0);
}
else if ((keyState & RIGHT_PRESSED) != 0) {

sprite.move(1, 0);
}

// Clear the background to white
g.setColor(0xFFFFFF);
g.fillRect(0,0,getWidth(), getHeight());

// Draw the Sprite
sprite.paint(g);
// Flush the off-screen buffer
flushGraphics();

}

Since: MIDP 2.0
349

GameCanvas javax.microedition.lcdui.game
Member Summary

Fields
static int DOWN_PRESSED351

static int FIRE_PRESSED351

static int GAME_A_PRESSED351

static int GAME_B_PRESSED351

static int GAME_C_PRESSED351

static int GAME_D_PRESSED351

static int LEFT_PRESSED352

static int RIGHT_PRESSED352

static int UP_PRESSED352

Constructors
protected GameCanvas(boolean suppressKeyEvents) 352

Methods
 void flushGraphics() 353

 void flushGraphics(int x, int y, int width, int height) 353

protected
javax.microedition.lcd

ui.Graphics

getGraphics() 353

 int getKeyStates() 354

 void paint(javax.microedition.lcdui.Graphics g) 355

Inherited Member Summary

Fields inherited from classCanvas 139

DOWN143, FIRE144, GAME_A144, GAME_B144, GAME_C144, GAME_D144, KEY_NUM0144, KEY_NUM1145,
KEY_NUM2145, KEY_NUM3145, KEY_NUM4145, KEY_NUM5145, KEY_NUM6145, KEY_NUM7146,
KEY_NUM8146, KEY_NUM9146, KEY_POUND146, KEY_STAR146, LEFT146, RIGHT147, UP147

Methods inherited from classCanvas 139

getGameAction(int) 147, getHeight() 148, getKeyCode(int) 148, getKeyName(int) 148,
getWidth() 149, hasPointerEvents() 149, hasPointerMotionEvents() 149,
hasRepeatEvents() 149, hideNotify() 149, isDoubleBuffered() 150, keyPressed(int) 150,
keyReleased(int) 150, keyRepeated(int) 150, pointerDragged(int, int) 152,
pointerPressed(int, int) 152, pointerReleased(int, int) 152, repaint() 152, repaint() 152,
serviceRepaints() 153, setFullScreenMode(boolean) 153, showNotify() 154, sizeChanged(int,
int) 154

Methods inherited from classDisplayable 218

addCommand(Command)219, getTicker() 219, getTitle() 220, isShown() 220,
removeCommand(Command)220, setCommandListener(CommandListener) 221,
setTicker(Ticker) 221, setTitle(String) 221

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
350

javax.microedition.lcdui.game GameCanvas

DOWN_PRESSED

alue of

alue of

alue of

alue of
Fields

DOWN_PRESSED

Declaration:
public static final int DOWN_PRESSED

Description:
The bit representing the DOWN key. This constant has a value of0x0040 (1 << Canvas.DOWN).

FIRE_PRESSED

Declaration:
public static final int FIRE_PRESSED

Description:
The bit representing the FIRE key. This constant has a value of0x0100 (1 << Canvas.FIRE).

GAME_A_PRESSED

Declaration:
public static final int GAME_A_PRESSED

Description:
The bit representing the GAME_A key (may not be supported on all devices). This constant has a v
0x0200 (1 << Canvas.GAME_A).

GAME_B_PRESSED

Declaration:
public static final int GAME_B_PRESSED

Description:
The bit representing the GAME_B key (may not be supported on all devices). This constant has a v
0x0400 (1 << Canvas.GAME_B).

GAME_C_PRESSED

Declaration:
public static final int GAME_C_PRESSED

Description:
The bit representing the GAME_C key (may not be supported on all devices). This constant has a v
0x0800 (1 << Canvas.GAME_C).

GAME_D_PRESSED

Declaration:
public static final int GAME_D_PRESSED

Description:
The bit representing the GAME_D key (may not be supported on all devices). This constant has a v
0x1000 (1 << Canvas.GAME_D).
351

GameCanvas javax.microedition.lcdui.game

LEFT_PRESSED

 initially

nt
e

ystem

and
effects
nerated
l that

events
LEFT_PRESSED

Declaration:
public static final int LEFT_PRESSED

Description:
The bit representing the LEFT key. This constant has a value of0x0004 (1 << Canvas.LEFT).

RIGHT_PRESSED

Declaration:
public static final int RIGHT_PRESSED

Description:
The bit representing the RIGHT key. This constant has a value of0x0020 (1 << Canvas.RIGHT).

UP_PRESSED

Declaration:
public static final int UP_PRESSED

Description:
The bit representing the UP key. This constant has a value of0x0002 (1 << Canvas.UP).

Constructors

GameCanvas(boolean)

Declaration:
protected GameCanvas(boolean suppressKeyEvents)

Description:
Creates a new instance of a GameCanvas. A new buffer is also created for the GameCanvas and is
filled with white pixels.

If the developer only needs to query key status using the getKeyStates method, the regular key eve
mechanism can be suppressed for game keys while this GameCanvas is shown. If not needed by th
application, the suppression of key events may improve performance by eliminating unnecessary s
calls to keyPressed, keyRepeated and keyReleased methods.

If requested, key event suppression for a given GameCanvas is started when it is shown (i.e. when
showNotify is called) and stopped when it is hidden (i.e. when hideNotify is called). Since the showing
hiding of screens is serialized with the event queue, this arrangement ensures that the suppression
only those key events intended for the corresponding GameCanvas. Thus, if key events are being ge
while another screen is still shown, those key events will continue to be queued and dispatched unti
screen is hidden and the GameCanvas has replaced it.

Note that key events can be suppressed only for the defined game keys (UP, DOWN, FIRE, etc.); key
are always generated for all other keys.

Parameters:
suppressKeyEvents - true to suppress the regular key event mechanism for game keys,
otherwisefalse .
352

javax.microedition.lcdui.game GameCanvas

flushGraphics()

n. This
der the

 flush

er are

ethod

 region

 flush

 the off-

 does
Methods

flushGraphics()

Declaration:
public void flushGraphics ()

Description:
Flushes the off-screen buffer to the display. The size of the flushed area is equal to the size of the
GameCanvas. The contents of the off-screen buffer are not changed as a result of the flush operatio
method does not return until the flush has been completed, so the app may immediately begin to ren
next frame to the same buffer once this method returns.

This method does nothing and returns immediately if the GameCanvas is not currently shown or the
request cannot be honored because the system is busy.

See Also: flushGraphics(int, int, int, int) 353

flushGraphics(int, int, int, int)

Declaration:
public void flushGraphics (int x, int y, int width, int height)

Description:
Flushes the specified region of the off-screen buffer to the display. The contents of the off-screen buff
not changed as a result of the flush operation. This method does not return until the flush has been
completed, so the app may immediately begin to render the next frame to the same buffer once this m
returns.

If the specified region extends beyond the current bounds of the GameCanvas, only the intersecting
is flushed. No pixels are flushed if the specified width or height is less than 1.

This method does nothing and returns immediately if the GameCanvas is not currently shown or the
request cannot be honored because the system is busy.

Parameters:
x - the left edge of the region to be flushed

y - the top edge of the region to be flushed

width - the width of the region to be flushed

height - the height of the region to be flushed

See Also: flushGraphics() 353

getGraphics()

Declaration:
protected javax.microedition.lcdui.Graphics 247 getGraphics ()

Description:
Obtains the Graphics object for rendering a GameCanvas. The returned Graphics object renders to
screen buffer belonging to this GameCanvas.

Rendering operations do not appear on the display until flushGraphics() is called; flushing the buffer
not change its contents (the pixels are not cleared as a result of the flushing operation).
353

GameCanvas javax.microedition.lcdui.game

getKeyStates()

d
g. For

buffer.

 on the
t time
e the

will

s, the

y be
yStates
to the
s of

ss to be
A new Graphics object is created and returned each time this method is called; therefore, the neede
Graphics object(s) should be obtained before the game starts then re-used while the game is runnin
each GameCanvas instance, all of the provided graphics objects will render to the same off-screen

The newly created Graphics object has the following properties:

• the destination is this GameCanvas’ buffer;

• the clip region encompasses the entire buffer;

• the current color is black;

• the font is the same as the font returned byFont.getDefaultFont() 227 ;

• the stroke style isSOLID254 ; and

• the origin of the coordinate system is located at the upper-left corner of the buffer.

Returns: the Graphics object that renders to this GameCanvas’ off-screen buffer

See Also: flushGraphics() 353 , flushGraphics(int, int, int, int) 353

getKeyStates()

Declaration:
public int getKeyStates ()

Description:
Gets the states of the physical game keys. Each bit in the returned integer represents a specific key
device. A key’s bit will be 1 if the key is currently down or has been pressed at least once since the las
this method was called. The bit will be 0 if the key is currently up and has not been pressed at all sinc
last time this method was called. This latching behavior ensures that a rapid key press and release
always be caught by the game loop, regardless of how slowly the loop runs.

For example:

// Get the key state and store it
int keyState = getKeyStates();
if ((keyState & LEFT_KEY) != 0) {

positionX--;
}
else if ((keyState & RIGHT_KEY) != 0) {

positionX++;
}

Calling this method has the side effect of clearing any latched state. Another call to getKeyStates
immediately after a prior call will therefore report the system’s best idea of the current state of the key
latched bits having been cleared by the first call.

Some devices may not be able to query the keypad hardware directly and therefore, this method ma
implemented by monitoring key press and release events instead. Thus the state reported by getKe
might lag the actual state of the physical keys since the timeliness of the key information is be subject
capabilities of each device. Also, some devices may be incapable of detecting simultaneous presse
multiple keys.

This method returns 0 unless the GameCanvas is currently visible as reported by
javax.microedition.lcdui.Displayable.isShown() 220 . Upon becoming visible, a
GameCanvas will initially indicate that all keys are unpressed (0); if a key is held down while the
GameCanvas is being shown, the key must be first released and then pressed in order for the key pre
reported by the GameCanvas.
354

javax.microedition.lcdui.game GameCanvas

paint(Graphics)

s not

of the
Returns: An integer containing the key state information (one bit per key), or 0 if the GameCanvas i
currently shown.

See Also:UP_PRESSED352 , DOWN_PRESSED351 , LEFT_PRESSED352 , RIGHT_PRESSED352 ,
FIRE_PRESSED351 , GAME_A_PRESSED351 , GAME_B_PRESSED351 , GAME_C_PRESSED351 ,
GAME_D_PRESSED351

paint(Graphics)

Declaration:
public void paint (javax.microedition.lcdui.Graphics 247 g)

Description:
Paints this GameCanvas. By default, this method renders the the off-screen buffer at (0,0). Rendering
buffer is subject to the clip region and origin translation of the Graphics object.

Overrides: paint 151 in classCanvas 139

Parameters:
g - the Graphics object with which to render the screen.

Throws:
NullPointerException - if g is null
355

Layer javax.microedition.lcdui.game

paint(Graphics)

 of the
ses

hat is
javax.microedition.lcdui.game

Layer
Declaration
public abstract class Layer

Object
|
+-- javax.microedition.lcdui.game.Layer

Direct Known Subclasses:Sprite 365 , TiledLayer 382

Description
A Layer is an abstract class representing a visual element of a game. Each Layer has position (in terms
upper-left corner of its visual bounds), width, height, and can be made visible or invisible. Layer subclas
must implement apaint(Graphics) 358 method so that they can be rendered.

The Layer’s (x,y) position is always interpreted relative to the coordinate system of the Graphics object t
passed to the Layer’s paint() method. This coordinate system is referred to as thepainter’s coordinate system.
The initial location of a Layer is (0,0).

Since: MIDP 2.0

Member Summary

Methods
 int getHeight() 357

 int getWidth() 357

 int getX() 357

 int getY() 357

 boolean isVisible() 357

 void move(int dx, int dy) 358

abstract void paint(javax.microedition.lcdui.Graphics g) 358

 void setPosition(int x, int y) 358

 void setVisible(boolean visible) 358

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
356

javax.microedition.lcdui.game Layer

getHeight()
Methods

getHeight()

Declaration:
public final int getHeight ()

Description:
Gets the current height of this layer, in pixels.

Returns: the height in pixels

See Also:getWidth() 357

getWidth()

Declaration:
public final int getWidth ()

Description:
Gets the current width of this layer, in pixels.

Returns: the width in pixels

See Also:getHeight() 357

getX()

Declaration:
public final int getX ()

Description:
Gets the horizontal position of this Layer’s upper-left corner in the painter’s coordinate system.

Returns: the Layer’s horizontal position.

See Also:getY() 357 , setPosition(int, int) 358 , move(int, int) 358

getY()

Declaration:
public final int getY ()

Description:
Gets the vertical position of this Layer’s upper-left corner in the painter’s coordinate system.

Returns: the Layer’s vertical position.

See Also:getX() 357 , setPosition(int, int) 358 , move(int, int) 358

isVisible()

Declaration:
public final boolean isVisible ()

Description:
Gets the visibility of this Layer.

Returns: true if theLayer is visible,false if it is invisible.

See Also:setVisible(boolean) 358
357

Layer javax.microedition.lcdui.game

move(int, int)

beyond

ition
and

s

 a

stem.
move(int, int)

Declaration:
public void move(int dx, int dy)

Description:
Moves this Layer by the specified horizontal and vertical distances.
The Layer’s coordinates are subject to wrapping if the passed parameters will cause them to exceed
Integer.MAX_VALUE or Integer.MIN_VALUE.

Parameters:
dx - the distance to move along horizontal axis (positive to the right, negative to the left)

dy - the distance to move along vertical axis (positive down, negative up)

See Also:setPosition(int, int) 358 , getX() 357 , getY() 357

paint(Graphics)

Declaration:
public abstract void paint (javax.microedition.lcdui.Graphics 247 g)

Description:
Paints this Layer if it is visible. The upper-left corner of the Layer is rendered at it’s current (x,y) pos
relative to the origin of the provided Graphics object. Applications may make use of Graphics clipping
translation to control where the Layer is rendered and to limit the region that is rendered.

Implementations of this method are responsible for checking if this Layer is visible; this method doe
nothing if the Layer is not visible.

The attributes of the Graphics object (clip region, translation, drawing color, etc.) are not modified as
result of calling this method.

Parameters:
g - the graphics object for rendering theLayer

Throws:
NullPointerException - if g is null

setPosition(int, int)

Declaration:
public void setPosition (int x, int y)

Description:
Sets this Layer’s position such that its upper-left corner is located at (x,y) in the painter’s coordinate sy
A Layer is located at (0,0) by default.

Parameters:
x - the horizontal position

y - the vertical position

See Also:move(int, int) 358 , getX() 357 , getY() 357

setVisible(boolean)

Declaration:
public void setVisible (boolean visible)
358

javax.microedition.lcdui.game Layer

setVisible(boolean)
Description:
Sets the visibility of this Layer. A visible Layer is rendered when itspaint(Graphics) 358 method is
called; an invisible Layer is not rendered.

Parameters:
visible - true to make theLayer visible,false to make it invisible

See Also: isVisible() 357
359

LayerManager javax.microedition.lcdui.game

setVisible(boolean)

 the
opriate

Layer’s
index

ices of

 the

ng the
e of
te for

s
.

 the view
javax.microedition.lcdui.game

LayerManager
Declaration
public class LayerManager

Object
|
+-- javax.microedition.lcdui.game.LayerManager

Description
The LayerManager manages a series of Layers. The LayerManager simplifies the process of rendering
Layers that have been added to it by automatically rendering the correct regions of each Layer in the appr
order.

The LayerManager maintains an ordered list to which Layers can be appended, inserted and removed. A
index correlates to its z-order; the layer at index 0 is closest to the user while a the Layer with the highest
is furthest away from the user. The indices are always contiguous; that is, if a Layer is removed, the ind
subsequent Layers will be adjusted to maintain continuity.

The LayerManager class provides several features that control how the game’s Layers are rendered on
screen.

Theview window controls the size of the visible region and its position relative to the LayerManager’s
coordinate system. Changing the position of the view window enables effects such as scrolling or panni
user’s view. For example, to scroll to the right, simply move the view window’s location to the right. The siz
the view window controls how large the user’s view will be, and is usually fixed at a size that is appropria
the device’s screen.

In this example, the view window is set to 85 x 85 pixels and is located at (52, 11) in the LayerManager’
coordinate system. The Layers appear at their respective positions relative to the LayerManager’s origin

Thepaint(Graphics, int, int) 363 method includes an (x,y) location that controls where the view
window is rendered relative to the screen. Changing these parameters does not change the contents of
360

javax.microedition.lcdui.game LayerManager

setVisible(boolean)

o the

ndered
window, it simply changes the location where the view window is drawn. Note that this location is relative t
origin of the Graphics object, and thus it is subject to the translation attributes of the Graphics object.

For example, if a game uses the top of the screen to display the current score, the view window may be re
at (17, 17) to provide enough space for the score.

Since: MIDP 2.0

Member Summary

Constructors
LayerManager() 362

Methods
 void append(Layer l) 362

 Layer getLayerAt(int index) 362

 int getSize() 362

 void insert(Layer l, int index) 363

 void paint(javax.microedition.lcdui.Graphics g, int x, int y) 363

 void remove(Layer l) 364

 void setViewWindow(int x, int y, int width, int height) 364

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
361

LayerManager javax.microedition.lcdui.game

LayerManager()

it has
ager
Constructors

LayerManager()

Declaration:
public LayerManager ()

Description:
Creates a new LayerManager.

Methods

append(Layer)

Declaration:
public void append (javax.microedition.lcdui.game.Layer 356 l)

Description:
Appends a Layer to this LayerManager. The Layer is appended to the list of existing Layers such that
the highest index (i.e. it is furthest away from the user). The Layer is first removed from this LayerMan
if it has already been added.

Parameters:
l - theLayer to be added

Throws:
NullPointerException - if theLayer is null

See Also: insert(Layer, int) 363 , remove(Layer) 364

getLayerAt(int)

Declaration:
public javax.microedition.lcdui.game.Layer 356 getLayerAt (int index)

Description:
Gets the Layer with the specified index.

Parameters:
index - the index of the desired Layer

Returns: the Layer that has the specified index

Throws:
IndexOutOfBoundsException - if the specifiedindex is less than zero, or if it is equal to or
greater than the number of Layers added to the thisLayerManager

getSize()

Declaration:
public int getSize ()

Description:
Gets the number of Layers in this LayerManager.

Returns: the number of Layers
362

javax.microedition.lcdui.game LayerManager

insert(Layer, int)

e

dered
isplay
d at (0,
nge

e view
t (x,y)
ayers

d
red to
nds of
 its

d

insert(Layer, int)

Declaration:
public void insert (javax.microedition.lcdui.game.Layer 356 l, int index)

Description:
Inserts a new Layer in this LayerManager at the specified index. The Layer is first removed from this
LayerManager if it has already been added.

Parameters:
l - theLayer to be inserted

index - the index at which the newLayer is to be inserted

Throws:
NullPointerException - if theLayer is null

IndexOutOfBoundsException - if the index is less than0 or greater than the number of Layers
already added to the thisLayerManager

See Also:append(Layer) 362 , remove(Layer) 364

paint(Graphics, int, int)

Declaration:
public void paint (javax.microedition.lcdui.Graphics 247 g, int x, int y)

Description:
Renders the LayerManager’s current view window at the specified location.

The LayerManager renders each of its layers in order of descending index, thereby implementing th
correct z-order. Layers that are completely outside of the view window are not rendered.

The coordinates passed to this method determine where the LayerManager’s view window will be ren
relative to the origin of the Graphics object. For example, a game may use the top of the screen to d
the current score, so to render the game’s layers below that area, the view window might be rendere
20). The location is relative to the Graphics object’s origin, so translating the Graphics object will cha
where the view window is rendered on the screen.

The clip region of the Graphics object is intersected with a region having the same dimensions as th
window and located at (x,y). The LayerManager then translates the graphics object such that the poin
corresponds to the location of the viewWindow in the coordinate system of the LayerManager. The L
are then rendered in the appropriate order. The translation and clip region of the Graphics object are
restored to their prior values before this method returns.

Rendering is subject to the clip region and translation of the Graphics object. Thus, only part of the
specified view window may be rendered if the clip region is not large enough.

For performance reasons, this method may ignore Layers that are invisible or that would be rendere
entirely outside of the Graphics object’s clip region. The attributes of the Graphics object are not resto
a known state between calls to the Layers’ paint methods. The clip region may extend beyond the bou
a Layer; it is the responsibility of the Layer to ensure that rendering operations are performed within
bounds.

Parameters:
g - the graphics instance with which to draw the LayerManager

x - the horizontal location at which to render the view window, relative to the Graphics’ translate
origin
363

LayerManager javax.microedition.lcdui.game

remove(Layer)

rigin

yer is

 the

set to
y - the vertical location at which to render the view window, relative to the Graphics’ translated o

Throws:
NullPointerException - if g is null

See Also:setViewWindow(int, int, int, int) 364

remove(Layer)

Declaration:
public void remove (javax.microedition.lcdui.game.Layer 356 l)

Description:
Removes the specified Layer from this LayerManager. This method does nothing if the specified La
not added to the this LayerManager.

Parameters:
l - theLayer to be removed

Throws:
NullPointerException - if the specifiedLayer is null

See Also:append(Layer) 362 , insert(Layer, int) 363

setViewWindow(int, int, int, int)

Declaration:
public void setViewWindow (int x, int y, int width, int height)

Description:
Sets the view window on the LayerManager.

The view window specifies the region that the LayerManager draws when itspaint(Graphics, int,
int) 363 method is called. It allows the developer to control the size of the visible region, as well as
location of the view window relative to the LayerManager’s coordinate system.

The view window stays in effect until it is modified by another call to this method. By default, the view
window is located at (0,0) in the LayerManager’s coordinate system and its width and height are both
Integer.MAX_VALUE.

Parameters:
x - the horizontal location of the view window relative to the LayerManager’s origin

y - the vertical location of the view window relative to the LayerManager’s origin

width - the width of the view window

height - the height of the view window

Throws:
IllegalArgumentException - if thewidth or height is less than0
364

javax.microedition.lcdui.game Sprite

setViewWindow(int, int, int, int)

ifferent
applied
and it

 of a
al

 is
es are
javax.microedition.lcdui.game

Sprite
Declaration
public class Sprite extends Layer 356

Object
|
+-- javax.microedition.lcdui.game.Layer 356

|
+-- javax.microedition.lcdui.game.Sprite

Description
A Sprite is a basic visual element that can be rendered with one of several frames stored in an Image; d
frames can be shown to animate the Sprite. Several transforms such as flipping and rotation can also be
to a Sprite to further vary its appearance. As with all Layer subclasses, a Sprite’s location can be changed
can also be made visible or invisible.

Sprite Frames
The raw frames used to render a Sprite are provided in a single Image object, which may be mutable or
immutable. If more than one frame is used, the Image is broken up into a series of equally-sized frames
specified width and height. As shown in the figure below, the same set of frames may be stored in sever
different arrangements depending on what is the most convenient for the game developer.

Each frame is assigned a unique index number. The frame located in the upper-left corner of the Image
assigned an index of 0. The remaining frames are then numbered consecutively in row-major order (indic
365

Sprite javax.microedition.lcdui.game

setViewWindow(int, int, int, int)

mirrors
ding
frames.

ed by

uence is

t least
, the
mitted,

ito. The
nt before
assigned across the first row, then the second row, and so on). The methodgetRawFrameCount() 377
returns the total number of raw frames.

Frame Sequence
A Sprite’s frame sequence defines an ordered list of frames to be displayed. The default frame sequence
the list of available frames, so there is a direct mapping between the sequence index and the correspon
frame index. This also means that the length of the default frame sequence is equal to the number of raw
For example, if a Sprite has 4 frames, its default frame sequence is {0, 1, 2, 3}.

The developer must manually switch the current frame in the frame sequence. This may be accomplish
callingsetFrame(int) 378 , prevFrame() 378 , or nextFrame() 378 . Note that these methods always
operate on the sequence index, they do not operate on frame indices; however, if the default frame seq
used, then the sequence indices and the frame indices are interchangeable.

If desired, an arbitrary frame sequence may be defined for a Sprite. The frame sequence must contain a
one element, and each element must reference a valid frame index. By defining a new frame sequence
developer can conveniently display the Sprite’s frames in any order desired; frames may be repeated, o
shown in reverse order, etc.

For example, the diagram below shows how a special frame sequence might be used to animate a mosqu
frame sequence is designed so that the mosquito flaps its wings three times and then pauses for a mome
the cycle is repeated.
366

javax.microedition.lcdui.game Sprite

setViewWindow(int, int, int, int)

e
he
rite.

ned

m:
By callingnextFrame() 378 each time the display is updated, the resulting animation would like this:

Reference Pixel
Being a subclass of Layer, Sprite inherits various methods for setting and retrieving its location such as
setPosition(x,y) 358 , getX() 357 , andgetY() 357 . These methods all define position in terms of th
upper-left corner of the Sprite’s visual bounds; however, in some cases, it is more convenient to define t
Sprite’s position in terms of an arbitrary pixel within its frame, especially if transforms are applied to the Sp

Therefore, Sprite includes the concept of areference pixel. The reference pixel is defined by specifying its
location in the Sprite’s untransformed frame usingdefineReferencePixel(x,y) 376 . By default, the
reference pixel is defined to be the pixel at (0,0) in the frame. If desired, the reference pixel may be defi
outside of the frame’s bounds.

In this example, the reference pixel is defined to be the pixel that the monkey appears to be hanging fro
367

Sprite javax.microedition.lcdui.game

setViewWindow(int, int, int, int)

xel

. These

cation
branch:

90
et by
getRefPixelX() 377 andgetRefPixelY() 377 can be used to query the location of the reference pi
in the painter’s coordinate system. The developer can also usesetRefPixelPosition(x,y) 380 to
position the Sprite so that reference pixel appears at a specific location in the painter’s coordinate system
methods automatically account for any transforms applied to the Sprite.

In this example, the reference pixel’s position is set to a point at the end of a tree branch; the Sprite’s lo
changes so that the reference pixel appears at this point and the monkey appears to be hanging from the

Sprite Transforms
Various transforms can be applied to a Sprite. The available transforms include rotations in multiples of
degrees, and mirrored (about the vertical axis) versions of each of the rotations. A Sprite’s transform is s
callingsetTransform(transform) 380 .
368

javax.microedition.lcdui.game Sprite

setViewWindow(int, int, int, int)

ars
f the

n a 90
When a transform is applied, the Sprite is automatically repositioned such that the reference pixel appe
stationary in the painter’s coordinate system. Thus, the reference pixel effectively becomes the center o
transform operation. Since the reference pixel does not move, the values returned bygetRefPixelX() 377
andgetRefPixelY() 377 remain the same; however, the values returned bygetX() 357 andgetY() 357
may change to reflect the movement of the Sprite’s upper-left corner.

Referring to the monkey example once again, the position of the reference pixel remains at (48, 22) whe
degree rotation is applied, thereby making it appear as if the monkey is swinging from the branch:
369

Sprite javax.microedition.lcdui.game

setViewWindow(int, int, int, int)

to
Sprite Drawing
Sprites can be drawn at any time using thepaint(Graphics) 378 method. The Sprite will be drawn on the
Graphics object according to the current state information maintained by the Sprite (i.e. position, frame,
visibility). Erasing the Sprite is always the responsibility of code outside the Sprite class.

Sprites can be implemented using whatever techniques a manufacturers wishes to use (e.g hardware
acceleration may be used for all Sprites, for certain sizes of Sprites, or not at all).

For some platforms, certain Sprite sizes may be more efficient than others; manufacturers may choose
provide developers with information about device-specific characteristics such as these.

Since: MIDP 2.0

Member Summary

Fields
static int TRANS_MIRROR371

static int TRANS_MIRROR_ROT180371

static int TRANS_MIRROR_ROT270372

static int TRANS_MIRROR_ROT90372

static int TRANS_NONE372

static int TRANS_ROT180372

static int TRANS_ROT270372

static int TRANS_ROT90372

Constructors
Sprite(javax.microedition.lcdui.Image image) 373

Sprite(javax.microedition.lcdui.Image image, int frameWidth,
int frameHeight) 373

Sprite(Sprite s) 374

Methods
 boolean collidesWith(javax.microedition.lcdui.Image image, int x, int

y, boolean pixelLevel) 374
370

javax.microedition.lcdui.game Sprite

TRANS_MIRROR
Fields

TRANS_MIRROR

Declaration:
public static final int TRANS_MIRROR

Description:
Causes the Sprite to appear reflected about its vertical center. This constant has a value of2.

TRANS_MIRROR_ROT180

Declaration:
public static final int TRANS_MIRROR_ROT180

 boolean collidesWith(Sprite s, boolean pixelLevel) 374

 boolean collidesWith(TiledLayer t, boolean pixelLevel) 375

 void defineCollisionRectangle(int x, int y, int width, int
height) 375

 void defineReferencePixel(int x, int y) 376

 int getFrame() 376

 int getFrameSequenceLength() 377

 int getRawFrameCount() 377

 int getRefPixelX() 377

 int getRefPixelY() 377

 void nextFrame() 378

 void paint(javax.microedition.lcdui.Graphics g) 378

 void prevFrame() 378

 void setFrame(int sequenceIndex) 378

 void setFrameSequence(int[] sequence) 379

 void setImage(javax.microedition.lcdui.Image img, int frameWidth,
int frameHeight) 379

 void setRefPixelPosition(int x, int y) 380

 void setTransform(int transform) 380

Inherited Member Summary

Methods inherited from classLayer 356

getHeight() 357, getWidth() 357, getX() 357, getY() 357, isVisible() 357, move(int, int) 358,
setPosition(int, int) 358, setVisible(boolean) 358

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()

Member Summary
371

Sprite javax.microedition.lcdui.game

TRANS_MIRROR_ROT270

grees.

grees.

es. This
Description:
Causes the Sprite to appear reflected about its vertical center and then rotated clockwise by 180 de
This constant has a value of1.

TRANS_MIRROR_ROT270

Declaration:
public static final int TRANS_MIRROR_ROT270

Description:
Causes the Sprite to appear reflected about its vertical center and then rotated clockwise by 270 de
This constant has a value of4.

TRANS_MIRROR_ROT90

Declaration:
public static final int TRANS_MIRROR_ROT90

Description:
Causes the Sprite to appear reflected about its vertical center and then rotated clockwise by 90 degre
constant has a value of7.

TRANS_NONE

Declaration:
public static final int TRANS_NONE

Description:
No transform is applied to the Sprite. This constant has a value of0.

TRANS_ROT180

Declaration:
public static final int TRANS_ROT180

Description:
Causes the Sprite to appear rotated clockwise by 180 degrees. This constant has a value of3.

TRANS_ROT270

Declaration:
public static final int TRANS_ROT270

Description:
Causes the Sprite to appear rotated clockwise by 270 degrees. This constant has a value of6.

TRANS_ROT90

Declaration:
public static final int TRANS_ROT90

Description:
Causes the Sprite to appear rotated clockwise by 90 degrees. This constant has a value of5.
372

javax.microedition.lcdui.game Sprite

Sprite(Image)

lent to

ate

equally

f the
alues

 0. The

ate
Constructors

Sprite(Image)

Declaration:
public Sprite (javax.microedition.lcdui.Image 270 image)

Description:
Creates a new non-animated Sprite using the provided Image. This constructor is functionally equiva
callingnew Sprite(image, image.getWidth(), image.getHeight())

By default, the Sprite is visible and its upper-left corner is positioned at (0,0) in the painter’s coordin
system.

Parameters:
image - theImage to use as the single frame for the Sprite

Throws:
NullPointerException - if img is null

Sprite(Image, int, int)

Declaration:
public Sprite (javax.microedition.lcdui.Image 270 image, int frameWidth, int frameHeight)

Description:
Creates a new animated Sprite using frames contained in the provided Image. The frames must be
sized, with the dimensions specified byframeWidth andframeHeight . They may be laid out in the
image horizontally, vertically, or as a grid. The width of the source image must be an integer multiple o
frame width, and the height of the source image must be an integer multiple of the frame height. The v
returned byLayer.getWidth() 357 andLayer.getHeight() 357 will reflect the frame width and
frame height subject to the Sprite’s current transform.

Sprites have a default frame sequence corresponding to the raw frame numbers, starting with frame
frame sequence may be modified withsetFrameSequence(int[]) 379 .

By default, the Sprite is visible and its upper-left corner is positioned at (0,0) in the painter’s coordin
system.

Parameters:
image - theImage to use forSprite

frameWidth - thewidth , in pixels, of the individual raw frames

frameHeight - theheight , in pixels, of the individual raw frames

Throws:
NullPointerException - if img is null

IllegalArgumentException - if frameHeight or frameWidth is less than1

IllegalArgumentException - if the image width is not an integer multiple of the
frameWidth

IllegalArgumentException - if the image height is not an integer multiple of the
frameHeight
373

Sprite javax.microedition.lcdui.game

Sprite(Sprite)

n

cified
n

cted.

ects
Sprite(Sprite)

Declaration:
public Sprite (javax.microedition.lcdui.game.Sprite 365 s)

Description:
Creates a new Sprite from another Sprite.

All instance attributes (raw frames, position, frame sequence, current frame, reference point, collisio
rectangle, transform, and visibility) of the source Sprite are duplicated in the new Sprite.

Parameters:
s - theSprite to create a copy of

Throws:
NullPointerException - if s is null

Methods

collidesWith(Image, int, int, boolean)

Declaration:
public final boolean collidesWith (javax.microedition.lcdui.Image 270 image, int x, int y,

boolean pixelLevel)

Description:
Checks for a collision between this Sprite and the specified Image with its upper left corner at the spe
location. If pixel-level detection is used, a collision is detected only if opaque pixels collide. That is, a
opaque pixel in the Sprite would have to collide with an opaque pixel in Image for a collision to be dete
Only those pixels within the Sprite’s collision rectangle are checked.

If pixel-level detection is not used, this method simply checks if the Sprite’s collision rectangle inters
with the Image’s bounds.

Any transform applied to the Sprite is automatically accounted for.

The Sprite must be visible in order for a collision to be detected.

Parameters:
image - theImage to test for collision

x - the horizontal location of theImage ’s upper left corner

y - the vertical location of theImage ’s upper left corner

pixelLevel - true to test for collision on a pixel-by-pixel basis,false to test using simple
bounds checking

Returns: true if this Sprite has collided with theImage , otherwisefalse

Throws:
NullPointerException - if image is null

collidesWith(Sprite, boolean)

Declaration:
public final boolean collidesWith (javax.microedition.lcdui.game.Sprite 365 s,

boolean pixelLevel)
374

javax.microedition.lcdui.game Sprite

collidesWith(TiledLayer, boolean)

pixel

sect.

d, a
o

ects
Description:
Checks for a collision between this Sprite and the specified Sprite.

If pixel-level detection is used, a collision is detected only if opaque pixels collide. That is, an opaque
in the first Sprite would have to collide with an opaque pixel in the second Sprite for a collision to be
detected. Only those pixels within the Sprites’ respective collision rectangles are checked.

If pixel-level detection is not used, this method simply checks if the Sprites’ collision rectangles inter

Any transforms applied to the Sprites are automatically accounted for.

Both Sprites must be visible in order for a collision to be detected.

Parameters:
s - theSprite to test for collision with

pixelLevel - true to test for collision on a pixel-by-pixel basis,false to test using simple
bounds checking.

Returns: true if the two Sprites have collided, otherwisefalse

Throws:
NullPointerException - if Sprites is null

collidesWith(TiledLayer, boolean)

Declaration:
public final boolean collidesWith (javax.microedition.lcdui.game.TiledLayer 382 t,

boolean pixelLevel)

Description:
Checks for a collision between this Sprite and the specified TiledLayer. If pixel-level detection is use
collision is detected only if opaque pixels collide. That is, an opaque pixel in the Sprite would have t
collide with an opaque pixel in TiledLayer for a collision to be detected. Only those pixels within the
Sprite’s collision rectangle are checked.

If pixel-level detection is not used, this method simply checks if the Sprite’s collision rectangle inters
with a non-empty cell in the TiledLayer.

Any transform applied to the Sprite is automatically accounted for.

The Sprite and the TiledLayer must both be visible in order for a collision to be detected.

Parameters:
t - theTiledLayer to test for collision with

pixelLevel - true to test for collision on a pixel-by-pixel basis,false to test using simple
bounds checking against non-empty cells.

Returns: true if this Sprite has collided with theTiledLayer , otherwisefalse

Throws:
NullPointerException - if t is null

defineCollisionRectangle(int, int, int, int)

Declaration:
public void defineCollisionRectangle (int x, int y, int width, int height)
375

Sprite javax.microedition.lcdui.game

defineReferencePixel(int, int)

is
d for

ked.
 The
, the
ction.

e

t

ft
er’s

e raw

te

acted

ame

e

that is
Description:
Defines the Sprite’s bounding rectangle that is used for collision detection purposes. This rectangle
specified relative to the un-transformed Sprite’s upper-left corner and defines the area that is checke
collision detection. For pixel-level detection, only those pixels within the collision rectangle are chec
By default, a Sprite’s collision rectangle is located at 0,0 as has the same dimensions as the Sprite.
collision rectangle may be specified to be larger or smaller than the default rectangle; if made larger
pixels outside the bounds of the Sprite are considered to be transparent for pixel-level collision dete

Parameters:
x - the horizontal location of the collision rectangle relative to the untransformed Sprite’s left edg

y - the vertical location of the collision rectangle relative to the untransformed Sprite’s top edge

width - the width of the collision rectangle

height - the height of the collision rectangle

Throws:
IllegalArgumentException - if the specifiedwidth or height is less than0

defineReferencePixel(int, int)

Declaration:
public void defineReferencePixel (int x, int y)

Description:
Defines the reference pixel for this Sprite. The pixel is defined by its location relative to the upper-lef
corner of the Sprite’s un-transformed frame, and it may lay outside of the frame’s bounds.

When a transformation is applied, the reference pixel is defined relative to the Sprite’s initial upper-le
corner before transformation. This corner may no longer appear as the upper-left corner in the paint
coordinate system under current transformation.

By default, a Sprite’s reference pixel is located at (0,0); that is, the pixel in the upper-left corner of th
frame.

Changing the reference pixel does not change the Sprite’s physical position in the painter’s coordina
system; that is, the values returned bygetX() 357 andgetY() 357 will not change as a result of defining
the reference pixel. However, subsequent calls to methods that involve the reference pixel will be imp
by its new definition.

Parameters:
x - the horizontal location of the reference pixel, relative to the left edge of the un-transformed fr

y - the vertical location of the reference pixel, relative to the top edge of the un-transformed fram

See Also:setRefPixelPosition(int, int) 380 , getRefPixelX() 377 ,
getRefPixelY() 377

getFrame()

Declaration:
public final int getFrame ()

Description:
Gets the current index in the frame sequence.

The index returned refers to the current entry in the frame sequence, not the index of the actual frame
displayed.
376

javax.microedition.lcdui.game Sprite

getFrameSequenceLength()

prite’s
ame if

es not
default
Returns: the current index in the frame sequence

See Also:setFrameSequence(int[]) 379 , setFrame(int) 378

getFrameSequenceLength()

Declaration:
public int getFrameSequenceLength ()

Description:
Gets the number of elements in the frame sequence. The value returned reflects the length of the S
frame sequence; it does not reflect the number of raw frames. However, these two values will be the s
the default frame sequence is used.

Returns: the number of elements in this Sprite’s frame sequence

See Also:getRawFrameCount() 377

getRawFrameCount()

Declaration:
public int getRawFrameCount ()

Description:
Gets the number of raw frames for this Sprite. The value returned reflects the number of frames; it do
reflect the length of the Sprite’s frame sequence. However, these two values will be the same if the
frame sequence is used.

Returns: the number of raw frames for this Sprite

See Also:getFrameSequenceLength() 377

getRefPixelX()

Declaration:
public int getRefPixelX ()

Description:
Gets the horizontal position of this Sprite’s reference pixel in the painter’s coordinate system.

Returns: the horizontal location of the reference pixel

See Also:defineReferencePixel(int, int) 376 , setRefPixelPosition(int,
int) 380 , getRefPixelY() 377

getRefPixelY()

Declaration:
public int getRefPixelY ()

Description:
Gets the vertical position of this Sprite’s reference pixel in the painter’s coordinate system.

Returns: the vertical location of the reference pixel

See Also:defineReferencePixel(int, int) 376 , setRefPixelPosition(int,
int) 380 , getRefPixelX() 377
377

Sprite javax.microedition.lcdui.game

nextFrame()

dered
e

ible.

e itself.
nextFrame()

Declaration:
public void nextFrame ()

Description:
Selects the next frame in the frame sequence.

The frame sequence is considered to be circular, i.e. ifnextFrame() 378 is called when at the end of the
sequence, this method will advance to the first entry in the sequence.

See Also:setFrameSequence(int[]) 379 , prevFrame() 378

paint(Graphics)

Declaration:
public final void paint (javax.microedition.lcdui.Graphics 247 g)

Description:
Draws the Sprite.

Draws current frame of Sprite using the provided Graphics object. The Sprite’s upper left corner is ren
at the Sprite’s current position relative to the origin of the Graphics object. The current position of th
Sprite’s upper-left corner can be retrieved by callingLayer.getX() 357 andLayer.getY() 357 .

Rendering is subject to the clip region of the Graphics object. The Sprite will be drawn only if it is vis

If the Sprite’s Image is mutable, the Sprite is rendered using the current contents of the Image.

Overrides: paint 358 in classLayer 356

Parameters:
g - the graphics object to drawSprite on

Throws:
NullPointerException - if g is null

prevFrame()

Declaration:
public void prevFrame ()

Description:
Selects the previous frame in the frame sequence.

The frame sequence is considered to be circular, i.e. ifprevFrame() 378 is called when at the start of the
sequence, this method will advance to the last entry in the sequence.

See Also:setFrameSequence(int[]) 379 , nextFrame() 378

setFrame(int)

Declaration:
public void setFrame (int sequenceIndex)

Description:
Selects the current frame in the frame sequence.

The current frame is rendered whenpaint(Graphics) 378 is called.

The index provided refers to the desired entry in the frame sequence, not the index of the actual fram
378

javax.microedition.lcdui.game Sprite

setFrameSequence(int[])

 the
ce is

 to the

he

s many

n use),
Parameters:
sequenceIndex - the index of of the desired entry in the frame sequence

Throws:
IndexOutOfBoundsException - if frameIndex is less than0

IndexOutOfBoundsException - if frameIndex is equal to or greater than the length of the
current frame sequence (or the number of raw frames for the default sequence)

See Also:setFrameSequence(int[]) 379 , getFrame() 376

setFrameSequence(int[])

Declaration:
public void setFrameSequence (int[] sequence)

Description:
Set the frame sequence for this Sprite.

All Sprites have a default sequence that displays the Sprites frames in order. This method allows for
creation of an arbitrary sequence using the available frames. The current index in the frame sequen
reset to zero as a result of calling this method.

The contents of the sequence array are copied when this method is called; thus, any changes made
array after this method returns have no effect on the Sprite’s frame sequence.

Passing innull causes the Sprite to revert to the default frame sequence.

Parameters:
sequence - an array of integers, where each integer represents a frame index

Throws:
ArrayIndexOutOfBoundsException - if seq is non-null and any member of the array has a
value less than0 or greater than or equal to the number of frames as reported by
getRawFrameCount() 377

IllegalArgumentException - if the array has less than1 element

See Also:nextFrame() 378 , prevFrame() 378 , setFrame(int) 378 , getFrame() 376

setImage(Image, int, int)

Declaration:
public void setImage (javax.microedition.lcdui.Image 270 img, int frameWidth,

int frameHeight)

Description:
Changes the Image containing the Sprite’s frames.

Replaces the current raw frames of the Sprite with a new set of raw frames. See the constructor
Sprite(Image, int, int) 373 for information on how the frames are created from the image. T
values returned byLayer.getWidth() 357 andLayer.getHeight() 357 will reflect the new
frame width and frame height subject to the Sprite’s current transform.

Changing the image for the Sprite could change the number of raw frames. If the new frame set has a
or more raw frames than the previous frame set, then:

• The current frame will be unchanged

• If a custom frame sequence has been defined (usingsetFrameSequence(int[]) 379), it will

remain unchanged. If no custom frame sequence is defined (i.e. the default frame sequence is i
379

Sprite javax.microedition.lcdui.game

setRefPixelPosition(int, int)

set. In
set,

frame

ned
ze is
e such

(i.e. it

ystem.
the default frame sequence will be updated to be the default frame sequence for the new frame
other words, the new default frame sequence will include all of the frames from the new raw frame
as if this new image had been used in the constructor.

If the new frame set has fewer frames than the previous frame set, then:

• The current frame will be reset to entry 0

• Any custom frame sequence will be discarded and the frame sequence will revert to the default
sequence for the new frame set.

The reference point location is unchanged as a result of calling this method, both in terms of its defi
location within the Sprite and its position in the painter’s coordinate system. However, if the frame si
changed and the Sprite has been transformed, the position of the Sprite’s upper-left corner may chang
that the reference point remains stationary.

If the Sprite’s frame size is changed by this method, the collision rectangle is reset to its default value
is set to the new bounds of the untransformed Sprite).

Parameters:
img - theImage to use forSprite

frameWidth - the width in pixels of the individual raw frames

frameHeight - the height in pixels of the individual raw frames

Throws:
NullPointerException - if img is null

IllegalArgumentException - if frameHeight or frameWidth is less than1

IllegalArgumentException - if the image width is not an integer multiple of the
frameWidth

IllegalArgumentException - if the image height is not an integer multiple of the
frameHeight

setRefPixelPosition(int, int)

Declaration:
public void setRefPixelPosition (int x, int y)

Description:
Sets this Sprite’s position such that its reference pixel is located at (x,y) in the painter’s coordinate s

Parameters:
x - the horizontal location at which to place the reference pixel

y - the vertical location at which to place the reference pixel

See Also:defineReferencePixel(int, int) 376 , getRefPixelX() 377 ,
getRefPixelY() 377

setTransform(int)

Declaration:
public void setTransform (int transform)
380

javax.microedition.lcdui.game Sprite

setTransform(int)

arance.
d. By

th and

ta of
ithin

ate
comes

s

Description:
Sets the transform for this Sprite. Transforms can be applied to a Sprite to change its rendered appe
Transforms are applied to the original Sprite image; they are not cumulative, nor can they be combine
default, a Sprite’s transform isTRANS_NONE372 .

Since some transforms involve rotations of 90 or 270 degrees, their use may result in the overall wid
height of the Sprite being swapped. As a result, the values returned byLayer.getWidth() 357 and
Layer.getHeight() 357 may change.

The collision rectangle is also modified by the transform so that it remains static relative to the pixel da
the Sprite. Similarly, the defined reference pixel is unchanged by this method, but its visual location w
the Sprite may change as a result.

This method repositions the Sprite so that the location of the reference pixel in the painter’s coordin
system does not change as a result of changing the transform. Thus, the reference pixel effectively be
the centerpoint for the transform. Consequently, the values returned bygetRefPixelX() 377 and
getRefPixelY() 377 will be the same both before and after the transform is applied, but the value
returned bygetX() 357 andgetY() 357 may change.

Parameters:
transform - the desired transform for thisSprite

Throws:
IllegalArgumentException - if the requestedtransform is invalid

See Also:TRANS_NONE372 , TRANS_ROT90372 , TRANS_ROT180372 , TRANS_ROT270372 ,
TRANS_MIRROR371 , TRANS_MIRROR_ROT90372 , TRANS_MIRROR_ROT180371 ,
TRANS_MIRROR_ROT270372
381

TiledLayer javax.microedition.lcdui.game

setTransform(int)

his
ique is

r
h the
ending

ned an
across
javax.microedition.lcdui.game

TiledLayer
Declaration
public class TiledLayer extends Layer 356

Object
|
+-- javax.microedition.lcdui.game.Layer 356

|
+-- javax.microedition.lcdui.game.TiledLayer

Description
A TiledLayer is a visual element composed of a grid of cells that can be filled with a set of tile images. T
class allows large virtual layers to be created without the need for an extremely large Image. This techn
commonly used in 2D gaming platforms to create very large scrolling backgrounds,

Tiles
The tiles used to fill the TiledLayer’s cells are provided in a single Image object which may be mutable o
immutable. The Image is broken up into a series of equally-sized tiles; the tile size is specified along wit
Image. As shown in the figure below, the same tile set can be stored in several different arrangements dep
on what is the most convenient for the game developer.

Each tile is assigned a unique index number. The tile located in the upper-left corner of the Image is assig
index of 1. The remaining tiles are then numbered consecutively in row-major order (indices are assigned
the first row, then the second row, and so on). These tiles are regarded asstatic tilesbecause there is a fixed link
between the tile and the image data associated with it.
382

javax.microedition.lcdui.game TiledLayer

setTransform(int)

e

 static

oup of
ng the
reas

ning

and a
ell is
x 0.

tain

d static
A static tile set is created when the TiledLayer is instantiated; it can also be updated at any time using th
setStaticTileSet(Image, int, int) 389 method.

In addition to the static tile set, the developer can also define severalanimated tiles. An animated tile is a virtual
tile that is dynamically associated with a static tile; the appearance of an animated tile will be that of the
tile that it is currently associated with.

Animated tiles allow the developer to change the appearance of a group of cells very easily. With the gr
cells all filled with the animated tile, the appearance of the entire group can be changed by simply changi
static tile associated with the animated tile. This technique is very useful for animating large repeating a
without having to explicitly change the contents of numerous cells.

Animated tiles are created using thecreateAnimatedTile(int) 386 method, which returns the index to
be used for the new animated tile. The animated tile indices are always negative and consecutive, begin
with -1. Once created, the static tile associated with an animated tile can be changed using the
setAnimatedTile(int, int) 388 method.

Cells
The TiledLayer’s grid is made up of equally sized cells; the number of rows and columns in the grid are
specified in the constructor, and the physical size of the cells is defined by the size of the tiles.

The contents of each cell is specified by means of a tile index; a positive tile index refers to a static tile,
negative tile index refers to an animated tile. A tile index of 0 indicates that the cell is empty; an empty c
fully transparent and nothing is drawn in that area by the TiledLayer. By default, all cells contain tile inde

The contents of cells may be changed usingsetCell(int, int, int) 389 andfillCells(int,
int, int, int, int) 386 . Several cells may contain the same tile; however, a single cell cannot con
more than one tile. The following example illustrates how a simple background can be created using a
TiledLayer.

In this example, the area of water is filled with an animated tile having an index of -1, which is initially
associated with static tile 5. The entire area of water may be animated by simply changing the associate
tile usingsetAnimatedTile(-1, 7) .
383

TiledLayer javax.microedition.lcdui.game

setTransform(int)

using

bject;
ject’s
gly.
Rendering a TiledLayer
A TiledLayer can be rendered by manually calling its paint method; it can also be rendered automatically
a LayerManager object.

The paint method will attempt to render the entire TiledLayer subject to the clip region of the Graphics o
the upper left corner of the TiledLayer is rendered at its current (x,y) position relative to the Graphics ob
origin. The rendered region may be controlled by setting the clip region of the Graphics object accordin

Since: MIDP 2.0

Member Summary

Constructors
TiledLayer(int columns, int rows,
javax.microedition.lcdui.Image image, int tileWidth, int
tileHeight) 385

Methods
 int createAnimatedTile(int staticTileIndex) 386

 void fillCells(int col, int row, int numCols, int numRows, int
tileIndex) 386

 int getAnimatedTile(int animatedTileIndex) 386

 int getCell(int col, int row) 387

 int getCellHeight() 387

 int getCellWidth() 387

 int getColumns() 387

 int getRows() 388

 void paint(javax.microedition.lcdui.Graphics g) 388

 void setAnimatedTile(int animatedTileIndex, int staticTileIndex) 388

 void setCell(int col, int row, int tileIndex) 389

 void setStaticTileSet(javax.microedition.lcdui.Image image, int
tileWidth, int tileHeight) 389
384

javax.microedition.lcdui.game TiledLayer

TiledLayer(int, int, Image, int, int)

e tile
n

e,
Constructors

TiledLayer(int, int, Image, int, int)

Declaration:
public TiledLayer (int columns, int rows, javax.microedition.lcdui.Image 270 image,

int tileWidth, int tileHeight)

Description:
Creates a new TiledLayer.

The TiledLayer’s grid will berows cells high andcolumns cells wide. All cells in the grid are initially
empty (i.e. they contain tile index 0). The contents of the grid may be modified through the use of
setCell(int, int, int) 389 andfillCells(int, int, int, int, int) 386 .

The static tile set for the TiledLayer is created from the specified Image with each tile having the
dimensions of tileWidth x tileHeight. The width of the source image must be an integer multiple of th
width, and the height of the source image must be an integer multiple of the tile height; otherwise, a
IllegalArgumentException is thrown;

The entire static tile set can be changed usingsetStaticTileSet(Image, int, int) 389 . These
methods should be used sparingly since they are both memory and time consuming. Where possibl
animated tiles should be used instead to animate tile appearance.

Parameters:
columns - the width of theTiledLayer , expressed as a number of cells

rows - the height of theTiledLayer , expressed as a number of cells

image - theImage to use for creating the static tile set

tileWidth - the width in pixels of a single tile

tileHeight - the height in pixels of a single tile

Throws:
NullPointerException - if image is null

IllegalArgumentException - if the number ofrows or columns is less than1

IllegalArgumentException - if tileHeight or tileWidth is less than1

IllegalArgumentException - if the image width is not an integer multiple of the
tileWidth

IllegalArgumentException - if the image height is not an integer multiple of the
tileHeight

Inherited Member Summary

Methods inherited from classLayer 356

getHeight() 357, getWidth() 357, getX() 357, getY() 357, isVisible() 357, move(int, int) 358,
setPosition(int, int) 358, setVisible(boolean) 358

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
385

TiledLayer javax.microedition.lcdui.game

createAnimatedTile(int)

e

le
Methods

createAnimatedTile(int)

Declaration:
public int createAnimatedTile (int staticTileIndex)

Description:
Creates a new animated tile and returns the index that refers to the new animated tile. It is initially
associated with the specified tile index (either a static tile or 0).

The indices for animated tiles are always negative. The first animated tile shall have the index -1, th
second, -2, etc.

Parameters:
staticTileIndex - the index of the associated tile (must be0 or a valid static tile index)

Returns: the index of newly created animated tile

Throws:
IndexOutOfBoundsException - if thestaticTileIndex is invalid

fillCells(int, int, int, int, int)

Declaration:
public void fillCells (int col, int row, int numCols, int numRows, int tileIndex)

Description:
Fills a region cells with the specific tile. The cells may be filled with a static tile index, an animated ti
index, or they may be left empty (index0).

Parameters:
col - the column of top-left cell in the region

row - the row of top-left cell in the region

numCols - the number of columns in the region

numRows - the number of rows in the region

tileIndex - the Index of the tile to place in all cells in the specified region

Throws:
IndexOutOfBoundsException - if the rectangular region defined by the parameters extends
beyond the bounds of theTiledLayer grid

IllegalArgumentException - if numCols is less than zero

IllegalArgumentException - if numRows is less than zero

IndexOutOfBoundsException - if there is no tile with indextileIndex

See Also:setCell(int, int, int) 389 , getCell(int, int) 387

getAnimatedTile(int)

Declaration:
public int getAnimatedTile (int animatedTileIndex)

Description:
Gets the tile referenced by an animated tile.
386

javax.microedition.lcdui.game TiledLayer

getCell(int, int)

f the
Returns the tile index currently associated with the animated tile.

Parameters:
animatedTileIndex - the index of the animated tile

Returns: the index of the tile reference by the animated tile

Throws:
IndexOutOfBoundsException - if the animated tile index is invalid

See Also:setAnimatedTile(int, int) 388

getCell(int, int)

Declaration:
public int getCell (int col, int row)

Description:
Gets the contents of a cell.

Gets the index of the static or animated tile currently displayed in a cell. The returned index will be 0 i
cell is empty.

Parameters:
col - the column of cell to check

row - the row of cell to check

Returns: the index of tile in cell

Throws:
IndexOutOfBoundsException - if row or col is outside the bounds of theTiledLayer grid

See Also:setCell(int, int, int) 389 , fillCells(int, int, int, int, int) 386

getCellHeight()

Declaration:
public final int getCellHeight ()

Description:
Gets the height of a single cell, in pixels.

Returns: the height in pixels of a single cell in theTiledLayer grid

getCellWidth()

Declaration:
public final int getCellWidth ()

Description:
Gets the width of a single cell, in pixels.

Returns: the width in pixels of a single cell in theTiledLayer grid

getColumns()

Declaration:
public final int getColumns ()
387

TiledLayer javax.microedition.lcdui.game

getRows()

y be

e

ject.
in of
lling

age.
Description:
Gets the number of columns in the TiledLayer grid. The overall width of the TiledLayer, in pixels, ma
obtained by callingLayer.getWidth() 357 .

Returns: the width in columns of theTiledLayer grid

getRows()

Declaration:
public final int getRows ()

Description:
Gets the number of rows in the TiledLayer grid. The overall height of the TiledLayer, in pixels, may b
obtained by callingLayer.getHeight() 357 .

Returns: the height in rows of theTiledLayer grid

paint(Graphics)

Declaration:
public final void paint (javax.microedition.lcdui.Graphics 247 g)

Description:
Draws the TiledLayer. The entire TiledLayer is rendered subject to the clip region of the Graphics ob
The TiledLayer’s upper left corner is rendered at the TiledLayer’s current position relative to the orig
the Graphics object. The current position of the TiledLayer’s upper-left corner can be retrieved by ca
Layer.getX() 357 andLayer.getY() 357 . The appropriate use of a clip region and/or translation
allows an arbitrary region of the TiledLayer to be rendered.

If the TiledLayer’s Image is mutable, the TiledLayer is rendered using the current contents of the Im

Overrides: paint 358 in classLayer 356

Parameters:
g - the graphics object to draw theTiledLayer

Throws:
NullPointerException - if g is null

setAnimatedTile(int, int)

Declaration:
public void setAnimatedTile (int animatedTileIndex, int staticTileIndex)

Description:
Associates an animated tile with the specified static tile.

Parameters:
animatedTileIndex - the index of the animated tile

staticTileIndex - the index of the associated tile (must be0 or a valid static tile index)

Throws:
IndexOutOfBoundsException - if thestaticTileIndex is invalid

IndexOutOfBoundsException - if the animated tile index is invalid

See Also:getAnimatedTile(int) 386
388

javax.microedition.lcdui.game TiledLayer

setCell(int, int, int)

)

es and
x 0)
setCell(int, int, int)

Declaration:
public void setCell (int col, int row, int tileIndex)

Description:
Sets the contents of a cell.

The contents may be set to a static tile index, an animated tile index, or it may be left empty (index 0

Parameters:
col - the column of cell to set

row - the row of cell to set

tileIndex - the index of tile to place in cell

Throws:
IndexOutOfBoundsException - if there is no tile with indextileIndex

IndexOutOfBoundsException - if row or col is outside the bounds of theTiledLayer grid

See Also:getCell(int, int) 387 , fillCells(int, int, int, int, int) 386

setStaticTileSet(Image, int, int)

Declaration:
public void setStaticTileSet (javax.microedition.lcdui.Image 270 image, int tileWidth,

int tileHeight)

Description:
Change the static tile set.

Replaces the current static tile set with a new static tile set. See the constructorTiledLayer(int,
int, Image, int, int) 385 for information on how the tiles are created from the image.

If the new static tile set has as many or more tiles than the previous static tile set, the the animated til
cell contents will be preserve. If not, the contents of the grid will be cleared (all cells will contain inde
and all animated tiles will be deleted.

Parameters:
image - theImage to use for creating the static tile set

tileWidth - the width in pixels of a single tile

tileHeight - the height in pixels of a single tile

Throws:
NullPointerException - if image is null

IllegalArgumentException - if tileHeight or tileWidth is less than1

IllegalArgumentException - if the image width is not an integer multiple of the
tileWidth

IllegalArgumentException - if the image height is not an integer multiple of the
tileHeight
389

TiledLayer javax.microedition.lcdui.game

setStaticTileSet(Image, int, int)
390

n
nd and

 of

set of
ces

block

a

ed
C H A P T E R 10
Package

javax.microedition.media
Description
The MIDP 2.0 Media API is a directly compatible building block of the Mobile Media API (JSR-135)
specification. The use of this building block is intended for J2METM profiles aiming to include sound support in
the specification, while maintaining upwards compatibility with the full Multimedia API. Such specificatio
example is MIDP 2.0 (JSR-118). The development of these two interoperable API’s enables seamless sou
multimedia content creation across the J2METM range of devices using the same API principles.

Introduction

J2METM devices range from cell phones with simple tone generation to PDAs and Web tablets with
advanced audio and video rendering capabilities. To accommodate diverse configurations and
multimedia processing capabilities, an API with a high level of abstraction is needed. The goal of the
MMAPI Expert Group work has been to address this wide range of application areas, and the result
the work is a proposal of two API sets:

• Mobile Media API (JSR 135)

• MIDP 2.0 Media API

The first API is intended for J2METM devices with advanced sound and multimedia capabilities, including
powerful mobile phones, PDAs, and set-top boxes, for example. The latter API is a directly compatible sub
the Multimedia API, and is intended for resource-constrained devices such as mass-market mobile devi
(running MIDP 2.0). Furthermore, this subset API can be adopted to other J2METM profiles requiring sound
support. In the following, a more detailed description of the background and requirements of the building
API is given.

Background of the Media API

Some J2METM devices are very resource constrained. It may not be feasible for a device to support
full range of multimedia types, such as video on some cell phones. As a result, not all devices are
required to support the full generality of a multimedia API, such as extensibility to support custom
protocols and content types.

The proposed builidng block subset API has been designed to meet the above constraints. This propos
building block fulfills the requirements set by the MIDP 2.0 Expert Group. These requirements include:

• Low footprint audio playback

• Protocol and content format agnostic

• Supports tone generation

• Supports general media flow controls: start, stop, etc.

• Supports media-specific type controls: volume etc.

• Supports capability query

This subset differs from the full Mobile Media API in the following ways:
391

javax.microedition.media

ol

le
P

 method

type.
• It is audio-only. It excludes all Controls specific to video or graphics.

• It does not support custom protocols via custom DataSources. The javax.microedition.media.protoc
package (DataSource) is excluded.

It is important to note that the building block subset used in MIDP 2.0 is a proper subset of the full Mobi
Media API and is fully forward compatible. In order to get the full Mobile Media API functionality into MID
2.0 one needs to only implement the additional classes and methods from that API.

Basic Concepts

The proposed audio building block system constists of three main parts.

Manager Player Control

The Manager is the top level controller of audio resources. Applications useManager to requestPlayers
and to query properties, supported content types and supported protocols. The manager also includes a
to play simple tones.

The Player plays the multimedia content. The application obtains aPlayer by giving the locator string to
Manager .

A Control is an interface that is used to implement all different controls aPlayer might have. An
application can query aPlayer of controls it supports and then ask for a specificControl e.g.
VolumeControl to control volume.

API Details

ThecreatePlayer method is the top-level entry point to the API:

Player Manager.createPlayer(String url)
Theurl fully specifies the protocol and the content of the data:

<protocol>:<content location>
TheManager parses the URL, recognizes the content type and creates aPlayer to handle the presentation of
the data. The resultingPlayer is returned for use by the application. Connections created by
createPlayer follow theGeneric Connection framework rules and policies.

ThePlayer provides general methods to control the data flow and presentation, for example:

Player.realize()
Player.prefetch()
Player.start()

Fine-grained control is an important feature of the API; therefore, eachPlayer also provides type-specific
controls with thegetControls and getControl methods:

Control[] Player.getControls()
Control Player.getControl(int controlType)

Since different types of media will yield different types of controls from its correspondingPlayer , the
getControls and getControl methods can expose features that are unique to a particular media
392

javax.microedition.media

rovide

ces:

 a tone
Tone Generation

Tone generation is important for games and other audio applications. On very small devices, it is
particularly important since that is likely to be the only form of multimedia capabilities supported. In
its simplest form, tone generation reduces to a single buzzer or some simple monophonic tone
generation. The Manager class provides a top level method to handle this simple form of single tone
generation:

Manager.playTone(int note, int duration, int volume)

The implementation of this method can be mapped directly to the device’s hardware tone generator to p
the most responsive sound generation.

In addition, the API also provides a way to create a specific type of Player for synthesizing tone sequen

Player p = Manager.createPlayer(Manager.TONE_DEVICE_LOCATOR)

The Player created provides a special type of Control, ToneControl which can be used for programming
sequence. This enables more sophisticated applications written for slightly more powerful devices.

Usage Scenarios

In this section we demonstrate how the API could be used in four common scenarios.

Scenario 1: Single-Tone Generation
try {

Manager.playTone(ToneControl.C4, 5000 /* ms */, 100 /* max vol */);
} catch (MediaException e) { }

Scenario 2: Simple Media Playback with Looping
Notice that in MIDP 2.0 the wav format is mandatory only in a case the
device supports sampled audio.

try {
Playe r p = Manager.createPlayer(“http://webserver/music.wav”);
p.setLoopCount(5);
p.start();

} catch (IOException ioe) {
} catch (MediaException me) { }

Scenario 3: Playing Back from Media Stored in JAR
Notice that in MIDP 2.0 the wav format is mandatory only in a case the
device supports sampled audio.
393

javax.microedition.media

y

try {
InputStream is = getClass().getResourceAsStream(“music.wav”);
Playe r p = Manager.createPlayer(is, “audio/X-wav”);
p.start();

} catch (IOException ioe) {
} catch (MediaException me) { }

Scenario 4: Tone Sequence Generation
/**

* “Mary Had A Little Lamb” has “ABAC” structure.
* Use block to repeat “A” section.
*/

byte tempo = 30; // set tempo to 120 bpm
byte d = 8; // eighth-note
byte C4 = ToneControl.C4;;
byte D4 = (byte)(C4 + 2); // a whole step
byte E4 = (byte)(C4 + 4); // a major third
byte G4 = (byte)(C4 + 7); // a fifth
byte rest = ToneControl.SILENCE; // rest
byte[] mySequence = {

ToneControl.VERSION, 1, // version 1
ToneControl.TEMPO, tempo, // set tempo
ToneControl.BLOCK_START, 0, // start define “A” section
E4,d, D4,d, C4,d, E4,d, // content of “A” section
E4,d, E4,d, E4,d, rest,d,
ToneControl.BLOCK_END, 0, // end define “A” section
ToneControl.PLAY_BLOCK, 0, // play “A” section
D4,d, D4,d, D4,d, rest,d, // play “B” section
E4,d, G4,d, G4,d, rest,d,
ToneControl.PLAY_BLOCK, 0, // repeat “A” section
D4,d, D4,d, E4,d, D4,d, C4,d // play “C” section

};
try{

Playe r p = Manager.createPlayer(Manager.TONE_DEVICE_LOCATOR);
p.realize();
ToneContro l c = (ToneControl)p.getControl(“ToneControl”);
c.setSequence(mySequence);
p.start();

} catch (IOException ioe) {
} catch (MediaException me) { }

Since: MIDP 2.0

Class Summary

Interfaces

Control 396 A Control object is used to control some media processing functions.

Controllable 397 Controllable provides an interface for obtaining theControl s from an object
like aPlayer .

Player 406 Player controls the rendering of time based media data.

PlayerListener 416 PlayerListener is the interface for receiving asynchronous events generated b
Players .

Classes

Manager 399 Manager is the access point for obtaining system dependent resources such as
Players for multimedia processing.
394

javax.microedition.media
Exceptions

MediaException 404 A MediaException indicates an unexpected error condition in a method.

Class Summary
395

Control javax.microedition.media

y

h
e

javax.microedition.media

Control
Declaration
public interface Control

All Known Subinterfaces: javax.microedition.media.control.ToneControl 422 ,
javax.microedition.media.control.VolumeControl 428

Description
A Control object is used to control some media processing functions. The set of operations are usuall
functionally related. Thus aControl object provides a logical grouping of media processing functions.

Control s are obtained fromControllable . ThePlayer interface extendsControllable . Therefore
aPlayer implementation can use theControl interface to extend its media processing functions. For
example, aPlayer can expose aVolumeControl to allow the volume level to be set.

Multiple Control s can be implemented by the same object. For example, an object can implement bot
VolumeControl andToneControl . In this case, the object can be used for controlling both the volum
and tone generation.

The javax.microedition.media.control package specifies a set of pre-definedControl s.

See Also: Controllable 397 , Player 406
396

javax.microedition.media Controllable

getControl(String)

lly-
javax.microedition.media

Controllable
Declaration
public interface Controllable

All Known Subinterfaces: Player 406

Description
Controllable provides an interface for obtaining theControl s from an object like aPlayer . It provides
methods to query all the supportedControl s and to obtain a particularControl based on its class name.

Methods

getControl(String)

Declaration:
public javax.microedition.media.Control 396 getControl (String controlType)

Description:
Obtain the object that implements the specifiedControl interface.

If the specifiedControl interface is not supported thennull is returned.

If the Controllable supports multiple objects that implement the same specifiedControl interface,
only one of them will be returned. To obtain all theControl ’s of that type, use thegetControls
method and check the list for the requested type.

Parameters:
controlType - the class name of theControl . The class name should be given either as the fu
qualified name of the class; or if the package of the class is not given, the package
javax.microedition.media.control is assumed.

Returns: the object that implements the control, ornull .

Throws:
IllegalArgumentException - Thrown ifcontrolType is null .

IllegalStateException 37 - Thrown ifgetControl is called in a wrong state. SeePlayer
for more details.

Member Summary

Methods
 Control getControl(String controlType) 397

 Control[] getControls() 398
397

Controllable javax.microedition.media

getControls()

r

getControls()

Declaration:
public javax.microedition.media.Control[] 396 getControls ()

Description:
Obtain the collection ofControl s from the object that implements this interface.

Since a single object can implement multipleControl interfaces, it’s necessary to check each object
against differentControl types. For example:

Controllable controllable;
 :
 Control cs[];
 cs = controllable.getControls();
 for (int i = 0; i < cs.length; i++) {
 if (cs[i] instanceof ControlTypeA)
 doSomethingA();
 if (cs[i] instanceof ControlTypeB)
 doSomethingB();
 // etc.
 }

The list ofControl objects returned will not contain any duplicates. And the list will not change ove
time.

If no Control is supported, a zero length array is returned.

Returns: the collection ofControl objects.

Throws:
IllegalStateException 37 - Thrown if getControls is called in a wrong state. SeePlayer
for more details.
398

javax.microedition.media Manager

getControls()

:/
e

javax.microedition.media

Manager
Declaration
public final class Manager

Object
|
+-- javax.microedition.media.Manager

Description
Manager is the access point for obtaining system dependent resources such asPlayers for multimedia
processing.

A Player is an object used to control and render media that is specific to the content type of the data.

Manager provides access to an implementation specific mechanism for constructingPlayers .

For convenience,Manager also provides a simplified method to generate simple tones.

Simple Tone Generation

TheplayTone function is defined to generate tones. Given the note and duration, the function will
produce the specified tone.

Creating Players

Manager provides two methods to create aPlayer for playing back media:

• Create from a media locator.

• Create from anInputStream .

ThePlayer returned can be used to control the presentation of the media.

Content Types

Content types identify the type of media data. They are defined to be the registered MIME types (http
/www.iana.org/assignments/media-types/ (http://www.iana.org/assignments/media-types/)); plus som
user-defined types that generally follow the MIME syntax (RFC 2045, RFC 2046).

For example, here are a few common content types:

1. Wave audio files:audio/x-wav

2. AU audio files:audio/basic

3. MP3 audio files:audio/mpeg

4. MIDI files: audio/midi

5. Tone sequences:audio/x-tone-seq

Media Locator

Media locators are specified in URI syntax (http://www.ietf.org/rfc/rfc2396.txt) which is defined in the
form:
399

Manager javax.microedition.media

TONE_DEVICE_LOCATOR

.

<scheme>:<scheme-specific-part>

The “scheme” part of the locator string identifies the name of the protocol being used to deliver the data

See Also: Player 406

Fields

TONE_DEVICE_LOCATOR

Declaration:
public static final String TONE_DEVICE_LOCATOR

Description:
The locator to create a tonePlayer to play back tone sequences. e.g.

try {
Playe r p = Manager.createPlayer(Manager.TONE_DEVICE_LOCATOR);
p.realize();
ToneControl tc = (ToneControl)p.getControl(“ToneControl”);
tc.setSequence(mySequence);
p.start();

} catch (IOException ioe) {
} catch (MediaException me) {}

If a tone sequence is not set on the tonePlayer via itsToneControl , thePlayer does not carry any
sequence.getDuration returns 0 for thisPlayer .

The content type of thePlayer created from this locator isaudio/x-tone-seq .

Member Summary

Fields
static

java.lang.String
TONE_DEVICE_LOCATOR400

Methods
static Player createPlayer(java.io.InputStream stream, String type) 401

static Player createPlayer(String locator) 401

static
java.lang.String[]

getSupportedContentTypes(String protocol) 402

static
java.lang.String[]

getSupportedProtocols(String content_type) 402

static void playTone(int note, int duration, int volume) 402

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
400

javax.microedition.media Manager

createPlayer(InputStream, String)

s, it

by
A Player for this locator may not be supported for all implementations.

Value “device://tone” is assigned toTONE_DEVICE_LOCATOR.

Methods

createPlayer(InputStream, String)

Declaration:
public static javax.microedition.media.Player 406 createPlayer (java.io.InputStream stream,

String type)

throws IOException, MediaException

Description:
Create aPlayer to play back media from anInputStream .

Thetype argument specifies the content-type of the input media. Ifnull is given,Manager will attempt
to determine the type. However, since determining the media type is non-trivial for some media type
may not be feasible in some cases. TheManager may throw aMediaException to indicate that.

Parameters:
stream - TheInputStream that delivers the input media.

type - TheContentType of the media.

Returns: A newPlayer .

Throws:
IllegalArgumentException - Thrown ifstream is null .

MediaException 404 - Thrown if aPlayer cannot be created for the given stream and type.

java.io.IOException - Thrown if there was a problem reading data from theInputStream .

SecurityException - Thrown if the caller does not have security permission to create the
Player .

createPlayer(String)

Declaration:
public static javax.microedition.media.Player 406 createPlayer (String locator)

throws IOException, MediaException

Description:
Create aPlayer from an input locator.

Parameters:
locator - A locator string in URI syntax that describes the media content.

Returns: A newPlayer .

Throws:
IllegalArgumentException - Thrown if locator is null .

MediaException 404 - Thrown if aPlayer cannot be created for the given locator.

java.io.IOException - Thrown if there was a problem connecting with the source pointed to
the locator .
401

Manager javax.microedition.media

getSupportedContentTypes(String)

the

ck

hich

ontent

e

SecurityException - Thrown if the caller does not have security permission to create the
Player .

getSupportedContentTypes(String)

Declaration:
public static String[] getSupportedContentTypes (String protocol)

Description:
Return the list of supported content types for the given protocol.

See content types for the syntax of the content types returned. See protocol name for the syntax of
protocol used.

For example, if the givenprotocol is “http” , then the supported content types that can be played ba
with thehttp protocol will be returned.

If null is passed in as theprotocol , all the supported content types for this implementation will be
returned. The returned array must be non-empty.

If the givenprotocol is an invalid or unsupported protocol, then an empty array will be returned.

Parameters:
protocol - The input protocol for the supported content types.

Returns: The list of supported content types for the given protocol.

getSupportedProtocols(String)

Declaration:
public static String[] getSupportedProtocols (String content_type)

Description:
Return the list of supported protocols given the content type. The protocols are returned as strings w
identify what locators can be used for creatingPlayer ’s.

See protocol name for the syntax of the protocols returned. See content types for the syntax of the c
type used.

For example, if the givencontent_type is “audio/x-wav” , then the supported protocols that can b
used to play backaudio/x-wav will be returned.

If null is passed in as thecontent_type , all the supported protocols for this implementation will be
returned. The returned array must be non-empty.

If the givencontent_type is an invalid or unsupported content type, then an empty array will be
returned.

Parameters:
content_type - The content type for the supported protocols.

Returns: The list of supported protocols for the given content type.

playTone(int, int, int)

Declaration:
public static void playTone (int note, int duration, int volume)

throws MediaException
402

javax.microedition.media Manager

playTone(int, int, int)

usive.

ices

t
e to
Description:
Play back a tone as specified by a note and its duration. A note is given in the range of 0 to 127 incl
The frequency of the note can be calculated from the following formula:

SEMITONE_CONST = 17.31234049066755 = 1/(ln(2^(1/12)))
note = ln(freq/8.176)*SEMITONE_CONST
The musical not e A = MIDI note 69 (0x45) = 440 Hz.

This call is a non-blocking call. Notice that this method may utilize CPU resources significantly on dev
that don’t have hardware support for tone generation.

Parameters:
note - Defines the tone of the note as specified by the above formula.

duration - The duration of the tone in milli-seconds. Duration must be positive.

volume - Audio volume range from 0 to 100. 100 represents the maximum volume at the curren
hardware level. Setting the volume to a value less than 0 will set the volume to 0. Setting the volum
greater than 100 will set the volume to 100.

Throws:
IllegalArgumentException - Thrown if the given note or duration is out of range.

MediaException 404 - Thrown if the tone cannot be played due to a device-related problem.
403

MediaException javax.microedition.media

MediaException()
javax.microedition.media

MediaException
Declaration
public class MediaException extends Exception

Object
|
+--Throwable

|
+--Exception

|
+-- javax.microedition.media.MediaException

Description
A MediaException indicates an unexpected error condition in a method.

Constructors

MediaException()

Declaration:
public MediaException ()

Description:
Constructs aMediaException with null as its error detail message.

MediaException(String)

Declaration:
public MediaException (String reason)

Member Summary

Constructors
MediaException() 404

MediaException(String reason) 404

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Methods inherited from classThrowable

getMessage(), printStackTrace(), toString()
404

javax.microedition.media MediaException

MediaException(String)
Description:
Constructs aMediaException with the specified detail message. The error message strings can later be
retrieved by theThrowable.getMessage() method of classjava.lang.Throwable .

Parameters:
reason - the detail message.
405

Player javax.microedition.media

MediaException(String)

g

ces

,

d then
javax.microedition.media

Player
Declaration
public interface Player extends Controllable 397

All Superinterfaces: Controllable 397

Description
Player controls the rendering of time based media data. It provides the methods to manage thePlayer ’s life
cycle, controls the playback progress and obtains the presentation components.

Simple Playback

A Player can be created from one of theManager ’s createPlayer methods. After thePlayer
is created, callingstart will start the playback as soon as possible. The method will return when the
playback is started. The playback will continue in the background and will stop automatically when the
end of media is reached.

Simple playback example illustrates this.

Player Life Cycle

A Player has five states:UNREALIZED, REALIZED, PREFETCHED, STARTED, CLOSED.

The purpose of these life-cycle states is to provide programmatic control over potentially time-consumin
operations. For example, when aPlayer is first constructed, it’s in theUNREALIZEDstate. Transitioned from
UNREALIZEDto REALIZED, thePlayer performs the communication necessary to locate all of the resour
it needs to function (such as communicating with a server or a file system). Therealize method allows an
application to initiate this potentially time-consuming process at an appropriate time.

Typically, aPlayer moves from theUNREALIZED state to theREALIZED state, then to thePREFETCHED
state, and finally on to theSTARTED state.

A Player stops when it reaches the end of media; or when thestop method is invoked. When that happens
thePlayer moves from theSTARTED state back to thePREFETCHED state. It is then ready to repeat the
cycle.

To use aPlayer , you must set up parameters to manage its movement through these life-cycle states an
move it through the states using thePlayer ’s state transition methods.

Player States

This section describes the semantics of each of thePlayer states.
406

javax.microedition.media Player

MediaException(String)

 device.

ith

f a
UNREALIZED State

A Player starts in theUNREALIZED state. An unrealizedPlayer does not have enough
information to acquire all the resources it needs to function.

The following methods must not be used when thePlayer is in theUNREALIZED state.

• getContentType

• setMediaTime

• getControls

• getControl

An IllegalStateException will be thrown.

Therealize method transitions thePlayer from theUNREALIZED state to theREALIZED state.

REALIZED State

A Player is in theREALIZED state when it has obtained the information required to acquire the
media resources. Realizing aPlayer can be a resource and time consuming process. ThePlayer
may have to communicate with a server, read a file, or interact with a set of objects.

Although a realizedPlayer does not have to acquire any resources, it is likely to have acquired all of the
resources it needs except those that imply exclusive use of a scarce system resource, such as an audio

Normally, aPlayer moves from theUNREALIZED state to theREALIZED state. Afterrealize has been
invoked on aPlayer , the only way it can return to theUNREALIZED state is ifdeallocate is invoked
beforerealize is completed. Once aPlayer reaches theREALIZED state, it never returns to the
UNREALIZED state. It remains in one of four states:REALIZED, PREFETCHED, STARTED or CLOSED.

PREFETCHED State

Once realized, aPlayer may still need to perform a number of time-consuming tasks before it is
ready to be started. For example, it may need to acquire scarce or exclusive resources, fill buffers w
media data, or perform other start-up processing. Callingprefetch on thePlayer carries out these
tasks.

Once aPlayer is in thePREFETCHED state, it may be started. Prefetching reduces the startup latency o
Player to the minimum possible value.

When a startedPlayer stops, it returns to thePREFETCHED state.

STARTED State

Once prefetched, aPlayer can enter theSTARTEDstate by calling thestart method. ASTARTED
Player means thePlayer is running and processing data. APlayer returns to thePREFETCHED
state when it stops, because thestop method was invoked, or it has reached the end of the media.

When thePlayer moves from thePREFETCHED to theSTARTED state, it posts aSTARTED event. When it
moves from theSTARTED state to thePREFETCHED state, it posts aSTOPPED, END_OF_MEDIA event
depending on the reason it stopped.

The following method must not be used when thePlayer is in theSTARTED state:

• setLoopCount

An IllegalStateException will be thrown.
407

Player javax.microedition.media

MediaException(String)

or

d

ltiple
CLOSED state

Callingclose on thePlayer puts it in theCLOSED state. In theCLOSED state, thePlayer has
released most of its resources and must not be used again.

ThePlayer ’s five states and the state transition methods are summarized in the following diagram:

Player Events

Player events asynchronously deliver information about thePlayer ’s state changes and other
relevant information from thePlayer ’s Control s.

To receive events, an object must implement thePlayerListener interface and use the
addPlayerListener method to register its interest in aPlayer ’s events. AllPlayer events are posted to
each registered listener.

The events are guaranteed to be delivered in the order that the actions representing the events occur. F
example, if aPlayer stops shortly after it starts because it is playing back a very short media file, the
STARTED event must always preceed theEND_OF_MEDIA event.

An ERROR event may be sent any time an irrecoverable error has occured. When that happens, thePlayer is
in theCLOSED state.

ThePlayer event mechanism is extensible and somePlayers define events other than the ones describe
here. For a list of pre-defined player events, check thePlayerListener interface.

Managing the Resources Used by a Player

Theprefetch method is used to acquire scarce or exclusive resources such as the audio device.
Conversely, thedeallocate method is used to release the scarce or exclusive resources. By using
these two methods, an application can programmatically manage thePlayer ’s resources.

For example, in an implementation with an exclusive audio device, to alternate the audio playback of mu
Player s, an application can selectively deallocate and prefetch individualPlayer s.

Player’s Controls

Player implementsControllable which provides extra controls via some type-specific
Control interfaces.getControl andgetControls cannot be called when thePlayer is in the
UNREALIZED or CLOSED state. AnIllegalStateException will be thrown.
408

javax.microedition.media Player

CLOSED
Simple Playback Example

try {
Playe r p = Manager.createPlayer(“http://abc.wav”);
p.start();

} catch (MediaException pe) {
} catch (IOException ioe) {
}

Fields

CLOSED

Declaration:
public static final int CLOSED

Member Summary

Fields
static int CLOSED409

static int PREFETCHED410

static int REALIZED410

static int STARTED410

static long TIME_UNKNOWN410

static int UNREALIZED410

Methods
 void addPlayerListener(PlayerListener playerListener) 411

 void close() 411

 void deallocate() 411

 java.lang.String getContentType() 411

 long getDuration() 412

 long getMediaTime() 412

 int getState() 412

 void prefetch() 412

 void realize() 413

 void removePlayerListener(PlayerListener playerListener) 413

 void setLoopCount(int count) 414

 long setMediaTime(long now) 414

 void start() 415

 void stop() 415

Inherited Member Summary

Methods inherited from interface Controllable 397

getControl(String) 397, getControls() 398
409

Player javax.microedition.media

PREFETCHED

 to
Description:
The state of thePlayer indicating that thePlayer is closed.

Value 0 is assigned toCLOSED.

PREFETCHED

Declaration:
public static final int PREFETCHED

Description:
The state of thePlayer indicating that it has acquired all the resources to begin playing.

Value 300 is assigned toPREFETCHED.

REALIZED

Declaration:
public static final int REALIZED

Description:
The state of thePlayer indicating that it has acquired the required information but not the resources
function.

Value 200 is assigned toREALIZED.

STARTED

Declaration:
public static final int STARTED

Description:
The state of thePlayer indicating that thePlayer has already started.

Value 400 is assigned toSTARTED.

TIME_UNKNOWN

Declaration:
public static final long TIME_UNKNOWN

Description:
The returned value indicating that the requested time is unknown.

Value -1 is assigned toTIME_UNKNOWN.

UNREALIZED

Declaration:
public static final int UNREALIZED

Description:
The state of thePlayer indicating that it has not acquired the required information and resources to
function.

Value 100 is assigned toUNREALIZED.
410

javax.microedition.media Player

addPlayerListener(PlayerListener)
Methods

addPlayerListener(PlayerListener)

Declaration:
public void addPlayerListener (javax.microedition.media.PlayerListener 416 playerListener)

Description:
Add a player listener for this player.

Parameters:
playerListener - the listener to add. Ifnull is used, the request will be ignored.

Throws:
IllegalStateException 37 - Thrown if thePlayer is in theCLOSED state.

See Also: removePlayerListener(PlayerListener) 413

close()

Declaration:
public void close ()

Description:
Close thePlayer and release its resources.

When the method returns, thePlayer is in theCLOSED state and can no longer be used. ACLOSED
event will be delivered to the registeredPlayerListener s.

If close is called on a closedPlayer the request is ignored.

deallocate()

Declaration:
public void deallocate ()

Description:
Release the scarce or exclusive resources like the audio device acquired by thePlayer .

Whendeallocate returns, thePlayer is in theUNREALIZED or REALIZED state.

If the Player is blocked at therealize call while realizing, callingdeallocate unblocks the
realize call and returns thePlayer to theUNREALIZED state. Otherwise, callingdeallocate
returns thePlayer to theREALIZED state.

If deallocate is called when thePlayer is in theUNREALIZED or REALIZED state, the request is
ignored.

If the Player is STARTEDwhendeallocate is called,deallocate will implicitly call stop on the
Player .

Throws:
IllegalStateException 37 - Thrown if thePlayer is in theCLOSED state.

getContentType()

Declaration:
public String getContentType ()
411

Player javax.microedition.media

getDuration()

t rate.
Description:
Get the content type of the media that’s being played back by thisPlayer .

See content type for the syntax of the content type returned.

Returns: The content type being played back by thisPlayer .

Throws:
IllegalStateException 37 - Thrown if thePlayer is in theUNREALIZED or CLOSED state.

getDuration()

Declaration:
public long getDuration ()

Description:
Get the duration of the media. The value returned is the media’s duration when played at the defaul
If the duration cannot be determined (for example, thePlayer is presenting live media)getDuration
returnsTIME_UNKNOWN.

Returns: The duration in microseconds orTIME_UNKNOWN.

Throws:
IllegalStateException 37 - Thrown if thePlayer is in theCLOSED state.

getMediaTime()

Declaration:
public long getMediaTime ()

Description:
Gets thisPlayer ’s currentmedia time. If the media timecannot be determined,getMediaTime returns
TIME_UNKNOWN.

Returns: The currentmedia time in microseconds orTIME_UNKNOWN.

Throws:
IllegalStateException 37 - Thrown if thePlayer is in theCLOSED state.

See Also:setMediaTime(long) 414

getState()

Declaration:
public int getState ()

Description:
Gets the current state of thisPlayer . The possible states are:UNREALIZED, REALIZED,
PREFETCHED, STARTED, CLOSED.

Returns: ThePlayer ’s current state.

prefetch()

Declaration:
public void prefetch ()

throws MediaException
412

javax.microedition.media Player

realize()

he start

tained at

d

de
Description:
Acquires the scarce and exclusive resources and processes as much data as necessary to reduce t
latency.

Whenprefetch completes successfully, thePlayer is in thePREFETCHED state.

If prefetch is called when thePlayer is in theUNREALIZED state, it will implicitly callrealize .

If prefetch is called when thePlayer is already in thePREFETCHED state, thePlayer may still
process data necessary to reduce the start latency. This is to guarantee that start latency can be main
a minimum.

If prefetch is called when thePlayer is in theSTARTED state, the request will be ignored.

If the Player cannot obtain all of the resources it needs, it throws aMediaException . When that
happens, thePlayer will not be able to start. However,prefetch may be called again when the neede
resource is later released perhaps by anotherPlayer or application.

Throws:
IllegalStateException 37 - Thrown if thePlayer is in theCLOSED state.

MediaException 404 - Thrown if thePlayer cannot be prefetched.

SecurityException - Thrown if the caller does not have security permission to prefetch the
Player .

realize()

Declaration:
public void realize ()

throws MediaException

Description:
Constructs portions of thePlayer without acquiring the scarce and exclusive resources. This may inclu
examining media data and may take some time to complete.

Whenrealize completes successfully, thePlayer is in theREALIZED state.

If realize is called when thePlayer is in theREALIZED, PREFETCHTED or STARTED state, the
request will be ignored.

Throws:
IllegalStateException 37 - Thrown if thePlayer is in theCLOSED state.

MediaException 404 - Thrown if thePlayer cannot be realized.

SecurityException - Thrown if the caller does not have security permission to realize the
Player .

removePlayerListener(PlayerListener)

Declaration:
public void removePlayerListener (javax.microedition.media.PlayerListener 416

playerListener)

Description:
Remove a player listener for this player.

Parameters:
playerListener - the listener to remove. Ifnull is used or the givenplayerListener is not a
listener for thisPlayer , the request will be ignored.
413

Player javax.microedition.media

setLoopCount(int)

t
 and

eset

 count,

te the

time
Throws:
IllegalStateException 37 - Thrown if thePlayer is in theCLOSED state.

See Also:addPlayerListener(PlayerListener) 411

setLoopCount(int)

Declaration:
public void setLoopCount (int count)

Description:
Set the number of times thePlayer will loop and play the content.

By default, the loop count is one. That is, once started, thePlayer will start playing from the current
media time to the end of media once.

If the loop count is set to N where N is bigger than one, starting thePlayer will start playing the content
from the current media time to the end of media. It will then loop back to the beginning of the conten
(media time zero) and play till the end of the media. The number of times it will loop to the beginning
play to the end of media will be N-1.

Setting the loop count to 0 is invalid. AnIllegalArgumentException will be thrown.

Setting the loop count to -1 will loop and play the content indefinitely.

If the Player is stopped before the preset loop count is reached either becausestop is called, calling
start again will resume the looping playback from where it was stopped until it fully reaches the pr
loop count.

An END_OF_MEDIA event will be posted every time thePlayer reaches the end of media. If the
Player loops back to the beginning and starts playing again because it has not completed the loop
aSTARTED event will be posted.

Parameters:
count - indicates the number of times the content will be played. 1 is the default. 0 is invalid. -1
indicates looping indefintely.

Throws:
IllegalArgumentException - Thrown if the given count is invalid.

IllegalStateException 37 - Thrown if thePlayer is in theSTARTED or CLOSED state.

setMediaTime(long)

Declaration:
public long setMediaTime (long now)

throws MediaException

Description:
Sets thePlayer ’s media time.

For some media types, setting the media time may not be very accurate. The returned value will indica
actual media time set.

Setting the media time to negative values will effectively set the media time to zero. Setting the media
to beyond the duration of the media will set the time to the end of media.

There are some media types that cannot support the setting of media time. CallingsetMediaTime will
throw aMediaException in those cases.
414

javax.microedition.media Player

start()
Parameters:
now - The new media time in microseconds.

Returns: The actual media time set in microseconds.

Throws:
IllegalStateException 37 - Thrown if thePlayer is in theUNREALIZED or CLOSED state.

MediaException 404 - Thrown if the media time cannot be set.

See Also:getMediaTime() 412

start()

Declaration:
public void start ()

throws MediaException

Description:
Starts thePlayer as soon as possible. If thePlayer was previously stopped by callingstop , it will
resume playback from where it was previously stopped. If thePlayer has reached the end of media,
callingstart will automatically start the playback from the start of the media.

Whenstart returns successfully, thePlayer must have been started and aSTARTED event will be
delivered to the registeredPlayerListener s. However, thePlayer is not guaranteed to be in the
STARTED state. ThePlayer may have already stopped (in thePREFETCHED state) because the media
has 0 or a very short duration.

If start is called when thePlayer is in theUNREALIZED or REALIZED state, it will implicitly call
prefetch .

If start is called when thePlayer is in theSTARTED state, the request will be ignored.

Throws:
IllegalStateException 37 - Thrown if thePlayer is in theCLOSED state.

MediaException 404 - Thrown if thePlayer cannot be started.

SecurityException - Thrown if the caller does not have security permission to start thePlayer .

stop()

Declaration:
public void stop ()

throws MediaException

Description:
Stops thePlayer . It will pause the playback at the current media time.

Whenstop returns, thePlayer is in thePREFETCHEDstate. ASTOPPEDevent will be delivered to the
registeredPlayerListener s.

If stop is called on a stoppedPlayer , the request is ignored.

Throws:
IllegalStateException 37 - Thrown if thePlayer is in theCLOSED state.

MediaException 404 - Thrown if thePlayer cannot be stopped.
415

PlayerListener javax.microedition.media

stop()

s to
types.
n. For

In
t them,
javax.microedition.media

PlayerListener
Declaration
public interface PlayerListener

Description
PlayerListener is the interface for receiving asynchronous events generated byPlayers . Applications
may implement this interface and register their implementations with theaddPlayerListener method in
Player .

A number of standardPlayer events are defined here in this interface. Event types are defined as string
support extensibility as different implementations may introduce proprietary events by adding new event
To avoid name conflicts, proprietary events should be named with the “reverse-domainname” conventio
example, a company named “mycompany” should name its proprietary event names with strings like
“com.mycompany.myEvent” etc.

Applications that rely on proprietary events may not function properly across different implementations.
order to make the applications that use those events to behave well in environments that don’t implemen
String.equals() should be used to check the event.

Code fragment for catching standard events in playerUpdate()

if (eventType == PlayerListener.STARTED) {...}

Code fragment for catching proprietary events in playerUpdate()

if (eventType.equals(“com.company.myEvent”)) {...}

See Also: Player 406

Member Summary

Fields
static

java.lang.String
CLOSED417

static
java.lang.String

DEVICE_AVAILABLE417

static
java.lang.String

DEVICE_UNAVAILABLE417

static
java.lang.String

DURATION_UPDATED418

static
java.lang.String

END_OF_MEDIA418

static
java.lang.String

ERROR418

static
java.lang.String

STARTED418

static
java.lang.String

STOPPED418
416

javax.microedition.media PlayerListener

CLOSED

ch is

the

lusive

e

Fields

CLOSED

Declaration:
public static final String CLOSED

Description:
Posted when aPlayer is closed. When this event is received, theeventData parameter is null.

Valueclosed is assigned toCLOSED.

DEVICE_AVAILABLE

Declaration:
public static final String DEVICE_AVAILABLE

Description:
Posted when the system or another higher priority application has released an exclusive device whi
now available to thePlayer .

ThePlayer will be in theREALIZED state when this event is received. The application may acquire
device with theprefetch or start method.

A DEVICE_UNAVAILABLE event must preceed this event.

TheeventData parameter is aString specifying the name of the device.

ValuedeviceAvailable is assigned toDEVICE_AVAILABLE.

DEVICE_UNAVAILABLE

Declaration:
public static final String DEVICE_UNAVAILABLE

Description:
Posted when the system or another higher priority application has temporarily taken control of an exc
device which was previously available to thePlayer .

ThePlayer will be in theREALIZED state when this event is received.

This event must be followed by either aDEVICE_AVAILABLE event when the device becomes availabl
again, or anERROR event if the device becomes permanently unavailable.

TheeventData parameter is aString specifying the name of the device.

ValuedeviceUnavailable is assigned toDEVICE_UNAVAILABLE.

static
java.lang.String

VOLUME_CHANGED419

Methods
 void playerUpdate(Player player, String event, Object eventData) 419

Member Summary
417

PlayerListener javax.microedition.media

DURATION_UPDATED

tion
- for
DURATION_UPDATED

Declaration:
public static final String DURATION_UPDATED

Description:
Posted when the duration of aPlayer is updated. This happens for some media types where the dura
cannot be derived ahead of time. It can only be derived after the media is played for a period of time —
example, when it reaches a key frame with duration info; or when it reaches the end of media.

When this event is received, theeventData parameter will be aLong object designating the duration of
the media.

ValuedurationUpdated is assigned toDURATION_UPDATED.

END_OF_MEDIA

Declaration:
public static final String END_OF_MEDIA

Description:
Posted when aPlayer has reached the end of the media. When this event is received, theeventData
parameter will be aLong object designating the media time when thePlayer reached end of media and
stopped.

ValueendOfMedia is assigned toEND_OF_MEDIA.

ERROR

Declaration:
public static final String ERROR

Description:
Posted when an error had occurred. When this event is received, theeventData parameter will be a
String object specifying the error message.

Valueerror is assigned toERROR.

STARTED

Declaration:
public static final String STARTED

Description:
Posted when aPlayer is started. When this event is received, theeventData parameter will be aLong
object designating the media time when thePlayer is started.

Valuestarted is assigned toSTARTED.

STOPPED

Declaration:
public static final String STOPPED

Description:
Posted when aPlayer stops in response to thestop method call. When this event is received, the
eventData parameter will be aLong object designating the media time when thePlayer stopped.

Valuestopped is assigned toSTOPPED.
418

javax.microedition.media PlayerListener

VOLUME_CHANGED
VOLUME_CHANGED

Declaration:
public static final String VOLUME_CHANGED

Description:
Posted when the volume of an audio device is changed. When this event is received, theeventData
parameter will be aVolumeControl object. The new volume can be queried from the
VolumeControl .

ValuevolumeChanged is assigned toVOLUME_CHANGED.

Methods

playerUpdate(Player, String, Object)

Declaration:
public void playerUpdate (javax.microedition.media.Player 406 player, String event,

Object eventData)

Description:
This method is called to deliver an event to a registered listener when aPlayer event is observed.

Parameters:
player - The player which generated the event.

event - The event generated as defined by the enumerated types.

eventData - The associated event data.
419

PlayerListener javax.microedition.media

playerUpdate(Player, String, Object)
420

e

C H A P T E R 11
Package

javax.microedition.media.control
Description
This package defines the specificControl types that can be used with aPlayer .

Since: MIDP 2.0

Class Summary

Interfaces

ToneControl 422 ToneControl is the interface to enable playback of a user-defined monotonic ton
sequence.

VolumeControl 428 VolumeControl is an interface for manipulating the audio volume of aPlayer .
421

ToneControl javax.microedition.media.control

is

s:
javax.microedition.media.control

ToneControl
Declaration
public interface ToneControl extends javax.microedition.media.Control 396

All Superinterfaces: javax.microedition.media.Control 396

Description
ToneControl is the interface to enable playback of a user-defined monotonic tone sequence.

A tone sequence is specified as a list of tone-duration pairs and user-defined sequence blocks. The list
packaged as an array of bytes. ThesetSequence method is used to input the sequence to the
ToneControl .

The syntax of a tone sequence is described in Augmented BNF (http://www.ietf.org/rfc/rfc2234) notation
422

javax.microedition.media.control ToneControl
sequence = version *1tempo_definition *1resolution_definition
*block_definition 1*sequence_event

version = VERSION version_number
VERSION = byte-value
version_number = 1 ; version # 1
tempo_definition = TEMPO tempo_modifier
TEMPO = byte-value
tempo_modifier = byte-value

; multiply by 4 to get the tempo (in bpm) used
; in the sequence.

resolution_definition = RESOLUTION resolution_unit
RESOLUTION = byte-value
resolution_unit = byte-value
block_definition = BLOCK_START block_number

1*sequence_event
BLOCK_END block_number

BLOCK_START = byte-value
BLOCK_END = byte-value
block_number = byte-value

; block_number specified in BLOCK_END has to be the
; same as the one in BLOCK_START

sequence_event = tone_event / block_event /
volume_event / repeat_event

tone_event = note duration
note = byte-value ; note to be played
duration = byte-value ; duration of the note
block_event = PLAY_BLOCK block_number
PLAY_BLOCK = byte-value
block_number = byte-value

; block_number must be previously defined
; by a full block_definition

volume_event = SET_VOLUME volume
SET_VOLUME = byte-value
volume = byte-value ; new volume
repeat_event = REPEAT multiplier tone_event
REPEAT = byte-value
multiplier = byte-value

; number of times to repeat a tone
byte-value = -128 - 127

; the value of each constant and additional
; constraints on each parameter are specified below.

VERSION, TEMPO, RESOLUTION, BLOCK_START, BLOCK_END, PLAY_BLOCK SET_VOLUME REPEAT
are pre-defined constants.

Following table shows the valid range of the parameters:

Parameter Valid Range Effective Range Default

tempo_modifier 5<= tempo_modifier <= 127 20bpm to 508bpm 120bpm

resolution_unit 1<= resolution_unit <= 127 1/1 note to 1/127 note 1/64 note

block_number 0<= block_number <= 127 - -

note 0<= note <= 127 or SILENCE C-1 to G9 or rest -

duration 1<= duration <= 127 - -

volume 0<= volume <= 100 0% to 100% volume 100%

multiplier 2<= multiplier <= 127 - -
423

ToneControl javax.microedition.media.control

ute,

27
The frequency of the note can be calculated from the following formula:

SEMITONE_CONST = 17.31234049066755 = 1/(ln(2^(1/12)))
note = ln(freq/8.176)*SEMITONE_CONST

The musical note A = note 69 (0x45) = 440 Hz.
 Middle C (C4) and SILENCE are defined as constants.

The duration of each tone is measured in units of 1/resolution notes and tempo is specified in beats/min
where 1 beat = 1/4 note. Because the range of positive values ofbyte is only 1 - 127, the tempo is formed by
multiplying the tempo modifier by 4. Very slow tempos are excluded so range of tempo modifiers is 5 - 1
providing an effective range of 20 - 508 bpm.

To compute the effective duration in milliseconds for a tone, the following formula can be used:

duration * 60 * 100 0 * 4 / (resolution * tempo)

The following table lists some common durations in musical notes:

Example
// “Mary Had A Little Lamb” has “ABAC” structure.
// Use block to repeat “A” section.
byte tempo = 30; // set tempo to 120 bpm
byte d = 8; // eighth-note
byte C4 = ToneControl.C4;;
byte D4 = (byte)(C4 + 2); // a whole step
byte E4 = (byte)(C4 + 4); // a major third
byte G4 = (byte)(C4 + 7); // a fifth
byte rest = ToneControl.SILENCE; // rest
byte[] mySequence = {

ToneControl.VERSION, 1, // version 1
ToneControl.TEMPO, tempo, // set tempo
ToneControl.BLOCK_START, 0, // start define “A” section
E4,d, D4,d, C4,d, E4,d, // content of “A” section
E4,d, E4,d, E4,d, rest,d,
ToneControl.BLOCK_END, 0, // end define “A” section
ToneControl.PLAY_BLOCK, 0, // play “A” section
D4,d, D4,d, D4,d, rest,d, // play “B” section
E4,d, G4,d, G4,d, rest,d,
ToneControl.PLAY_BLOCK, 0, // repeat “A” section
D4,d, D4,d, E4,d, D4,d, C4,d // play “C” section

};

Note Length Duration, Resolution=64 Duration, Resolution=96

1/1 64 96

1/4 16 24

1/4 dotted 24 36

1/8 8 12

1/8 triplets - 8

4/1 REPEAT 4 <note> 64 REPEAT 4 <note> 96
424

javax.microedition.media.control ToneControl

BLOCK_END
try{
Player p = Manager.createPlayer(Manager.TONE_DEVICE_LOCATOR);
p.realize();
ToneControl c = (ToneControl)p.getControl(“ToneControl”);
c.setSequence(mySequence);
p.start();

} catch (IOException ioe) {
} catch (MediaException me) { }

Fields

BLOCK_END

Declaration:
public static final byte BLOCK_END

Description:
Defines an ending point for a block.

Value -6 is assigned toBLOCK_END.

BLOCK_START

Declaration:
public static final byte BLOCK_START

Description:
Defines a starting point for a block.

Value -5 is assigned toBLOCK_START.

C4

Declaration:
public static final byte C4

Member Summary

Fields
static byte BLOCK_END425

static byte BLOCK_START425

static byte C4425

static byte PLAY_BLOCK426

static byte REPEAT426

static byte RESOLUTION426

static byte SET_VOLUME426

static byte SILENCE426

static byte TEMPO426

static byte VERSION427

Methods
 void setSequence(byte[] sequence) 427
425

ToneControl javax.microedition.media.control

PLAY_BLOCK
Description:
Middle C.

Value 60 is assigned toC4.

PLAY_BLOCK

Declaration:
public static final byte PLAY_BLOCK

Description:
Play a defined block.

Value -7 is assigned toPLAY_BLOCK.

REPEAT

Declaration:
public static final byte REPEAT

Description:
The REPEAT event tag.

Value -9 is assigned toREPEAT.

RESOLUTION

Declaration:
public static final byte RESOLUTION

Description:
The RESOLUTION event tag.

Value -4 is assigned toRESOLUTION.

SET_VOLUME

Declaration:
public static final byte SET_VOLUME

Description:
The SET_VOLUME event tag.

Value -8 is assigned toSET_VOLUME.

SILENCE

Declaration:
public static final byte SILENCE

Description:
Silence.

Value -1 is assigned toSILENCE.

TEMPO

Declaration:
public static final byte TEMPO
426

javax.microedition.media.control ToneControl

VERSION
Description:
The TEMPO event tag.

Value -3 is assigned toTEMPO.

VERSION

Declaration:
public static final byte VERSION

Description:
The VERSION attribute tag.

Value -2 is assigned toVERSION.

Methods

setSequence(byte[])

Declaration:
public void setSequence (byte[] sequence)

Description:
Sets the tone sequence.

Parameters:
sequence - The sequence to set.

Throws:
IllegalArgumentException - Thrown if the sequence isnull or invalid.

IllegalStateException 37 - Thrown if thePlayer that this control belongs to is in the
PREFETCHED or STARTED state.
427

VolumeControl javax.microedition.media.control

setSequence(byte[])

 100.

nd 100
n

javax.microedition.media.control

VolumeControl
Declaration
public interface VolumeControl extends javax.microedition.media.Control 396

All Superinterfaces: javax.microedition.media.Control 396

Description
VolumeControl is an interface for manipulating the audio volume of aPlayer .

Volume Settings

This interface allows the output volume to be specified using an integer value that varies between 0 and

Specifying Volume in the Level Scale
The level scale specifies volume in a linear scale. It ranges from 0 to 100, where 0 represents silence a
represents the highest volume. The mapping for producing a linear multiplicative value is implementatio
dependent.

Mute

Setting mute on or off doesn’t change the volume level returned by getLevel. If mute istrue , no audio signal
is produced by thisPlayer ; if mute isfalse an audio signal is produced and the volume is restored.

Volume Change Events

When the state of theVolumeControl changes, aVOLUME_CHANGED event is delivered through the
PlayerListener .

See Also: javax.microedition.media.Control 396 ,
javax.microedition.media.Player 406 ,
javax.microedition.media.PlayerListener 416

Member Summary

Methods
 int getLevel() 429

 boolean isMuted() 429

 int setLevel(int level) 429

 void setMute(boolean mute) 429
428

javax.microedition.media.control VolumeControl

getLevel()

he
Methods

getLevel()

Declaration:
public int getLevel ()

Description:
Get the current volume level set.

getLevel may return-1 if and only if thePlayer is in theREALIZED state (the audio device has not
been initialized) andsetLevel has not yet been called.

Returns: The current volume level or-1 .

See Also:setLevel(int) 429

isMuted()

Declaration:
public boolean isMuted ()

Description:
Get the mute state of the signal associated with thisVolumeControl .

Returns: The mute state.

See Also:setMute(boolean) 429

setLevel(int)

Declaration:
public int setLevel (int level)

Description:
Set the volume using a linear point scale with values between 0 and 100.
 0 is silence; 100 is the loudest useful level that thisVolumeControl supports. If the given level is less
than 0 or greater than 100, the level will be set to 0 or 100 respectively.
 WhensetLevel results in a change in the volume level, aVOLUME_CHANGED event will be delivered
through thePlayerListener .

Parameters:
level - The new volume specified in the level scale.

Returns: The level that was actually set.

See Also:getLevel() 429

setMute(boolean)

Declaration:
public void setMute (boolean mute)

Description:
Mute or unmute thePlayer associated with thisVolumeControl .

CallingsetMute(true) on thePlayer that is already muted is ignored, as is calling
setMute(false) on thePlayer that is not currently muted. Setting mute on or off doesn’t change t
volume level returned by getLevel.
429

VolumeControl javax.microedition.media.control

setMute(boolean)
WhensetMute results in a change in the muted state, aVOLUME_CHANGED event will be delivered
through thePlayerListener .

Parameters:
mute - Specifytrue to mute the signal,false to unmute the signal.

See Also: isMuted() 429
430

n the
vice

tiple
t is

ources
curity
olicies

ted,

ove

d,
and
ntime

s the

d by
d on

ent

d when
C H A P T E R 12
Package

javax.microedition.midlet
Description
The MIDlet package defines Mobile Information Device Profile applications and the interactions betwee
application and the environment in which the application runs. An application of the Mobile Information De
Profile is aMIDlet .

Applications
The MIDP defines an application model to allow the limited resources of the device to be shared by mul
MIDP applications, or MIDlets. It defines what a MIDlet is, how it is packaged, what runtime environmen
available to the MIDlet, and how it should be behave so that the device can manage its resources. The
application model defines how multiple MIDlets forming a suite can be packaged together and share res
within the context of a single Java Virtual Machine. Sharing is feasible with the limited resources and se
framework of the device since they are required to share class files and to be subject to a single set of p
and controls.

MIDP MIDlet Suite
A MIDP application MUST use only functionality specified by the MIDP specification as it is developed, tes
deployed, and run.

The elements of a MIDlet suite are:

• Runtime execution environment

• MIDlet suite packaging

• Application descriptor

• Application lifecycle

Each device is presumed to implement the functions required by its users to install, select, run, and rem
MIDlets. The term application management software is used to refer collectively to these device specific
functions. The application management software provides an environment in which the MIDlet is installe
started, stopped, and uninstalled. It is responsible for handling errors during the installation, execution,
removal of MIDlet suites and interacting with the user as needed. It provides to the MIDlet(s) the Java ru
environment required by the MIDP Specification.

One or more MIDlets MAY be packaged in a single JAR file. Each MIDlet consists of a class that extend
MIDlet class and other classes as may be needed by the MIDlet. The manifest in the JAR file contains
attributes that are used during installation and execution of MIDlets. The MIDlet is the entity that is launche
the application management software. When a MIDlet suite is invoked, a Java Virtual Machine is neede
which the classes can be executed. A new instance of the MIDlet is created by the application managem
software and used to direct the MIDlet to start, pause, and destroy itself.

Sharing of data and other information between MIDlets is controlled by the individual APIs and their
implementations. For example, the Record Management System API specifies the methods that are use
the record stores associated with a MIDlet suite are shared among MIDlets.
431

javax.microedition.midlet

Is
is used
 this

idered
allows

by all

let:

 of

DC or

the
s.

lass
e

able to
lets,
LD

rency

tracted
anner
MIDlet Suite Security
The MIDP 1.0 specification constrained each MIDlet suite to operate in a sandbox wherein all of the AP
available to the MIDlets would prevent access to sensitive functions of the device. That sandbox concept
in this specification and all untrusted MIDlet suites are subject to its limitations. Every implementation of
specification MUST support running untrusted MIDlet suites.

MIDP 2.0 introduces the concept of trusted applications that may be permitted to use APIs that are cons
sensitive and are restricted. If and when a device determines that a MIDlet suite can be trusted the device
access as indicated by the policy. Security for MIDP Applications section describes the concepts and
capabilities of untrusted and trusted applications.

MIDP Execution Environment
The MIDP defines the execution environment provided to MIDlets. The execution environment is shared
MIDlets within a MIDlet suite, and any MIDlet can interact with other MIDlets packaged together. The
application management software initiates the applications and makes the following available to the MID

• Classes and native code that implement the CLDC, including a Java Virtual Machine

• Classes and native code that implement the MIDP runtime

• All classes from a single JAR file for execution

• Non-class files from a single JAR file as resources

• Contents of the descriptor file, when it is present

• Any other APIs available on the device such as implementations of additional JSRs, Licensee Open
Classes, Optional Packages, etc.

The CLDC and Java Virtual Machine provide multi-threading, locking and synchronization, the execution
byte codes, dispatching of methods, etc. A single VM is the scope of all policy, naming, and resource
management. If a device supports multiple VMs, each may have its own scope, naming, and resource
management policies. MIDlet Suites MUST NOT contain classes that are in packages defined by the CL
MIDP.

The MIDP provides the classes that implement the MIDP APIs. The implementation MUST ensure that
application programmer cannot override, modify, or add any classes to these protected system package

A single JAR file contains all of the MIDlet’s classes. The MIDlet may load and invoke methods from any c
in the JAR file, in the MIDP, or in the CLDC. All of the classes within these three scopes are shared in th
execution environment of the MIDlets from the JAR file. All states accessible via those classes are avail
any Java class running on behalf of the MIDlet. There is a single space containing the objects of all MID
MIDP, and CLDC in use by the MIDlet suite. The usual Java locking and synchronization primitives SHOU
be used when necessary to avoid concurrency problems. Each library will specify how it handles concur
and how the MIDlet should use it to run safely in a multi-threaded environment.

The class files of the MIDlet are only available for execution and can neither be read as resources nor ex
for re-use. The implementation of the CLDC may store and interpret the contents of the JAR file in any m
suitable.

The files from the JAR file that are not Java class files are made available using
java.lang.Class.getResourceAsStream . For example, the manifest would be available in this
manner.

The contents of the MIDlet descriptor file, when it is present, are made available via the
javax.microedition.midlet.MIDlet.getAppProperty method.
432

javax.microedition.midlet

 for the
es

install
efined

stall,
MIDlet Suite Packaging
One or more MIDlets are packaged in a single JAR file that includes:

• A manifest describing the contents

• Java classes for the MIDlet(s) and classes shared by the MIDlets

• Resource files used by the MIDlet(s)

The developer is responsible for creating and distributing the components of the JAR file as appropriate
target user, device, network, locale, and jurisdiction. For example, for a particular locale, the resource fil
would be tailored to contain the strings and images needed for that locale.

The JAR manifest defines attributes that are used by the application management software to identify and
the MIDlet suite and as defaults for attributes not found in the application descriptor. The attributes are d
for use in both the manifest and the optional application descriptor.

The predefined attributes listed below allow the application management software to identify, retrieve, in
and invoke the MIDlet.

MIDlet Attributes

Attribute Name Attribute Description

MIDlet-Name The name of the MIDlet suite that identifies the MIDlets to the user.

MIDlet-Version The version number of the MIDlet suite. Version numbers are formatted
so they can be used by the application management software for install
and upgrade uses, as well as communication with the user.

MIDlet-Vendor The organization that provides the MIDlet suite.

MIDlet-Icon The case-sensitive absolute name of a PNG file within the JAR used to
represent the MIDlet suite. It SHOULD be used when the Application
Management Software displays an icon to identify the suite.

MIDlet-Description The description of the MIDlet suite.

MIDlet-Info-URL A URL for information further describing the MIDlet suite. The syntax
and meaning MUST conform to RFC2396 and RFCs that define each
scheme.

MIDlet-<n> The name, icon, and class of the nth MIDlet in the JAR file separated by a
comma. The lowest value of <n> MUST be 1 and consecutive ordinals
MUST be used. The first missing entry terminates the list. Any additional
entries are ignored. Leading and trailing spaces in name, icon and class
are ignored.
Name is used to identify this MIDlet to the user. The name must be
present and be non-null.
Icon is the case-sensitive absolute path name of an image (PNG) within
the JAR for the icon of the nth MIDlet. The icon may be omitted.
Class is the name of the class extending the
javax.microedition.midlet.MIDlet class for the nth MIDlet.
The classname MUST be non-null and contain only characters for Java
class names. The class MUST have a public no-args constructor. The
class name IS case sensitive.
433

javax.microedition.midlet

0009)

d.
er is
)

ion
.0.0.

 are
/jdk/
Some attributes use multiple values, for those attributes the values are separated by a comma (Unicode
U+002C) except where noted. Leading and trailing whitespace (Unicode U+0020) and tab (Unicode U+
are ignored on each value.

Version Numbering
Version numbers have the format Major.Minor[.Micro] (X.X[.X]), where the .Micro portion MAY be omitte
(If the .Micro portion is not omitted, then it defaults to zero). In addition, each portion of the version numb
allowed a maximum of two decimal digits (i.e., 0-99). Version numbers are described in the the Java(TM
Product Versioning Specification http://java.sun.com/products/jdk/1.2/docs/guide/versioning/spec/
VersioningSpecification.html (http://java.sun.com/products/jdk/1.2/docs/guide/versioning/spec/
VersioningSpecification.html).

For example, 1.0.0 can be used to specify the first version of a MIDlet suite. For each portion of the vers
number, leading zeros are not significant. For example, 08 is equivalent to 8. Also, 1.0 is equivalent to 1
However, 1.1 is equivalent to 1.1.0, and not 1.0.1.

A missing MIDlet-Version tag is assumed to be 0.0.0, which means that any non-zero version number is
considered as a newer version of the MIDlet suite.

JAR Manifest
The manifest provides information about the contents of the JAR file. JAR file formats and specifications
available at http://java.sun.com/products/jdk/1.2/docs/guide/jar/index.html. (http://java.sun.com/products

MIDlet-Jar-URL The URL from which the JAR file can be loaded. The syntax and
meaning MUST conform to RFC2396 and RFCs that define each scheme.
Both absolute and relative URLs MUST be supported. The context for a
relative URL is the URL from which this application descriptor was
loaded.

MIDlet-Jar-Size The number of bytes in the JAR file.

MIDlet-Data-Size The minimum number of bytes of persistent data required by the MIDlet.
The device may provide additional storage according to its own policy.
The default is zero.

MicroEdition-Profile The J2ME profiles required, using the same format and value as the
System propertymicroedition.profiles (for example “MIDP-
2.0”). The device must implementall of the profiles listed. If any of the
profiles are not implemented the installation MUST fail. Multiple profiles
are separated with a blank (Unicode U+0020).

MicroEdition-Configuration The J2ME Configuration required using the same format and value as the
System propertymicroedition.configuration (for example
“CLDC-1.0”).

MIDlet-Permissions Zero or more permissions that are critical to the function of the MIDlet
suite. See the MIDlet Suite Security section for details of usage.

MIDlet-Permissions-Opt Zero or more permissions that are non-critical to the function of the
MIDlet suite. See the MIDlet Suite Security section for details of usage.

MIDlet-Push-<n> Register a MIDlet to handle inbound connections. Refer to
javax.microedition.io.PushRegistry for details.

MIDlet-Install-Notify Refer to the OTA Specification for details.

MIDlet-Delete-Notify Refer to the OTA Specification for details.

MIDlet-Delete-Confirm Refer to the OTA Specification for details.
434

javax.microedition.midlet

ted

 is
the

 on
slash
1.2/docs/guide/jar/index.html) Refer to the JDK JAR and manifest documentation for the syntax and rela
details. MIDP implementations MUST implement handling of lines longer than 72 bytes as defined in the
manifest specification. An attribute MUST not appear more than once within the manifest. If an attribute
duplicated the effect is unspecified. Manifest attributes are passed to the MIDlet when requested using
MIDlet.getAppProperty method, unless the attribute is duplicated in the application descriptor, for
handling of duplicate attributes see the “Application Descriptor” section.

The manifest MUST contain the following attributes:

• MIDlet-Name

• MIDlet-Version

• MIDlet-Vendor

The manifest or the application descriptor MUST contain the following attributes:

• MIDlet-<n> for each MIDlet

• MicroEdition-Profile

• MicroEdition-Configuration

The manifest MAY contain the following:

• MIDlet-Description

• MIDlet-Icon

• MIDlet-Info-URL

• MIDlet-Data-Size

• MIDlet-Permissions

• MIDlet-Permissions-Opt

• MIDlet-Push-<n>

• MIDlet-Install-Notify

• MIDlet-Delete-Notify

• MIDlet-Delete-Confirm

• Any application-specific attributes that do not begin withMIDlet- or MicroEdition-

For example, a manifest for a hypothetical suite of card games would look like the following example:

MIDlet Classes
All Java classes needed by the MIDlet are be placed in the JAR file using the standard structure, based
mapping the fully qualified class names to directory and file names. Each period is converted to a forward

MIDlet-Name: CardGames
MIDlet-Version: 1.1.9
MIDlet-Vendor: CardsRUS
MIDlet-1: Solitaire, /Solitare.png, org.cardsrus.games.Solitare
MIDlet-2: JacksWild, /

JacksWild.png, org.cardsrus.games.JacksWild
MicroEdition-Profile: MIDP-2.0
MicroEdition-Configuration: CLDC-1.0
Solitaire-Author: John Q. Public
435

javax.microedition.midlet

s used
nt
he

file
or) are

e, and
e

r more
(/) and the.class extension is appended. For example, a classcom.sun.microedition.Test would
be placed in the JAR file with the namecom/sun/microedition/Test.class .

Application Descriptor
Each JAR file MAY be accompanied by an application descriptor. The application descriptor is used in
conjunction with the JAR manifest by the application management software to manage the MIDlet and i
by the MIDlet itself for configuration specific attributes. The descriptor allows the application manageme
software on the device to verify that the MIDlet is suited to the device before loading the full JAR file of t
MIDlet suite. It also allows configuration-specific attributes (parameters) to be supplied to the MIDlet(s)
without modifying the JAR file.

To allow devices to dispatch an application descriptor to the MIDP application management software, a
extension and MIME type (http://www.iana.org/assignments/media-types/text/vnd.sun.j2me.app-descript
registered with the IANA:

• The file extension of an application descriptor file isjad

• The MIME type of an application descriptor file is
text/vnd.sun.j2me.app-descriptor .

A predefined set of attributes is specified to allow the application management software to identify, retriev
install the MIDlet(s). All attributes appearing in the descriptor file are made available to the MIDlet(s). Th
developer may use attributes not beginning withMIDlet- or MicroEdition- for application-specific
purposes. Attribute names are case-sensitive and MUST match exactly. An attribute MUST NOT appea
than once within the manifest. If an attribute is duplicated the effect is unspecified. The MIDlet retrieves
attributes by name by calling theMIDlet.getAppProperty method.

The application descriptor MUST contain the following attributes:

• MIDlet-Name

• MIDlet-Version

• MIDlet-Vendor

• MIDlet-Jar-URL

• MIDlet-Jar-Size

The application descriptor MAY contain:

• MIDlet-<n> for each MIDlet

• MicroEdition-Profile

• MicroEdition-Configuration

• MIDlet-Description

• MIDlet-Icon

• MIDlet-Info-URL

• MIDlet-Data-Size

• MIDlet-Permissions

• MIDlet-Permissions-Opt

• MIDlet-Push-<n>

• MIDlet-Install-Notify

• MIDlet-Delete-Notify
436

javax.microedition.midlet

m the

iffer
. If the
the
ing

ute
e and

efore
 the

ULD
Content-
• MIDlet-Delete-Confirm

• Any application-specific attributes that do not begin withMIDlet- or MicroEdition-

The mandatory attributes MIDlet-Name, MIDlet-Version, and MIDlet-Vendor MUST be duplicated in the
descriptor and manifest files since they uniquely identify the application. If they are not identical (not fro
same application), then the JAR MUST NOT be installed.

Duplication of other manifest attributes in the application descriptor is not required and their values MAY d
even though both the manifest and descriptor files contain the same attribute for untrusted MIDlet suites
MIDlet suite is not trusted the value from the descriptor file will override the value from the manifest file. If
MIDlet suite is trusted then the values in the application descriptor MUST be identical to the correspond
attribute values in the Manifest.

MIDlets MUST NOT add any attributes to the manifest or the Application Descriptor that start withMIDlet-
or MicroEdition- other than those defined in the relevant Configuration and Profiles (e.g. CLDC and
MIDP) specifications. Unrecognized attributes MUST be ignored by the AMS.

Generally speaking, the format of the application descriptor is a sequence of lines consisting of an attrib
name followed by a colon, the value of the attribute, and a carriage return. White space is ignored befor
after the value. The order of the attributes is arbitrary.

The application descriptor MAY be encoded for transport or storage and MUST be converted to Unicode b
parsing, using the rules below. For example, an ISO-8859-1 encoded file would need to be read through
equivalent ofjava.io.InputStreamReader with the appropriate encoding. The default character
encoding for transporting a descriptor is UTF-8. Descriptors retrieved via HTTP, if that is supported, SHO
use the standard HTTP content negotiation mechanisms, such as the Content-Encoding header and the
Type charset parameter to convert the stream to UCS-2.

BNF for Parsing Application Descriptors

appldesc: *attrline
attrline: attrname “:” [WSP] attrvalue [WSP] newlines
attrname: 1*<any Unicode char except

CTLs or separators>
attrvalue: *valuechar | valuechar *(valuechar | WSP) valuechar
valuechar: <any valid Unicode character,

excluding CTLS and WSP>
newlines = 1*newline ; allow blank lines to be ignored
newline: CR LF | LF

CR = <Unicode carriage return (U+000D)>
LF = <Unicode linefeed (U+000A)>

WSP: 1*(SP | HT)
SP = <Unicode space (U+0020)>
HT = <Unicode horizontal-tab (U+0009)>
CTL = <Unicode characters

U+0000 - U+001F and U+007F>
separators: “(” | “)” | “<” |

“>” | “@” |
“,” | “;” | “:” |
“'” | <“>|
“/” | “[” | “]” |
“?” | “=” |
“{” | “}” | SP | HT
437

javax.microedition.midlet

wing

d
icate

on

ge are

t
he
ges via
, it is
The

class will

Cla

MID ware to

MID d.
For example, an application descriptor for a hypothetical suite of card games would look look like the follo
example:

Application Lifecycle
Each MIDlet MUST extend theMIDlet class. TheMIDlet class allows for the orderly starting, stopping, an
cleanup of the MIDlet. The MIDlet can request the arguments from the application descriptor to commun
with the application management software. A MIDlet suite MUST NOT have apublic static void
main() method. If it exists, it MUST be ignored by the application management software. The applicati
management software provides the initial class needed by the CLDC to start a MIDlet.

When a MIDlet suite is installed on a device, its classes, resource files, arguments, and persistent stora
kept on the device and ready for use. The MIDlet(s) are available to the user via the device’s application
management software.

When the MIDlet is run, an instance of the MIDlet’s primary class is created using its public no-argumen
constructor, and the methods of theMIDlet are called to sequence the MIDlet through its various states. T
MIDlet can either request changes in state or notify the application management software of state chan
theMIDlet methods. When the MIDlet is finished or terminated by the application management software
destroyed, and the resources it used can be reclaimed, including any objects it created and its classes.
MIDlet MUST NOT callSystem.exit , which will throw aSecurityException when called by a
MIDlet.

The normal states of Java classes are not affected by these classes as they are loaded. Referring to any
cause it to be loaded, and the normal static initialization will occur.

MIDlet lifecycle
TheMIDlet lifecycle defines the protocol between aMIDlet and its environment through the following:

• A simple well-defined state machine

• A concise definition of the MIDlet’s states

• APIs to signal changes between the states

MIDlet-Name: CardGames
MIDlet-Version: 1.1.9
MIDlet-Vendor: CardsRUS
MIDlet-1: Solitaire, /Solitare.png, com.cardsrus.org.Solitare
MIDlet-2: JacksWild, /JacksWild.png, com.cardsrus.org.JacksWild
MicroEdition-Profile: MIDP-2.0
MicroEdition-Configuration: CLDC-1.0
MIDlet-Description: Really cool card games
MIDlet-Jar-URL: http://www.cardsrus.com/games/cardgames.jar
MIDlet-Jar-Size: 7378
MIDlet-Data-Size: 256

ss injavax.microedition.midlet Description

let Extended by a MIDlet to allow the application management soft
start, stop, and destroy it.

letStateChangeException Thrown when the application cannot make the change requeste
438

javax.microedition.midlet

es

lose as

rs

t

MIDlet Lifecycle Definitions
The following definitions are used in theMIDlet lifecycle:

• application management software - a part of the device’s software operating environment that manag
MIDlets . It maintains the MIDlet state and directs theMIDlet through state changes.

• MIDlet - a MIDP application on the device. TheMIDlet can signal the application management
software about whether is it wants to run or has completed. AMIDlet has no knowledge of other
MIDlet s through theMIDlet API.

• MIDlet States - the states aMIDlet can have are defined by the transitions allowable through the
MIDlet interface. More specific application states are known only to the application.

MIDlet States
TheMIDlet state machine is designed to ensure that the behavior of an application is consistent and as c
possible to what device manufactures and users expect, specifically:

• The perceived startup latency of an application SHOULD be very short.

• It SHOULD be possible to put an application into a state where it is not active.

• It SHOULD be possible to destroy an application at any time.

The valid states forMIDlet s are:

State Name Description

Paused TheMIDlet is initialized and is quiescent. It SHOULD not be holding or using any shared
resources. This state is entered:
After theMIDlet has been created usingnew. The public no-argument constructor for the
MIDlet is called and returns without throwing an exception. The application typically does
little or no initialization in this step. If an exception occurs, the application immediately ente
the Destroyed state and is discarded.
From the Active state after theMIDlet.pauseApp() method is called from the AMS and
returns successfully.
From the Active state when theMIDlet.notifyPaused() method returns successfully to
theMIDlet .
From the Active state ifstartApp throws anMIDletStateChangeException .

Active TheMIDlet is functioning normally. This state is entered:
Just prior to the AMS calling theMIDlet.startApp() method.

Destroyed TheMIDlet has released all of its resources and terminated. This state is entered:
When the AMS called theMIDlet.destroyApp() method and returns successfully, excep
in the case when theunconditional argument is false and a
MIDletStateChangeException is thrown. ThedestroyApp() method shall release all
resources held and perform any necessary cleanup so it may be garbage collected.
When theMIDlet.notifyDestroyed() method returns successfully to the application.
TheMIDlet must have performed the equivalent of theMIDlet.destroyApp() method
before callingMIDlet.notifyDestroyed() .
Note: This state is only entered once.
439

javax.microedition.midlet

.

The states and transitions for aMIDlet are:

MIDlet Lifecycle Model
A typical sequence ofMIDlet execution is:

MIDlet Interface
• pauseApp - theMIDlet SHOULD release any temporary resources and become passive

• startApp - theMIDlet SHOULD acquire any resources it needs and resume

Application Management Software MIDlet

The application management software creates a new instance of aMIDlet . The default (no argument) constructor
for theMIDlet is called; it is in the
Paused state.

The application management software has decided that it is an appropriate time
for theMIDlet to run, so it calls theMIDlet.startApp method for it to
enter the Active state.

TheMIDlet acquires any resources it
needs and begins to perform its service

The application management software wants the MIDlet to significantly reduce
the amount of resources it is consuming, so that they may temporarily be used
by other functions on the device such as a phone call or running another
MIDlet. The AMS will signal this request to the MIDlet by calling the
MIDlet.pauseApp method. The MIDlet should then reduce its resource
consumption as much as possible.

TheMIDlet stops performing its
service and might choose to release
some resources it currently holds.

The application management software has determined that theMIDlet is no
longer needed, or perhaps needs to make room for a higher priority application
in memory, so it signals theMIDlet that it is a candidate to be destroyed by
calling theMIDlet.destroyApp method.

If it has been designed to do so, the
MIDlet saves state or user preferences
and performs clean up.
440

javax.microedition.midlet

up

 state

hine.
• destroyApp - theMIDlet SHOULD save any state and release all resources

• notifyDestroyed - theMIDlet notifies the application management software that it has cleaned
and is done

• notifyPaused - theMIDlet notifies the application management software that it has paused

• resumeRequest - theMIDlet asks application management software to be started again

• getAppProperty - gets a named property from theMIDlet

Application Implementation Notes
The application SHOULD take measures to avoid race conditions in the execution of theMIDlet methods.
Each method may need to synchronize itself with the other methods avoid concurrency problems during
changes.

Example MIDlet Application
The example uses the MIDlet lifecycle to do a simple measurement of the speed of the Java Virtual Mac
441

javax.microedition.midlet
import javax.microedition.midlet.*;

/**
* An example MIDlet runs a simple timing test
* When it is started by the application management software it will
* create a separate thread to do the test.
* When it finishes it will notify the application management software
* it is done.
* Refer to the startApp, pauseApp, and destroyApp
* methods so see how it handles each requested transition.
*/

public class MethodTimes extends MIDlet implements Runnable {
// The state for the timing thread.
Thread thread;

/**
* Start creates the thread to do the timing.
* It should return immediately to keep the dispatcher
* from hanging.
*/

public void startApp() {
thread = new Thread(this);
thread.start();

}

/**
* Pause signals the thread to stop by clearing the thread field.
* If stopped before done with the iterations it will
* be restarted from scratch later.
*/

public void pauseApp() {
thread = null;

}

/**
* Destroy must cleanup everything. The thread is signaled
* to stop and no result is produced.
*/

public void destroyApp(boolean unconditional) {
thread = null;

}

/**
* Run the timing test, measure how long it takes to
* call a empty method 1000 times.
* Terminate early if the current thread is no longer
* the thread from the
*/

public void run() {
Thread curr = Thread.currentThread(); // Remember which thread is current
long start = System.currentTimeMillis();
for (int i = 0; i < 1000000 && thread == curr; i++) {

empty();
}
long end = System.currentTimeMillis();

// Check if timing was aborted, if so just exit
// The rest of the application has already become quiescent.
if (thread != curr) {

return;
}
long millis = end - start;
// Reporting the elapsed time is outside the scope of this example.

// All done cleanup and quit
destroyApp(true);
notifyDestroyed();

}

442

javax.microedition.midlet
/**
* An Empty method.
*/

void empty() {
}

}

Since: MIDP 1.0

Class Summary

Classes

MIDlet 444 A MIDlet is a MID Profile application.

Exceptions

MIDletStateChangeExcep
tion 450

Signals that a requestedMIDlet state change failed.
443

MIDlet javax.microedition.midlet

riptor
ware to
the
are to

by the

ntil the
javax.microedition.midlet

MIDlet
Declaration
public abstract class MIDlet

Object
|
+-- javax.microedition.midlet.MIDlet

Description
A MIDlet is a MID Profile application. The application must extend this class to allow the application
management software to control the MIDlet and to be able to retrieve properties from the application desc
and notify and request state changes. The methods of this class allow the application management soft
create, start, pause, and destroy a MIDlet. AMIDlet is a set of classes designed to be run and controlled by
application management software via this interface. The states allow the application management softw
manage the activities of multipleMIDlets within a runtime environment. It can select whichMIDlet s are
active at a given time by starting and pausing them individually. The application management software
maintains the state of theMIDlet and invokes methods on theMIDlet to notify the MIDlet of change states.
TheMIDlet implements these methods to update its internal activities and resource usage as directed
application management software. TheMIDlet can initiate some state changes itself and notifies the
application management software of those state changes by invoking the appropriate methods.

Note: The methods on this interface signal state changes. The state change is not considered complete u
state change method has returned. It is intended that these methods return quickly.

Member Summary

Constructors
protected MIDlet() 445

Methods
 int checkPermission(String permission) 445

protected abstract
void

destroyApp(boolean unconditional) 445

 java.lang.String getAppProperty(String key) 446

 void notifyDestroyed() 446

 void notifyPaused() 446

protected abstract
void

pauseApp() 447

 boolean platformRequest(String URL) 447

 void resumeRequest() 448

protected abstract
void

startApp() 448
444

javax.microedition.midlet MIDlet

MIDlet()

ting

uested
uire a

rces or
Constructors

MIDlet()

Declaration:
protected MIDlet ()

Description:
Protected constructor for subclasses. The application management software is responsible for crea
MIDlets and creation of MIDlets is restricted. MIDlets should not attempt to create other MIDlets.

Throws:
SecurityException - unless the application management software is creating the MIDlet.

Methods

checkPermission(String)

Declaration:
public final int checkPermission (String permission)

Description:
Get the status of the specified permission. If no API on the device defines the specific permission req
then it must be reported as denied. If the status of the permission is not known because it might req
user interaction then it should be reported as unknown.

Parameters:
permission - to check if denied, allowed, or unknown.

Returns: 0 if the permission is denied; 1 if the permission is allowed; -1 if the status is unknown

Since: MIDP 2.0

destroyApp(boolean)

Declaration:
protected abstract void destroyApp (boolean unconditional)

throws MIDletStateChangeException

Description:
Signals theMIDlet to terminate and enter theDestroyed state. In the destroyed state theMIDlet must
release all resources and save any persistent state. This method may be called from thePaused or Active
states.

MIDlet s should perform any operations required before being terminated, such as releasing resou
saving preferences or state.

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
445

MIDlet javax.microedition.midlet

getAppProperty(String)

t

he

e from
Note: TheMIDlet can request that it not enter theDestroyed state by throwing an
MIDletStateChangeException . This is only a valid response if theunconditional flag is set to
false . If it is true theMIDlet is assumed to be in theDestroyed state regardless of how this method
terminates. If it is not an unconditional request, theMIDlet can signify that it wishes to stay in its current
state by throwing theMIDletStateChangeException . This request may be honored and the
destroy() method called again at a later time.

If a Runtime exception occurs duringdestroyApp then they are ignored and the MIDlet is put into the
Destroyed state.

Parameters:
unconditional - If true when this method is called, theMIDlet must cleanup and release all
resources. If false theMIDlet may throwMIDletStateChangeException to indicate it does
not want to be destroyed at this time.

Throws:
MIDletStateChangeException 450 - is thrown if theMIDlet wishes to continue to execute
(Not enter theDestroyed state). This exception is ignored ifunconditional is equal totrue .

getAppProperty(String)

Declaration:
public final String getAppProperty (String key)

Description:
Provides aMIDlet with a mechanism to retrieve named properties from the application managemen
software. The properties are retrieved from the combination of the application descriptor file and the
manifest. For trusted applications the values in the manifest MUST NOT be overridden by those in t
application descriptor. If they differ, the MIDlet will not be installed on the device. For untrusted
applications, if an attribute in the descriptor has the same name as an attribute in the manifest the valu
the descriptor is used and the value from the manifest is ignored.

Parameters:
key - the name of the property

Returns: A string with the value of the property.null is returned if no value is available for the key.

Throws:
NullPointerException - is thrown if key isnull .

notifyDestroyed()

Declaration:
public final void notifyDestroyed ()

Description:
Used by anMIDlet to notify the application management software that it has entered into theDestroyed
state. The application management software will not call the MIDlet’sdestroyApp method, and all
resources held by theMIDlet will be considered eligible for reclamation. TheMIDlet must have
performed the same operations (clean up, releasing of resources etc.) it would have if the
MIDlet.destroyApp() had been called.

notifyPaused()

Declaration:
public final void notifyPaused ()
446

javax.microedition.midlet MIDlet

pauseApp()

tered

riate
e
ble, it
ing

orms
last
ach
ly

tion
tform’s
l the

an
t

to be
Description:
Notifies the application management software that the MIDlet does not want to be active and has en
thePaused state. Invoking this method will have no effect if theMIDlet is destroyed, or if it has not yet
been started.

It may be invoked by theMIDlet when it is in theActive state.

If a MIDlet callsnotifyPaused() , in the future itsstartApp() method may be called make it
active again, or itsdestroyApp() method may be called to request it to destroy itself.

If the application pauses itself it will need to callresumeRequest to request to reenter theactive
state.

pauseApp()

Declaration:
protected abstract void pauseApp ()

Description:
Signals theMIDlet to enter thePaused state. In thePaused state theMIDlet must release shared
resources and become quiescent. This method will only be called called when theMIDlet is in theActive
state.

If a Runtime exception occurs duringpauseApp the MIDlet will be destroyed immediately. Its
destroyApp will be called allowing the MIDlet to cleanup.

platformRequest(String)

Declaration:
public final boolean platformRequest (String URL)

throws ConnectionNotFoundException

Description:
Requests that the device handle (for example, display or install) the indicated URL.

If the platform has the appropriate capabilities and resources available, it SHOULD bring the approp
application to the foreground and let the user interact with the content, while keeping the MIDlet suit
running in the background. If the platform does not have appropriate capabilities or resources availa
MAY wait to handle the URL request until after the MIDlet suite exits. In this case, when the request
MIDlet suite exits, the platform MUST then bring the appropriate application (if one exists) to the
foreground to let the user interact with the content.

This is a non-blocking method. In addition, this method does NOT queue multiple requests. On platf
where the MIDlet suite must exit before the request is handled, the platform MUST handle only the
request made. On platforms where the MIDlet suite and the request can be handled concurrently, e
request that the MIDlet suite makes MUST be passed to the platform software for handling in a time
fashion.

If the URL specified refers to a MIDlet suite (either an Application Descriptor or a JAR file), the applica
handling the request MUST interpret it as a request to install the named package. In this case, the pla
normal MIDlet suite installation process SHOULD be used, and the user MUST be allowed to contro
process (including cancelling the download and/or installation). If the MIDlet suite being installed is
update of the currently running MIDlet suite, the platform MUST first stop the currently running MIDle
suite before performing the update. On some platforms, the currently running MIDlet suite MAY need
stopped before any installations can occur.
447

MIDlet javax.microedition.midlet

resumeRequest()

UST
on, if

ot all
 on the
e

data

so that
equest
pulate
l

.

o move

tion

t
s

If the URL specified is of the formtel:<number> , as specified in RFC2806 (http://www.ietf.org/rfc/
rfc2806.txt), then the platform MUST interpret this as a request to initiate a voice call. The request M
be passed to the “phone” application to handle if one is present in the platform. The “phone” applicati
present, MUST be able to set up local and global phone calls and also perform DTMF post dialing. N
elements of RFC2806 need be implemented, especially the area-specifier or any other requirement
terminal to know its context. The isdn-subaddress, service-provider and future-extension may also b
ignored. Pauses during dialing are not relevant in some telephony services.

Devices MAY choose to support additional URL schemes beyond the requirements listed above.

Many of the ways this method will be used could have a financial impact to the user (e.g. transferring
through a wireless network, or initiating a voice call). Therefore the platform MUST ask the user to
explicitly acknowlege each request before the action is taken. Implementation freedoms are possible
a pleasant user experience is retained. For example, some platforms may put up a dialog for each r
asking the user for permission, while other platforms may launch the appropriate application and po
the URL or phone number fields, but not take the action until the user explicitly clicks the load or dia
buttons.

Parameters:
URL - The URL for the platform to load. An empty string (not null) cancels any pending requests

Returns: true if the MIDlet suite MUST first exit before the content can be fetched.

Throws:
javax.microedition.io.ConnectionNotFoundException - if the platform cannot
handle the URL requested.

Since: MIDP 2.0

resumeRequest()

Declaration:
public final void resumeRequest ()

Description:
Provides aMIDlet with a mechanism to indicate that it is interested in entering theActive state. Calls to
this method can be used by the application management software to determine which applications t
to theActive state.

When the application management software decides to activate this application it will call thestartApp
method.

The application is generally in thePausedstate when this is called. Even in the paused state the applica
may handle asynchronous events such as timers or callbacks.

startApp()

Declaration:
protected abstract void startApp ()

throws MIDletStateChangeException

Description:
Signals theMIDlet that it has entered theActivestate. In theActivestate theMIDlet may hold resources.
The method will only be called when theMIDlet is in thePaused state.

Two kinds of failures can prevent the service from starting, transient and non-transient. For transien
failures theMIDletStateChangeException exception should be thrown. For non-transient failure
thenotifyDestroyed method should be called.
448

javax.microedition.midlet MIDlet

startApp()
If a Runtime exception occurs duringstartApp the MIDlet will be destroyed immediately. Its
destroyApp will be called allowing the MIDlet to cleanup.

Throws:
MIDletStateChangeException 450 - is thrown if theMIDlet cannot start now but might be
able to start at a later time.
449

MIDletStateChangeException javax.microedition.midlet

MIDletStateChangeException()
javax.microedition.midlet

MIDletStateChangeException
Declaration
public class MIDletStateChangeException extends Exception

Object
|
+--Throwable

|
+--Exception

|
+-- javax.microedition.midlet.MIDletStateChangeException

Description
Signals that a requestedMIDlet state change failed. This exception is thrown by theMIDlet in response to
state change calls into the application via theMIDlet interface

Since: MIDP 1.0

See Also: MIDlet 444

Constructors

MIDletStateChangeException()

Declaration:
public MIDletStateChangeException ()

Member Summary

Constructors
MIDletStateChangeException() 450

MIDletStateChangeException(String s) 451

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Methods inherited from classThrowable

getMessage(), printStackTrace(), toString()
450

javax.microedition.midlet MIDletStateChangeException

MIDletStateChangeException(String)
Description:
Constructs an exception with no specified detail message.

MIDletStateChangeException(String)

Declaration:
public MIDletStateChangeException (String s)

Description:
Constructs an exception with the specified detail message.

Parameters:
s - the detail message
451

MIDletStateChangeException javax.microedition.midlet

MIDletStateChangeException(String)
452

s
he
t that

s for
et

al

sted

ificate

ay be
C H A P T E R 13
Package

javax.microedition.pki
Description
Certificates are used to authenticate information for secure Connections. TheCertificate interface
provides to the application information about the origin and type of the certificate. The
CertificateException provides information about failures that may occur while verifying or using
certificates.

The MIDP X.509 Certificate Profile below defines the format and usage of certificates. X.509 Certificate
MUST be supported. Other certificate formats MAY be supported. The implementation MAY store only t
essential information from certificates. Internally, the fields of the certificate MAY be stored in any forma
is suitable for the implementation.

References
MIDP 2.0 devices are expected to operate using standard Internet and wireless protocols and technique
transport and security. The current mechanisms for securing Internet content is based on existing Intern
standards for public key cryptography:

• [RFC2437] - PKCS #1 RSA Encryption Version 2.0 (http://www.ietf.org/rfc/rfc2437)

• [RFC2459] - Internet X.509 Public Key Infrastructure (http://www.ietf.org/rfc/rfc2459)

• [WAPCERT] - WAP-211-WAPCert-20010522-a - WAP Certificate Profile Specification (http://
www.wapforum.org/what/technical.htm)

MIDP X.509 Certificate Profile
WAP-211-WAPCert-20010522-a [WAPCert] which is based on RFC2459 Internet X.509 Public Key
Infrastructure Certificate and CRL Profile [RFC2459].

Devices MUST conform to all mandatory requirements in [WAPCert] and SHOULD conform to all option
requirements in [WAPCert] except those requirements in excluded sections listed below. Mandatory and
optional requirements are listed in Appendix C of [WAPCert]. Additional requirements, ON TOP of those li
in [WAPCert] are given below.

• Excluding [WAPCert] Section 6.2, User Certificates for Authentication

• Excluding [WAPCert] Section 6.3, User Certificates for Digital Signatures

RFC2459 contains sections which are not relevant to implementations of this specification. The WAP Cert
Profile does not mention these functions. The sections to be excluded are:

• Exclude the requirements from Paragraphs 4 of Section 4.2 - Standard Certificate Extensions. A
conforming implementation of this specification does not need to recognize extensions that must or m
critical including certificate policies, name constraints, and policy constraints.

• Exclude RFC2459 Section 6.2 Extending Path Validation. Support for Policy Certificate Authority or
policy attributes is not required.
453

javax.microedition.pki

. At a
asic

sec.
me

er

 least

arked

age. In
te), a
ned
Certificate Extensions
A version 1 X.509 certificate MUST be considered equivalent to a version 3 certificate with no extensions
minimum, a device conforming to this profile MUST recognize key usage (see RFC2459 sec. 4.2.1.3), b
constraints (see RFC2459 sec. 4.2.1.10).

Although a conforming device may not recognize the authority and subject key identifier (see RFC2459
4.2.1.1 and 4.2.1.2) extensions it MUST support certificate authorities that sign certificates using the sa
distinguished name but using multiple public keys.

Implementations MUST be able to process certificates with unknown distinguished name attributes.

Implementations MUST be able to process certificates with unknown, non-critical certificate extensions.

TheserialNumber attribute defined by [WAPCert] must be recognized in distinguished names for Issu
and Subject.

Certificate Size
Devices must be able to process certificates that are not self-signed root CA certificates of size up to at
1500 bytes.

Algorithm Support
A device MUST support the RSA signature algorithm with the SHA-1 hash function
sha1WithRSAEncryption as defined by PKCS #1 [RFC2437]. Devices that support these algorithms
MUST be capable of verifying signatures made with RSA keys of length up to and including 2048 bits.

Devices SHOULD support signature algorithmsmd2WithRSAEncryption and
md5WithRSAEncryption as defined in [RFC2437]. Devices that support these algorithms MUST be
capable of verifying signatures made with RSA keys of length up to and including 2048 bits.

Certificate Processing for HTTPS
Devices MUST recognize the extended key usage extension defined of RFC2818 if it is present and is m
critical and when present MUST verify that the extension contains theid-kp-serverAuth object identifier
(see RFC2459 sec. 4.2.1.13).

SSL and TLS allow the web server to include the redundant root certificate in the server certificate mess
practice this certificate may not have the basic constraint extension (it is most likely a version 1 certifica
device MUST ignore the redundant certificate in this case. Web servers SHOULD NOT include a self-sig
root CA in a certificate chain.

Since: MIDP 2.0

Class Summary

Interfaces

Certificate 455 Interface common to certificates.

Exceptions

CertificateException 458 TheCertificateException encapsulates an error that occurred while a
Certificate is being used.
454

javax.microedition.pki Certificate

ers for

e

e. For

e ID

en if

e.
javax.microedition.pki

Certificate
Declaration
public interface Certificate

Description
Interface common to certificates. The features abstracted ofCertificates include subject, issuer, type,
version, serial number, signing algorithm, dates of valid use, and serial number.

Printable Representation for Binary Values

A non-string values in a certificate are represented as strings with each byte as two hex digits (capital lett
A-F) separated by “:” (Unicode U+003A).

For example:0C:56:FA:80

Printable Representation for X.509 Distinguished Names

For a X.509 certificate the value returned is the printable verision of the distingished name (DN) from th
certificate.

An X.509 distinguished name of is set of attributes, each attribute is a sequence of an object ID and a valu
string comparison purposes, the following rules define a strict printable representation.

1. There is no added white space around separators.

2. The attributes are in the same order as in the certificate; attributes are not reordered.

3. If an object ID is in the table below, the label from the table will be substituted for the object ID, else th
is formatted as a string using the binary printable representation above.

4. Each object ID or label and value within an attribute will be separated by a “=” (Unicode U+003D), ev
the value is empty.

5. If value is not a string, then it is formatted as a string using the binary printable representation abov

6. Attributes will be separated by a “;” (Unicode U+003B)

Labels for X.500 Distinguished Name Attributes

Object ID Binary Label

id-at-commonName 55:04:03 CN

id-at-surname 55:04:04 SN

id-at-countryName 55:04:06 C

id-at-localityName 55:04:07 L

id-at-stateOrProvinceName 55:04:08 ST

id-at-streetAddress 55:04:09 STREET

id-at-organizationName 55:04:0A O
455

Certificate javax.microedition.pki

getIssuer()

ed
Example of a printable distinguished name:

C=US;O=Any Company, Inc.;CN=www.anycompany.com

Since: MIDP 2.0

Methods

getIssuer()

Declaration:
public String getIssuer ()

Description:
Gets the name of this certificate’s issuer.

Returns: The issuer of theCertificate ; the value MUST NOT benull .

getNotAfter()

Declaration:
public long getNotAfter ()

Description:
Gets the time after which thisCertificate may not be used from the validity period.

Returns: The time in milliseconds after which theCertificate is not valid (expiration date); it MUST
be positive;Long.MAX_VALUE is returned if the certificate does not have its validity restricted bas
on the time.

getNotBefore()

Declaration:
public long getNotBefore ()

Description:
Gets the time before which thisCertificate may not be used from the validity period.

id-at-organizationUnitName 55:04:0B OU

emailAddress 2A:86:48:86:F7:0D:01:09:01 EmailAddress

Member Summary

Methods
 java.lang.String getIssuer() 456

 long getNotAfter() 456

 long getNotBefore() 456

 java.lang.String getSerialNumber() 457

 java.lang.String getSigAlgName() 457

 java.lang.String getSubject() 457

 java.lang.String getType() 457

 java.lang.String getVersion() 457
456

javax.microedition.pki Certificate

getSerialNumber()

in

e

fic
Returns: The time in milliseconds before which theCertificate is not valid; it MUST be positive,0
is returned if the certificate does not have its validity restricted based on the time.

getSerialNumber()

Declaration:
public String getSerialNumber ()

Description:
Gets the printable form of the serial number of thisCertificate . If the serial number within the
certificate is binary it should be formatted as a string using the binary printable representation
class description. For example, 0C:56:FA:80.

Returns: A string containing the serial number in user-friendly form;null is returned if there is no serial
number.

getSigAlgName()

Declaration:
public String getSigAlgName ()

Description:
Gets the name of the algorithm used to sign theCertificate . The algorithm names returned should b
the labels defined in RFC2459 Section 7.2.

Returns: The name of signature algorithm; the value MUST NOT benull .

getSubject()

Declaration:
public String getSubject ()

Description:
Gets the name of this certificate’s subject.

Returns: The subject of thisCertificate ; the value MUST NOT benull .

getType()

Declaration:
public String getType ()

Description:
Get the type of theCertificate . For X.509 Certificates the value returned is “X.509”.

Returns: The type of theCertificate ; the value MUST NOT benull .

getVersion()

Declaration:
public String getVersion ()

Description:
Gets the version number of thisCertificate . The format of the version number depends on the speci
type and specification. For a X.509 certificate per RFC 2459 it would be “2”.

Returns: The version number of theCertificate ; the value MUST NOT benull .
457

CertificateException javax.microedition.pki

getVersion()
javax.microedition.pki

CertificateException
Declaration
public class CertificateException extends java.io.IOException

Object
|
+--Throwable

|
+--Exception

|
+--java.io.IOException

|
+-- javax.microedition.pki.CertificateException

Description
TheCertificateException encapsulates an error that occurred while aCertificate is being used. If
multiple errors are found within aCertificate the more significant error should be reported in the
exception.

Since: MIDP 2.0

Member Summary

Fields
static byte BAD_EXTENSIONS459

static byte BROKEN_CHAIN459

static byte CERTIFICATE_CHAIN_TOO_LONG459

static byte EXPIRED459

static byte INAPPROPRIATE_KEY_USAGE459

static byte MISSING_SIGNATURE459

static byte NOT_YET_VALID460

static byte ROOT_CA_EXPIRED460

static byte SITENAME_MISMATCH460

static byte UNAUTHORIZED_INTERMEDIATE_CA460

static byte UNRECOGNIZED_ISSUER460

static byte UNSUPPORTED_PUBLIC_KEY_TYPE460

static byte UNSUPPORTED_SIGALG460

static byte VERIFICATION_FAILED 461

Constructors
CertificateException(Certificate certificate, byte status) 461

CertificateException(String message, Certificate certificate,
byte status) 461

Methods
 Certificate getCertificate() 461

 byte getReason() 462
458

javax.microedition.pki CertificateException

BAD_EXTENSIONS

.

ue is 10.
Fields

BAD_EXTENSIONS

Declaration:
public static final byte BAD_EXTENSIONS

Description:
Indicates a certificate has unrecognized critical extensions. The value is 1.

BROKEN_CHAIN

Declaration:
public static final byte BROKEN_CHAIN

Description:
Indicates a certificate in a chain was not issued by the next authority in the chain. The value is 11.

CERTIFICATE_CHAIN_TOO_LONG

Declaration:
public static final byte CERTIFICATE_CHAIN_TOO_LONG

Description:
Indicates the server certificate chain exceeds the length allowed by an issuer’s policy. The value is 2

EXPIRED

Declaration:
public static final byte EXPIRED

Description:
Indicates a certificate is expired. The value is 3.

INAPPROPRIATE_KEY_USAGE

Declaration:
public static final byte INAPPROPRIATE_KEY_USAGE

Description:
Indicates a certificate public key has been used in way deemed inappropriate by the issuer. The val

MISSING_SIGNATURE

Declaration:
public static final byte MISSING_SIGNATURE

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Methods inherited from classThrowable

getMessage(), printStackTrace(), toString()
459

CertificateException javax.microedition.pki

NOT_YET_VALID

. The
Description:
Indicates a certificate object does not contain a signature. The value is 5.

NOT_YET_VALID

Declaration:
public static final byte NOT_YET_VALID

Description:
Indicates a certificate is not yet valid. The value is 6.

ROOT_CA_EXPIRED

Declaration:
public static final byte ROOT_CA_EXPIRED

Description:
Indicates the root CA’s public key is expired. The value is 12.

SITENAME_MISMATCH

Declaration:
public static final byte SITENAME_MISMATCH

Description:
Indicates a certificate does not contain the correct site name. The value is 7.

UNAUTHORIZED_INTERMEDIATE_CA

Declaration:
public static final byte UNAUTHORIZED_INTERMEDIATE_CA

Description:
Indicates an intermediate certificate in the chain does not have the authority to be a intermediate CA
value is 4.

UNRECOGNIZED_ISSUER

Declaration:
public static final byte UNRECOGNIZED_ISSUER

Description:
Indicates a certificate was issued by an unrecognized entity. The value is 8.

UNSUPPORTED_PUBLIC_KEY_TYPE

Declaration:
public static final byte UNSUPPORTED_PUBLIC_KEY_TYPE

Description:
Indicates that type of the public key in a certificate is not supported by the device. The value is 13.

UNSUPPORTED_SIGALG

Declaration:
public static final byte UNSUPPORTED_SIGALG
460

javax.microedition.pki CertificateException

VERIFICATION_FAILED

he
Description:
Indicates a certificate was signed using an unsupported algorithm. The value is 9.

VERIFICATION_FAILED

Declaration:
public static final byte VERIFICATION_FAILED

Description:
Indicates a certificate failed verification. The value is 14.

Constructors

CertificateException(Certificate, byte)

Declaration:
public CertificateException (javax.microedition.pki.Certificate 455 certificate,

byte status)

Description:
Create a new exception with aCertificate and specific error reason. The descriptive message for t
new exception will be automatically provided, based on the reason.

Parameters:
certificate - the certificate that caused the exception

status - the reason for the exception; the status MUST be between BAD_EXTENSIONS and
VERIFICATION_FAILED inclusive.

CertificateException(String, Certificate, byte)

Declaration:
public CertificateException (String message,

javax.microedition.pki.Certificate 455 certificate, byte status)

Description:
Create a new exception with a message,Certificate , and specific error reason.

Parameters:
message - a descriptive message

certificate - the certificate that caused the exception

status - the reason for the exception; the status MUST be between BAD_EXTENSIONS and
VERIFICATION_FAILED inclusive.

Methods

getCertificate()

Declaration:
public javax.microedition.pki.Certificate 455 getCertificate ()

Description:
Get theCertificate that caused the exception.
461

CertificateException javax.microedition.pki

getReason()
Returns: theCertificate that included the failure.

getReason()

Declaration:
public byte getReason ()

Description:
Get the reason code.

Returns: the reason code
462

ater
 called

nt
riented

f a
rd

ing
wed
moved
let

g of

g the

dStore.
iptor.

 when
.

ters.
ithin
Dlet in
ite. In

ecord
sses.

t both
e
uently
C H A P T E R 14
Package

javax.microedition.rms
Description
The Mobile Information Device Profile provides a mechanism for MIDlets to persistently store data and l
retrieve it. This persistent storage mechanism is modeled after a simple record oriented database and is
the Record Management System.

Persistent Storage
The MIDP provides a mechanism for MIDlets to persistently store data and retrieve it later. This persiste
storage mechanism, called the Record Management System (RMS), is modeled after a simple record-o
database.

Record Store
A record store consists of a collection of records that will remain persistent across multiple invocations o
MIDlet. The platform is responsible for making its best effort to maintain the integrity of the MIDlet’s reco
stores throughout the normal use of the platform, including reboots, battery changes, etc.

Record stores are created in platform-dependent locations, which are not exposed to MIDlets. The nam
space for record stores is controlled at the MIDlet suite granularity. MIDlets within a MIDlet suite are allo
to create multiple record stores, as long as they are each given different names. When a MIDlet suite is re
from a platform, all record stores associated with its MIDlets MUST also be removed. MIDlets within a MID
suite can access one another’s record stores directly. New APIs in MIDP 2.0 allow for the explicit sharin
record stores if the MIDlet creating the RecordStore chooses to give such permission.

Sharing is accomplished through the ability to name a RecordStore in another MIDlet suite and by definin
accessibilty rules related to the Authentication of the two MIDlet suites.

RecordStores are uniquely named using the unique name of the MIDlet suite plus the name of the Recor
MIDlet suites are identified by the MIDlet-Vendor and MIDlet-Name attributes from the application descr

Access controls are defined when RecordStores to be shared are created. Access controls are enforced
RecordStores are opened. The access modes allow private use or shareable with any other MIDlet suite

Record store names are case sensitive and may consist of any combination of up to 32 Unicode charac
Record store names MUST be unique within the scope of a given MIDlet suite. In other words, MIDlets w
a MIDlet suite are not allowed to create more than one record store with the same name; however, a MI
one MIDlet suite is allowed to have a record store with the same name as a MIDlet in another MIDlet su
that case, the record stores are still distinct and separate.

No locking operations are provided in this API. Record store implementations ensure that all individual r
store operations are atomic, synchronous, and serialized so that no corruption occurs with multiple acce
However, if a MIDlet uses multiple threads to access a record store, it is the MIDlet’s responsibility to
coordinate this access, or unintended consequences may result. For example, if two threads in a MIDle
call RecordStore.setRecord() concurrently on the same record, the record store will serialize thes
calls properly, and no database corruption will occur as a result. However, one of the writes will be subseq
overwritten by the other, which may cause problems within the MIDlet. Similarly, if a platform performs
463

javax.microedition.rms

ty to

.
t
ations.

o

xample,
transparent synchronization of a record store or other access from below, it is the platform’s responsibili
enforce exclusive access to the record store between the MIDlets and synchronization engine.

This record store API uses long integers for time/date stamps, in the format used by
System.currentTimeMillis() . The record store is time stamped with the last time it was modified
The record store also maintains a version, which is an integer that is incremented for each operation tha
modifies the contents of the record store. These are useful for synchronization engines as well as applic

Records
Records are arrays of bytes. Developers can useDataInputStream andDataOutputStream as well as
ByteArrayInputStream andByteArrayOutputStream to pack and unpack different data types int
and out of the byte arrays.

Records are uniquely identified within a given record store by theirrecordId , which is an integer value. This
recordId is used as the primary key for the records. The first record created in a record store will have
recordId equal to 1, and each subsequentrecordId will monotonically increase by one. For example, if
two records are added to a record store, and the first has arecordId of ’n’, the next will have arecordId of
(n+1). MIDlets can create other indices by using theRecordEnumeration class.

Example:
The example uses the Record Management System to store and retrieve high scores for a game. In the e
high scores are stored in separate records, and sorted when necessary using a RecordEnumeration.
464

javax.microedition.rms
import javax.microedition.rms.*;
import java.io.DataOutputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ByteArrayInputStream;
import java.io.DataInputStream;
import java.io.EOFException;
/**

* A class used for storing and showing game scores.
*/

public class RMSGameScores
implements RecordFilter, RecordComparator

{
/*

* The RecordStore used for storing the game scores.
*/

private RecordStore recordStore = null;
/*

* The player name to use when filtering.
*/

public static String playerNameFilter = null;
/*

* Part of the RecordFilter interface.
*/

public boolean matches(byte[] candidate)
throws IllegalArgumentException

{
// If no filter set, nothing can match it.
if (this.playerNameFilter == null) {

return false;
}
ByteArrayInputStream bais = new ByteArrayInputStream(candidate);
DataInputStream inputStream = new DataInputStream(bais);
String name = null;
try {

int score = inputStream.readInt();
name = inputStream.readUTF();

}
catch (EOFException eofe) {

System.out.println(eofe);
eofe.printStackTrace();

}
catch (IOException eofe) {

System.out.println(eofe);
eofe.printStackTrace();

}
return (this.playerNameFilter.equals(name));

}
/*

* Part of the RecordComparator interface.
*/

public int compare(byte[] rec1, byte[] rec2)
{

// Construct DataInputStreams for extracting the scores from
// the records.
ByteArrayInputStream bais1 = new ByteArrayInputStream(rec1);
DataInputStream inputStream1 = new DataInputStream(bais1);
ByteArrayInputStream bais2 = new ByteArrayInputStream(rec2);
DataInputStream inputStream2 = new DataInputStream(bais2);
int score1 = 0;
int score2 = 0;
try {

// Extract the scores.
score1 = inputStream1.readInt();
score2 = inputStream2.readInt();

}
catch (EOFException eofe) {

System.out.println(eofe);
465

javax.microedition.rms
eofe.printStackTrace();
}
catch (IOException eofe) {

System.out.println(eofe);
eofe.printStackTrace();

}
// Sort by score
if (score1 < score2) {

return RecordComparator.PRECEDES;
}
else if (score1 > score2) {

return RecordComparator.FOLLOWS;
}
else {

return RecordComparator.EQUIVALENT;
}

}
/**

* The constructor opens the underlying record store,
* creating it if necessary.
*/

public RMSGameScores()
{

//
// Create a new record store for this example
//
try {

recordStore = RecordStore.openRecordStore(“scores”, true);
}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}
}
/**

* Add a new score to the storage.
*
* @param score the score to store.
* @param playerName the name of the play achieving this score.
*/

public void addScore(int score, String playerName)
{

//
// Each score is stored in a separate record, formatted with
// the score, followed by the player name.
//

int recId; // returned by addRecord but not used
ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream outputStream = new DataOutputStream(baos);
try {

// Push the score into a byte array.
outputStream.writeInt(score);
// Then push the player name.
outputStream.writeUTF(playerName);

}
catch (IOException ioe) {

System.out.println(ioe);
ioe.printStackTrace();

}
// Extract the byte array
byte[] b = baos.toByteArray();
// Add it to the record store
try {

recId = recordStore.addRecord(b, 0, b.length);
}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();
466

javax.microedition.rms
}
}
/**

* A helper method for the printScores methods.
*/

private void printScoresHelper(RecordEnumeration re)
{

try {
while(re.hasNextElement()) {

int id = re.nextRecordId();
ByteArrayInputStream bais = new ByteArrayInputStream(recordStore.getRecord(id));
DataInputStream inputStream = new DataInputStream(bais);
try {

int score = inputStream.readInt();
String playerName = inputStream.readUTF();
System.out.println(playerNam e + “ = ” + score);

}
catch (EOFException eofe) {

System.out.println(eofe);
eofe.printStackTrace();

}
}

}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}
catch (IOException ioe) {

System.out.println(ioe);
ioe.printStackTrace();

}
}
/**

* This method prints all of the scores sorted by game score.
*/

public void printScores()
{

try {
// Enumerate the records using the comparator implemented
// above to sort by game score.
RecordEnumeration re = recordStore.enumerateRecords(null, this,

true);
printScoresHelper(re);

}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}
}
/**

* This method prints all of the scores for a given player,
* sorted by game score.
*/

public void printScores(String playerName)
{

try {
// Enumerate the records using the comparator and filter
// implemented above to sort by game score.
RecordEnumeration re = recordStore.enumerateRecords(this, this,

true);
printScoresHelper(re);

}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}
}
public static void main(String[] args)
467

javax.microedition.rms

ion-

n an

ord

s

ould
{
RMSGameScores rmsgs = new RMSGameScores();
rmsgs.addScore(100, “Alice”);
rmsgs.addScore(120, “Bill”);
rmsgs.addScore(80, “Candice”);
rmsgs.addScore(40, “Dean”);
rmsgs.addScore(200, “Ethel”);
rmsgs.addScore(110, “Farnsworth”);
rmsgs.addScore(220, “Farnsworth”);
System.out.println(“All scores”);
rmsgs.printScores();
System.out.println(“Farnsworth's scores”);
RMSGameScores.playerNameFilter = “Farnsworth”;
rmsgs.printScores(“Farnsworth”);

}
}

Since: MIDP 1.0

Class Summary

Interfaces

RecordComparator 471 An interface defining a comparator which compares two records (in an implementat
defined manner) to see if they match or what their relative sort order is.

RecordEnumeration 473 An interface representing a bidirectional record store Record enumerator.

RecordFilter 478 An interface defining a filter which examines a record to see if it matches (based o
application-defined criteria).

RecordListener 479 A listener interface for receiving Record Changed/Added/Deleted events from a rec
store.

Classes

RecordStore 481 A class representing a record store.

Exceptions

InvalidRecordIDExcepti
on469

Thrown to indicate an operation could not be completed because the record ID wa
invalid.

RecordStoreException 493 Thrown to indicate a general exception occurred in a record store operation.

RecordStoreFullExcepti
on495

Thrown to indicate an operation could not be completed because the record store
system storage is full.

RecordStoreNotFoundExc
eption 497

Thrown to indicate an operation could not be completed because the record store c
not be found.

RecordStoreNotOpenExce
ption 499

Thrown to indicate that an operation was attempted on a closed record store.
468

javax.microedition.rms InvalidRecordIDException

InvalidRecordIDException()
javax.microedition.rms

InvalidRecordIDException
Declaration
public class InvalidRecordIDException extends RecordStoreException 493

Object
|
+--Throwable

|
+--Exception

|
+-- javax.microedition.rms.RecordStoreException 493

|
+-- javax.microedition.rms.InvalidRecordIDException

Description
Thrown to indicate an operation could not be completed because the record ID was invalid.

Since: MIDP 1.0

Constructors

InvalidRecordIDException()

Declaration:
public InvalidRecordIDException ()

Description:
Constructs a newInvalidRecordIDException with no detail message.

Member Summary

Constructors
InvalidRecordIDException() 469

InvalidRecordIDException(String message) 470

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Methods inherited from classThrowable

getMessage(), printStackTrace(), toString()
469

InvalidRecordIDException javax.microedition.rms

InvalidRecordIDException(String)
InvalidRecordIDException(String)

Declaration:
public InvalidRecordIDException (String message)

Description:
Constructs a newInvalidRecordIDException with the specified detail message.

Parameters:
message - the detail message
470

javax.microedition.rms RecordComparator

EQUIVALENT

 to see
o
called

not
javax.microedition.rms

RecordComparator
Declaration
public interface RecordComparator

Description
An interface defining a comparator which compares two records (in an implementation-defined manner)
if they match or what their relative sort order is. The application implements this interface to compare tw
candidate records. The return value must indicate the ordering of the two records. The compare method is
by RecordEnumeration to sort and return records in an application specified order. For example:

RecordComparato r c = new AddressRecordComparator();
if (c.compare(recordStore.getRecord(rec1), recordStore.getRecord(rec2))
== RecordComparator.PRECEDES)
return rec1;

Since: MIDP 1.0

Fields

EQUIVALENT

Declaration:
public static final int EQUIVALENT

Description:
EQUIVALENT means that in terms of search or sort order, the two records are the same. This does
necessarily mean that the two records are identical.

The value of EQUIVALENT is 0.

FOLLOWS

Declaration:
public static final int FOLLOWS

Member Summary

Fields
static int EQUIVALENT471

static int FOLLOWS471

static int PRECEDES472

Methods
 int compare(byte[] rec1, byte[] rec2) 472
471

RecordComparator javax.microedition.rms

PRECEDES

s

his
Description:
FOLLOWS means that the left (first parameter) recordfollowsthe right (second parameter) record in term
of search or sort order.

The value of FOLLOWS is 1.

PRECEDES

Declaration:
public static final int PRECEDES

Description:
PRECEDES means that the left (first parameter) recordprecedes the right (second parameter) record in
terms of search or sort order.

The value of PRECEDES is -1.

Methods

compare(byte[], byte[])

Declaration:
public int compare (byte[] rec1, byte[] rec2)

Description:
ReturnsRecordComparator.PRECEDES if rec1 precedes rec2 in sort order, or
RecordComparator.FOLLOWS if rec1 follows rec2 in sort order, or
RecordComparator.EQUIVALENT if rec1 and rec2 are equivalent in terms of sort order.

Parameters:
rec1 - the first record to use for comparison. Within this method, the application must treat this
parameter as read-only.

rec2 - the second record to use for comparison. Within this method, the application must treat t
parameter as read-only.

Returns: RecordComparator.PRECEDES if rec1 precedes rec2 in sort order, or
RecordComparator.FOLLOWS if rec1 follows rec2 in sort order, or
RecordComparator.EQUIVALENT if rec1 and rec2 are equivalent in terms of sort order
472

javax.microedition.rms RecordEnumeration

compare(byte[], byte[])

ally
ll (or a
record

This

’s

nd
 record
pacts.

and all
ion,

calls
s

ill
e

n

javax.microedition.rms

RecordEnumeration
Declaration
public interface RecordEnumeration

Description
An interface representing a bidirectional record store Record enumerator. The RecordEnumeration logic
maintains a sequence of the recordId’s of the records in a record store. The enumerator will iterate over a
subset, if an optional record filter has been supplied) of the records in an order determined by an optional
comparator.

By using an optionalRecordFilter , a subset of the records can be chosen that match the supplied filter.
can be used for providing search capabilities.

By using an optionalRecordComparator , the enumerator can index through the records in an order
determined by the comparator. This can be used for providing sorting capabilities.

If, while indexing through the enumeration, some records are deleted from the record store, the recordId
returned by the enumeration may no longer represent valid records. To avoid this problem, the
RecordEnumeration can optionally become a listener of the RecordStore and react to record additions a
deletions by recreating its internal index. Use special care when using this option however, in that every
addition, change and deletion will cause the index to be rebuilt, which may have serious performance im

If the RecordStore used by this RecordEnumeration is closed, this RecordEnumeration becomes invalid
subsequent operations performed on it may give invalid results or throw a RecordStoreNotOpenExcept
even if the same RecordStore is later opened again. In addition, calls tohasNextElement() and
hasPreviousElement() will return false.

The first call tonextRecord() returns the record data from the first record in the sequence. Subsequent
to nextRecord() return the next consecutive record’s data. To return the record data from the previou
consecutive from any given point in the enumeration, callpreviousRecord() . On the other hand, if after
creation, the first call is topreviousRecord() , the record data of the last element of the enumeration w
be returned. Each subsequent call topreviousRecord() will step backwards through the sequence until th
beginning is reached.

Final note, to do record store searches, create a RecordEnumeration with no RecordComparator, and a
appropriate RecordFilter with the desired search criterion.

Since: MIDP 1.0

Member Summary

Methods
 void destroy() 474

 boolean hasNextElement() 474

 boolean hasPreviousElement() 474

 boolean isKeptUpdated() 474

 void keepUpdated(boolean keepUpdated) 474

 byte[] nextRecord() 475
473

RecordEnumeration javax.microedition.rms

destroy()

ey are
s been
Methods

destroy()

Declaration:
public void destroy ()

Description:
Frees internal resources used by this RecordEnumeration. MIDlets should call this method when th
done using a RecordEnumeration. If a MIDlet tries to use a RecordEnumeration after this method ha
called, it will throw aIllegalStateException . Note that this method is used for manually aiding in
the minimization of immediate resource requirements when this enumeration is no longer needed.

hasNextElement()

Declaration:
public boolean hasNextElement ()

Description:
Returns true if more elements exist in thenext direction.

Returns: true if more elements exist in thenext direction

hasPreviousElement()

Declaration:
public boolean hasPreviousElement ()

Description:
Returns true if more elements exist in theprevious direction.

Returns: true if more elements exist in theprevious direction

isKeptUpdated()

Declaration:
public boolean isKeptUpdated ()

Description:
Returns true if the enumeration keeps its enumeration current with any changes in the records.

Returns: true if the enumeration keeps its enumeration current with any changes in the records

keepUpdated(boolean)

Declaration:
public void keepUpdated (boolean keepUpdated)

 int nextRecordId() 475

 int numRecords() 476

 byte[] previousRecord() 476

 int previousRecordId() 476

 void rebuild() 476

 void reset() 477

Member Summary
474

javax.microedition.rms RecordEnumeration

nextRecord()

record
e

e
 Calling

 kept
d later.

Note
trieved,
is the

anges
on is

this
n.

nced

this
n.
Description:
Used to set whether the enumeration will be keep its internal index up to date with the record store
additions/deletions/changes. Note that this should be used carefully due to the potential performanc
problems associated with maintaining the enumeration with every change.

Parameters:
keepUpdated - if true, the enumerator will keep its enumeration current with any changes in th
records of the record store. Use with caution as there are possible performance consequences.
keepUpdated(true) has the same effect as callingRecordEnumeration.rebuild : the
enumeration will be updated to reflect the current record set. If false the enumeration will not be
current and may return recordIds for records that have been deleted or miss records that are adde
It may also return records out of order that have been modified after the enumeration was built.
that any changes to records in the record store are accurately reflected when the record is later re
either directly or through the enumeration. The thing that is risked by setting this parameter false
filtering and sorting order of the enumeration when records are modified, added, or deleted.

See Also: rebuild() 476

nextRecord()

Declaration:
public byte[] nextRecord ()

throws InvalidRecordIDException, RecordStoreNotOpenException, RecordStoreEx

ception

Description:
Returns a copy of thenextrecord in this enumeration, wherenextis defined by the comparator and/or filter
supplied in the constructor of this enumerator. The byte array returned is a copy of the record. Any ch
made to this array will NOT be reflected in the record store. After calling this method, the enumerati
advanced to the next available record.

Returns: the next record in this enumeration

Throws:
InvalidRecordIDException 469 - when no more records are available. Subsequent calls to
method will continue to throw this exception untilreset() has been called to reset the enumeratio

RecordStoreNotOpenException 499 - if the record store is not open

RecordStoreException 493 - if a general record store exception occurs

nextRecordId()

Declaration:
public int nextRecordId ()

throws InvalidRecordIDException

Description:
Returns the recordId of thenextrecord in this enumeration, wherenextis defined by the comparator and/or
filter supplied in the constructor of this enumerator. After calling this method, the enumeration is adva
to the next available record.

Returns: the recordId of the next record in this enumeration

Throws:
InvalidRecordIDException 469 - when no more records are available. Subsequent calls to
method will continue to throw this exception untilreset() has been called to reset the enumeratio
475

RecordEnumeration javax.microedition.rms

numRecords()

at have
on by
s in

at

/
. Any

this
n.

this
n.
numRecords()

Declaration:
public int numRecords ()

Description:
Returns the number of records available in this enumeration’s set. That is, the number of records th
matched the filter criterion. Note that this forces the RecordEnumeration to fully build the enumerati
applying the filter to all records, which may take a non-trivial amount of time if there are a lot of record
the record store.

Returns: the number of records available in this enumeration’s set. That is, the number of records th
have matched the filter criterion.

previousRecord()

Declaration:
public byte[] previousRecord ()

throws InvalidRecordIDException, RecordStoreNotOpenException, RecordStoreEx

ception

Description:
Returns a copy of thepreviousrecord in this enumeration, wherepreviousis defined by the comparator and
or filter supplied in the constructor of this enumerator. The byte array returned is a copy of the record
changes made to this array will NOT be reflected in the record store. After calling this method, the
enumeration is advanced to the next (previous) available record.

Returns: the previous record in this enumeration

Throws:
InvalidRecordIDException 469 - when no more records are available. Subsequent calls to
method will continue to throw this exception untilreset() has been called to reset the enumeratio

RecordStoreNotOpenException 499 - if the record store is not open

RecordStoreException 493 - if a general record store exception occurs.

previousRecordId()

Declaration:
public int previousRecordId ()

throws InvalidRecordIDException

Description:
Returns the recordId of theprevious record in this enumeration, whereprevious is defined by the
comparator and/or filter supplied in the constructor of this enumerator. After calling this method, the
enumeration is advanced to the next (previous) available record.

Returns: the recordId of the previous record in this enumeration

Throws:
InvalidRecordIDException 469 - when no more records are available. Subsequent calls to
method will continue to throw this exception untilreset() has been called to reset the enumeratio

rebuild()

Declaration:
public void rebuild ()
476

javax.microedition.rms RecordEnumeration

reset()

akes a
te the
Description:
Request that the enumeration be updated to reflect the current record set. Useful for when a MIDlet m
number of changes to the record store, and then wants an existing RecordEnumeration to enumera
new changes.

See Also:keepUpdated(boolean) 474

reset()

Declaration:
public void reset ()

Description:
Returns the enumeration index to the same state as right after the enumeration was created.
477

RecordFilter javax.microedition.rms

matches(byte[])

ed

is used

er as
javax.microedition.rms

RecordFilter
Declaration
public interface RecordFilter

Description
An interface defining a filter which examines a record to see if it matches (based on an application-defin
criteria). The application implements the match() method to select records to be returned by the
RecordEnumeration. Returns true if the candidate record is selected by the RecordFilter. This interface
in the record store for searching or subsetting records. For example:

RecordFilte r f = new DateRecordFilter(); // class implements RecordFilter
if (f.matches(recordStore.getRecord(theRecordID)) == true)

DoSomethingUseful(theRecordID);

Since: MIDP 1.0

Methods

matches(byte[])

Declaration:
public boolean matches (byte[] candidate)

Description:
Returns true if the candidate matches the implemented criterion.

Parameters:
candidate - the record to consider. Within this method, the application must treat this paramet
read-only.

Returns: true if the candidate matches the implemented criterion

Member Summary

Methods
 boolean matches(byte[] candidate) 478
478

javax.microedition.rms RecordListener

recordAdded(RecordStore, int)

ves the
javax.microedition.rms

RecordListener
Declaration
public interface RecordListener

Description
A listener interface for receiving Record Changed/Added/Deleted events from a record store.

Since: MIDP 1.0

See Also: RecordStore.addRecordListener(RecordListener) 483

Methods

recordAdded(RecordStore, int)

Declaration:
public void recordAdded (javax.microedition.rms.RecordStore 481 recordStore, int recordId)

Description:
Called when a record has been added to a record store.

Parameters:
recordStore - the RecordStore in which the record is stored

recordId - the recordId of the record that has been added

recordChanged(RecordStore, int)

Declaration:
public void recordChanged (javax.microedition.rms.RecordStore 481 recordStore,

int recordId)

Description:
Called after a record in a record store has been changed. If the implementation of this method retrie
record, it will receive the changed version.

Parameters:
recordStore - the RecordStore in which the record is stored

recordId - the recordId of the record that has been changed

Member Summary

Methods
 void recordAdded(RecordStore recordStore, int recordId) 479

 void recordChanged(RecordStore recordStore, int recordId) 479

 void recordDeleted(RecordStore recordStore, int recordId) 480
479

RecordListener javax.microedition.rms

recordDeleted(RecordStore, int)

s to
recordDeleted(RecordStore, int)

Declaration:
public void recordDeleted (javax.microedition.rms.RecordStore 481 recordStore,

int recordId)

Description:
Called after a record has been deleted from a record store. If the implementation of this method trie
retrieve the record from the record store, an InvalidRecordIDException will be thrown.

Parameters:
recordStore - the RecordStore in which the record was stored

recordId - the recordId of the record that has been deleted
480

javax.microedition.rms RecordStore

recordDeleted(RecordStore, int)

t to

aming
wed
moved
let

 of

dStore.
iptor.

 when
.

code
her
ame,

 in

ecord
ses.

rent
ord

his
cordId
ter than
Id of ’n’,
ore by

lis().
javax.microedition.rms

RecordStore
Declaration
public class RecordStore

Object
|
+-- javax.microedition.rms.RecordStore

Description
A class representing a record store. A record store consists of a collection of records which will remain
persistent across multiple invocations of the MIDlet. The platform is responsible for making its best effor
maintain the integrity of the MIDlet’s record stores throughout the normal use of the platform, including
reboots, battery changes, etc.

Record stores are created in platform-dependent locations, which are not exposed to the MIDlets. The n
space for record stores is controlled at the MIDlet suite granularity. MIDlets within a MIDlet suite are allo
to create multiple record stores, as long as they are each given different names. When a MIDlet suite is re
from a platform all the record stores associated with its MIDlets will also be removed. MIDlets within a MID
suite can access each other’s record stores directly. New APIs in MIDP 2.0 allow for the explicit sharing
record stores if the MIDlet creating the RecordStore chooses to give such permission.

Sharing is accomplished through the ability to name a RecordStore created by another MIDlet suite.

RecordStores are uniquely named using the unique name of the MIDlet suite plus the name of the Recor
MIDlet suites are identified by the MIDlet-Vendor and MIDlet-Name attributes from the application descr

Access controls are defined when RecordStores to be shared are created. Access controls are enforced
RecordStores are opened. The access modes allow private use or shareable with any other MIDlet suite

Record store names are case sensitive and may consist of any combination of between one and 32 Uni
characters inclusive. Record store names must be unique within the scope of a given MIDlet suite. In ot
words, MIDlets within a MIDlet suite are not allowed to create more than one record store with the same n
however a MIDlet in one MIDlet suite is allowed to have a record store with the same name as a MIDlet
another MIDlet suite. In that case, the record stores are still distinct and separate.

No locking operations are provided in this API. Record store implementations ensure that all individual r
store operations are atomic, synchronous, and serialized, so no corruption will occur with multiple acces
However, if a MIDlet uses multiple threads to access a record store, it is the MIDlet’s responsibility to
coordinate this access or unintended consequences may result. Similarly, if a platform performs transpa
synchronization of a record store, it is the platform’s responsibility to enforce exclusive access to the rec
store between the MIDlet and synchronization engine.

Records are uniquely identified within a given record store by their recordId, which is an integer value. T
recordId is used as the primary key for the records. The first record created in a record store will have re
equal to one (1). Each subsequent record added to a RecordStore will be assigned a recordId one grea
the record added before it. That is, if two records are added to a record store, and the first has a record
the next will have a recordId of ’n + 1’. MIDlets can create other sequences of the records in the RecordSt
using theRecordEnumeration class.

This record store uses long integers for time/date stamps, in the format used by System.currentTimeMil
The record store is time stamped with the last time it was modified. The record store also maintains aversion
481

RecordStore javax.microedition.rms

recordDeleted(RecordStore, int)
number, which is an integer that is incremented for each operation that modifies the contents of the
RecordStore. These are useful for synchronization engines as well as other things.

Since: MIDP 1.0

Member Summary

Fields
static int AUTHMODE_ANY483

static int AUTHMODE_PRIVATE483

Methods
 int addRecord(byte[] data, int offset, int numBytes) 483

 void addRecordListener(RecordListener listener) 483

 void closeRecordStore() 484

 void deleteRecord(int recordId) 484

static void deleteRecordStore(String recordStoreName) 484

 RecordEnumeration enumerateRecords(RecordFilter filter, RecordComparator
comparator, boolean keepUpdated) 485

 long getLastModified() 486

 java.lang.String getName() 486

 int getNextRecordID() 486

 int getNumRecords() 486

 byte[] getRecord(int recordId) 487

 int getRecord(int recordId, byte[] buffer, int offset) 487

 int getRecordSize(int recordId) 488

 int getSize() 488

 int getSizeAvailable() 488

 int getVersion() 488

static
java.lang.String[]

listRecordStores() 489

static RecordStore openRecordStore(String recordStoreName, boolean
createIfNecessary) 489

static RecordStore openRecordStore(String recordStoreName, boolean
createIfNecessary, int authmode, boolean writable) 490

static RecordStore openRecordStore(String recordStoreName, String vendorName,
String suiteName) 490

 void removeRecordListener(RecordListener listener) 491

 void setMode(int authmode, boolean writable) 491

 void setRecord(int recordId, byte[] newData, int offset, int
numBytes) 492

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(), wait()
482

javax.microedition.rms RecordStore

AUTHMODE_ANY

f 0.

g

is

ore
Fields

AUTHMODE_ANY

Declaration:
public static final int AUTHMODE_ANY

Description:
Authorization to allow access to any MIDlet suites. AUTHMODE_ANY has a value of 1.

AUTHMODE_PRIVATE

Declaration:
public static final int AUTHMODE_PRIVATE

Description:
Authorization to allow access only to the current MIDlet suite. AUTHMODE_PRIVATE has a value o

Methods

addRecord(byte[], int, int)

Declaration:
public int addRecord (byte[] data, int offset, int numBytes)

throws RecordStoreNotOpenException, RecordStoreException, RecordStoreFullEx

ception

Description:
Adds a new record to the record store. The recordId for this new record is returned. This is a blockin
atomic operation. The record is written to persistent storage before the method returns.

Parameters:
data - the data to be stored in this record. If the record is to have zero-length data (no data), th
parameter may be null.

offset - the index into the data buffer of the first relevant byte for this record

numBytes - the number of bytes of the data buffer to use for this record (may be zero)

Returns: the recordId for the new record

Throws:
RecordStoreNotOpenException 499 - if the record store is not open

RecordStoreException 493 - if a different record store-related exception occurred

RecordStoreFullException 495 - if the operation cannot be completed because the record st
has no more room

SecurityException - if the MIDlet has read-only access to the RecordStore

addRecordListener(RecordListener)

Declaration:
public void addRecordListener (javax.microedition.rms.RecordListener 479 listener)
483

RecordStore javax.microedition.rms

closeRecordStore()

 a

d store
as
fore the

with it
een
Description:
Adds the specified RecordListener. If the specified listener is already registered, it will not be added
second time. When a record store is closed, all listeners are removed.

Parameters:
listener - the RecordChangedListener

See Also: removeRecordListener(RecordListener) 491

closeRecordStore()

Declaration:
public void closeRecordStore ()

throws RecordStoreNotOpenException, RecordStoreException

Description:
This method is called when the MIDlet requests to have the record store closed. Note that the recor
will not actually be closed until closeRecordStore() is called as many times as openRecordStore() w
called. In other words, the MIDlet needs to make a balanced number of close calls as open calls be
record store is closed.

When the record store is closed, all listeners are removed and all RecordEnumerations associated
become invalid. If the MIDlet attempts to perform operations on the RecordStore object after it has b
closed, the methods will throw a RecordStoreNotOpenException.

Throws:
RecordStoreNotOpenException 499 - if the record store is not open

RecordStoreException 493 - if a different record store-related exception occurred

deleteRecord(int)

Declaration:
public void deleteRecord (int recordId)

throws RecordStoreNotOpenException, InvalidRecordIDException, RecordStoreEx

ception

Description:
The record is deleted from the record store. The recordId for this record is NOT reused.

Parameters:
recordId - the ID of the record to delete

Throws:
RecordStoreNotOpenException 499 - if the record store is not open

InvalidRecordIDException 469 - if the recordId is invalid

RecordStoreException 493 - if a general record store exception occurs

SecurityException - if the MIDlet has read-only access to the RecordStore

deleteRecordStore(String)

Declaration:
public static void deleteRecordStore (String recordStoreName)

throws RecordStoreException, RecordStoreNotFoundException
484

javax.microedition.rms RecordStore

enumerateRecords(RecordFilter, RecordComparator, boolean)

the
is

ed

order.

n an
r is

. The
e

ed

e
 If false
ted or
d after
flected
ed by
e

 order
Description:
Deletes the named record store. MIDlet suites are only allowed to delete their own record stores. If
named record store is open (by a MIDlet in this suite or a MIDlet in a different MIDlet suite) when th
method is called, a RecordStoreException will be thrown. If the named record store does not exist a
RecordStoreNotFoundException will be thrown. Calling this method does NOT result in recordDelet
calls to any registered listeners of this RecordStore.

Parameters:
recordStoreName - the MIDlet suite unique record store to delete

Throws:
RecordStoreException 493 - if a record store-related exception occurred

RecordStoreNotFoundException 497 - if the record store could not be found

enumerateRecords(RecordFilter, RecordComparator, boolean)

Declaration:
public javax.microedition.rms.RecordEnumeration 473

enumerateRecords (javax.microedition.rms.RecordFilter 478 filter,

javax.microedition.rms.RecordComparator 471 comparator, boolean keepUpdated)

throws RecordStoreNotOpenException

Description:
Returns an enumeration for traversing a set of records in the record store in an optionally specified

The filter, if non-null, will be used to determine what subset of the record store records will be used.

The comparator, if non-null, will be used to determine the order in which the records are returned.

If both the filter and comparator is null, the enumeration will traverse all records in the record store i
undefined order. This is the most efficient way to traverse all of the records in a record store. If a filte
used with a null comparator, the enumeration will traverse the filtered records in an undefined order
first call toRecordEnumeration.nextRecord() returns the record data from the first record in th
sequence. Subsequent calls toRecordEnumeration.nextRecord() return the next consecutive
record’s data. To return the record data from the previous consecutive from any given point in the
enumeration, callpreviousRecord() . On the other hand, if after creation the first call is to
previousRecord() , the record data of the last element of the enumeration will be returned. Each
subsequent call topreviousRecord() will step backwards through the sequence.

Parameters:
filter - if non-null, will be used to determine what subset of the record store records will be us

comparator - if non-null, will be used to determine the order in which the records are returned

keepUpdated - if true, the enumerator will keep its enumeration current with any changes in th
records of the record store. Use with caution as there are possible performance consequences.
the enumeration will not be kept current and may return recordIds for records that have been dele
miss records that are added later. It may also return records out of order that have been modifie
the enumeration was built. Note that any changes to records in the record store are accurately re
when the record is later retrieved, either directly or through the enumeration. The thing that is risk
setting this parameter false is the filtering and sorting order of the enumeration when records ar
modified, added, or deleted.

Returns: an enumeration for traversing a set of records in the record store in an optionally specified

Throws:
RecordStoreNotOpenException 499 - if the record store is not open
485

RecordStore javax.microedition.rms

getLastModified()

().

s()

g up
o refer
 store,
See Also:RecordEnumeration.rebuild() 476

getLastModified()

Declaration:
public long getLastModified ()

throws RecordStoreNotOpenException

Description:
Returns the last time the record store was modified, in the format used by System.currentTimeMillis

Returns: the last time the record store was modified, in the format used by System.currentTimeMilli

Throws:
RecordStoreNotOpenException 499 - if the record store is not open

getName()

Declaration:
public String getName ()

throws RecordStoreNotOpenException

Description:
Returns the name of this RecordStore.

Returns: the name of this RecordStore

Throws:
RecordStoreNotOpenException 499 - if the record store is not open

getNextRecordID()

Declaration:
public int getNextRecordID ()

throws RecordStoreNotOpenException, RecordStoreException

Description:
Returns the recordId of the next record to be added to the record store. This can be useful for settin
pseudo-relational relationships. That is, if you have two or more record stores whose records need t
to one another, you can predetermine the recordIds of the records that will be created in one record
before populating the fields and allocating the record in another record store. Note that the recordId
returned is only valid while the record store remains open and until a call toaddRecord() .

Returns: the recordId of the next record to be added to the record store

Throws:
RecordStoreNotOpenException 499 - if the record store is not open

RecordStoreException 493 - if a different record store-related exception occurred

getNumRecords()

Declaration:
public int getNumRecords ()

throws RecordStoreNotOpenException

Description:
Returns the number of records currently in the record store.

Returns: the number of records currently in the record store
486

javax.microedition.rms RecordStore

getRecord(int)

urn
Throws:
RecordStoreNotOpenException 499 - if the record store is not open

getRecord(int)

Declaration:
public byte[] getRecord (int recordId)

throws RecordStoreNotOpenException, InvalidRecordIDException, RecordStoreEx

ception

Description:
Returns a copy of the data stored in the given record.

Parameters:
recordId - the ID of the record to use in this operation

Returns: the data stored in the given record. Note that if the record has no data, this method will ret
null.

Throws:
RecordStoreNotOpenException 499 - if the record store is not open

InvalidRecordIDException 469 - if the recordId is invalid

RecordStoreException 493 - if a general record store exception occurs

See Also:setRecord(int, byte[], int, int) 492

getRecord(int, byte[], int)

Declaration:
public int getRecord (int recordId, byte[] buffer, int offset)

throws RecordStoreNotOpenException, InvalidRecordIDException, RecordStoreEx

ception

Description:
Returns the data stored in the given record.

Parameters:
recordId - the ID of the record to use in this operation

buffer - the byte array in which to copy the data

offset - the index into the buffer in which to start copying

Returns: the number of bytes copied into the buffer, starting at indexoffset

Throws:
RecordStoreNotOpenException 499 - if the record store is not open

InvalidRecordIDException 469 - if the recordId is invalid

RecordStoreException 493 - if a general record store exception occurs

ArrayIndexOutOfBoundsException - if the record is larger than the buffer supplied

See Also:setRecord(int, byte[], int, int) 492
487

RecordStore javax.microedition.rms

getRecordSize(int)

y
e record

is not
re
ation,
getRecordSize(int)

Declaration:
public int getRecordSize (int recordId)

throws RecordStoreNotOpenException, InvalidRecordIDException, RecordStoreEx

ception

Description:
Returns the size (in bytes) of the MIDlet data available in the given record.

Parameters:
recordId - the ID of the record to use in this operation

Returns: the size (in bytes) of the MIDlet data available in the given record

Throws:
RecordStoreNotOpenException 499 - if the record store is not open

InvalidRecordIDException 469 - if the recordId is invalid

RecordStoreException 493 - if a general record store exception occurs

getSize()

Declaration:
public int getSize ()

throws RecordStoreNotOpenException

Description:
Returns the amount of space, in bytes, that the record store occupies. The size returned includes an
overhead associated with the implementation, such as the data structures used to hold the state of th
store, etc.

Returns: the size of the record store in bytes

Throws:
RecordStoreNotOpenException 499 - if the record store is not open

getSizeAvailable()

Declaration:
public int getSizeAvailable ()

throws RecordStoreNotOpenException

Description:
Returns the amount of additional room (in bytes) available for this record store to grow. Note that this
necessarily the amount of extra MIDlet-level data which can be stored, as implementations may sto
additional data structures with each record to support integration with native applications, synchroniz
etc.

Returns: the amount of additional room (in bytes) available for this record store to grow

Throws:
RecordStoreNotOpenException 499 - if the record store is not open

getVersion()

Declaration:
public int getVersion ()

throws RecordStoreNotOpenException
488

javax.microedition.rms RecordStore

listRecordStores()

e
. The
onstant

does
s

oes

led by
a

one

ore
Description:
Each time a record store is modified (byaddRecord , setRecord , ordeleteRecord methods) its
version is incremented. This can be used by MIDlets to quickly tell if anything has been modified. Th
initial version number is implementation dependent. The increment is a positive integer greater than 0
version number increases only when the RecordStore is updated. The increment value need not be c
and may vary with each update.

Returns: the current record store version

Throws:
RecordStoreNotOpenException 499 - if the record store is not open

listRecordStores()

Declaration:
public static String[] listRecordStores ()

Description:
Returns an array of the names of record stores owned by the MIDlet suite. Note that if the MIDlet suite
not have any record stores, this function will return null. The order of RecordStore names returned i
implementation dependent.

Returns: array of the names of record stores owned by the MIDlet suite. Note that if the MIDlet suite d
not have any record stores, this function will return null.

openRecordStore(String, boolean)

Declaration:
public static javax.microedition.rms.RecordStore 481 openRecordStore (String

recordStoreName, boolean createIfNecessary)

throws RecordStoreException, RecordStoreFullException, RecordStoreNotFoundE

xception

Description:
Open (and possibly create) a record store associated with the given MIDlet suite. If this method is cal
a MIDlet when the record store is already open by a MIDlet in the MIDlet suite, this method returns
reference to the same RecordStore object.

Parameters:
recordStoreName - the MIDlet suite unique name for the record store, consisting of between
and 32 Unicode characters inclusive.

createIfNecessary - if true, the record store will be created if necessary

Returns: RecordStore object for the record store

Throws:
RecordStoreException 493 - if a record store-related exception occurred

RecordStoreNotFoundException 497 - if the record store could not be found

RecordStoreFullException 495 - if the operation cannot be completed because the record st
is full

IllegalArgumentException - if recordStoreName is invalid
489

RecordStore javax.microedition.rms

openRecordStore(String, boolean, int, boolean)

tore is
s

his

issues

ate the

ite,

one

s.

ess.

ore
openRecordStore(String, boolean, int, boolean)

Declaration:
public static javax.microedition.rms.RecordStore 481 openRecordStore (String

recordStoreName, boolean createIfNecessary, int authmode, boolean writable)

throws RecordStoreException, RecordStoreFullException, RecordStoreNotFoundE

xception

Description:
Open (and possibly create) a record store that can be shared with other MIDlet suites. The RecordS
owned by the current MIDlet suite. The authorization mode is set when the record store is created, a
follows:

• AUTHMODE_PRIVATE - Only allows the MIDlet suite that created the RecordStore to access it. T
case behaves identically toopenRecordStore(recordStoreName,
createIfNecessary) .

• AUTHMODE_ANY - Allows any MIDlet to access the RecordStore. Note that this makes your
recordStore accessible by any other MIDlet on the device. This could have privacy and security
depending on the data being shared. Please use carefully.

The owning MIDlet suite may always access the RecordStore and always has access to write and upd
store.

If this method is called by a MIDlet when the record store is already open by a MIDlet in the MIDlet su
this method returns a reference to the same RecordStore object.

Parameters:
recordStoreName - the MIDlet suite unique name for the record store, consisting of between
and 32 Unicode characters inclusive.

createIfNecessary - if true, the record store will be created if necessary

authmode - the mode under which to check or create access. Must be one of
AUTHMODE_PRIVATE or AUTHMODE_ANY. This argument is ignored if the RecordStore exist

writable - true if the RecordStore is to be writable by other MIDlet suites that are granted acc
This argument is ignored if the RecordStore exists.

Returns: RecordStore object for the record store

Throws:
RecordStoreException 493 - if a record store-related exception occurred

RecordStoreNotFoundException 497 - if the record store could not be found

RecordStoreFullException 495 - if the operation cannot be completed because the record st
is full

IllegalArgumentException - if authmode or recordStoreName is invalid

Since: MIDP 2.0

openRecordStore(String, String, String)

Declaration:
public static javax.microedition.rms.RecordStore 481 openRecordStore (String

recordStoreName, String vendorName, String suiteName)

throws RecordStoreException, RecordStoreNotFoundException
490

javax.microedition.rms RecordStore

removeRecordListener(RecordListener)

t
s
 store

t

ther
hared.
ded.
used

ite,

lling:

one

othing.
Description:
Open a record store associated with the named MIDlet suite. The MIDlet suite is identified by MIDle
vendor and MIDlet name. Access is granted only if the authorization mode of the RecordStore allow
access by the current MIDlet suite. Access is limited by the authorization mode set when the record
was created:

• AUTHMODE_PRIVATE - Succeeds only if vendorName and suiteName identify the current MIDle
suite; this case behaves identically toopenRecordStore(recordStoreName,
createIfNecessary) .

• AUTHMODE_ANY - Always succeeds. Note that this makes your recordStore accessible by any o
MIDlet on the device. This could have privacy and security issues depending on the data being s
Please use carefully. Untrusted MIDlet suites are allowed to share data but this is not recommen
The authenticity of the origin of untrusted MIDlet suites cannot be verified so shared data may be
unscrupulously.

If this method is called by a MIDlet when the record store is already open by a MIDlet in the MIDlet su
this method returns a reference to the same RecordStore object.

If a MIDlet calls this method to open a record store from its own suite, the behavior is identical to ca
openRecordStore(recordStoreName, false) 489

Parameters:
recordStoreName - the MIDlet suite unique name for the record store, consisting of between
and 32 Unicode characters inclusive.

vendorName - the vendor of the owning MIDlet suite

suiteName - the name of the MIDlet suite

Returns: RecordStore object for the record store

Throws:
RecordStoreException 493 - if a record store-related exception occurred

RecordStoreNotFoundException 497 - if the record store could not be found

SecurityException - if this MIDlet Suite is not allowed to open the specified RecordStore.

IllegalArgumentException - if recordStoreName is invalid

Since: MIDP 2.0

removeRecordListener(RecordListener)

Declaration:
public void removeRecordListener (javax.microedition.rms.RecordListener 479 listener)

Description:
Removes the specified RecordListener. If the specified listener is not registered, this method does n

Parameters:
listener - the RecordChangedListener

See Also:addRecordListener(RecordListener) 483

setMode(int, boolean)

Declaration:
public void setMode (int authmode, boolean writable)

throws RecordStoreException
491

RecordStore javax.microedition.rms

setRecord(int, byte[], int, int)

his

issues

ate the

ess

re

ore
Description:
Changes the access mode for this RecordStore. The authorization mode choices are:

• AUTHMODE_PRIVATE - Only allows the MIDlet suite that created the RecordStore to access it. T
case behaves identically toopenRecordStore(recordStoreName,
createIfNecessary) .

• AUTHMODE_ANY - Allows any MIDlet to access the RecordStore. Note that this makes your
recordStore accessible by any other MIDlet on the device. This could have privacy and security
depending on the data being shared. Please use carefully.

The owning MIDlet suite may always access the RecordStore and always has access to write and upd
store. Only the owning MIDlet suite can change the mode of a RecordStore.

Parameters:
authmode - the mode under which to check or create access. Must be one of
AUTHMODE_PRIVATE or AUTHMODE_ANY.

writable - true if the RecordStore is to be writable by other MIDlet suites that are granted acc

Throws:
RecordStoreException 493 - if a record store-related exception occurred

SecurityException - if this MIDlet Suite is not allowed to change the mode of the RecordSto

IllegalArgumentException - if authmode is invalid

Since: MIDP 2.0

setRecord(int, byte[], int, int)

Declaration:
public void setRecord (int recordId, byte[] newData, int offset, int numBytes)

throws RecordStoreNotOpenException, InvalidRecordIDException, RecordStoreEx

ception, RecordStoreFullException

Description:
Sets the data in the given record to that passed in. After this method returns, a call togetRecord(int
recordId) will return an array of numBytes size containing the data supplied here.

Parameters:
recordId - the ID of the record to use in this operation

newData - the new data to store in the record

offset - the index into the data buffer of the first relevant byte for this record

numBytes - the number of bytes of the data buffer to use for this record

Throws:
RecordStoreNotOpenException 499 - if the record store is not open

InvalidRecordIDException 469 - if the recordId is invalid

RecordStoreException 493 - if a general record store exception occurs

RecordStoreFullException 495 - if the operation cannot be completed because the record st
has no more room

SecurityException - if the MIDlet has read-only access to the RecordStore

See Also:getRecord(int, byte[], int) 487
492

javax.microedition.rms RecordStoreException

RecordStoreException()
javax.microedition.rms

RecordStoreException
Declaration
public class RecordStoreException extends Exception

Object
|
+--Throwable

|
+--Exception

|
+-- javax.microedition.rms.RecordStoreException

Direct Known Subclasses:InvalidRecordIDException 469 ,
RecordStoreFullException 495 , RecordStoreNotFoundException 497 ,
RecordStoreNotOpenException 499

Description
Thrown to indicate a general exception occurred in a record store operation.

Since: MIDP 1.0

Constructors

RecordStoreException()

Declaration:
public RecordStoreException ()

Member Summary

Constructors
RecordStoreException() 493

RecordStoreException(String message) 494

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Methods inherited from classThrowable

getMessage(), printStackTrace(), toString()
493

RecordStoreException javax.microedition.rms

RecordStoreException(String)
Description:
Constructs a newRecordStoreException with no detail message.

RecordStoreException(String)

Declaration:
public RecordStoreException (String message)

Description:
Constructs a newRecordStoreException with the specified detail message.

Parameters:
message - the detail message
494

javax.microedition.rms RecordStoreFullException

RecordStoreFullException()

.

javax.microedition.rms

RecordStoreFullException
Declaration
public class RecordStoreFullException extends RecordStoreException 493

Object
|
+--Throwable

|
+--Exception

|
+-- javax.microedition.rms.RecordStoreException 493

|
+-- javax.microedition.rms.RecordStoreFullException

Description
Thrown to indicate an operation could not be completed because the record store system storage is full

Since: MIDP 1.0

Constructors

RecordStoreFullException()

Declaration:
public RecordStoreFullException ()

Description:
Constructs a newRecordStoreFullException with no detail message.

Member Summary

Constructors
RecordStoreFullException() 495

RecordStoreFullException(String message) 496

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Methods inherited from classThrowable

getMessage(), printStackTrace(), toString()
495

RecordStoreFullException javax.microedition.rms

RecordStoreFullException(String)
RecordStoreFullException(String)

Declaration:
public RecordStoreFullException (String message)

Description:
Constructs a newRecordStoreFullException with the specified detail message.

Parameters:
message - the detail message
496

javax.microedition.rms RecordStoreNotFoundException

RecordStoreNotFoundException()
javax.microedition.rms

RecordStoreNotFoundException
Declaration
public class RecordStoreNotFoundException extends RecordStoreException 493

Object
|
+--Throwable

|
+--Exception

|
+-- javax.microedition.rms.RecordStoreException 493

|
+-- javax.microedition.rms.RecordStoreNotFoundException

Description
Thrown to indicate an operation could not be completed because the record store could not be found.

Since: MIDP 1.0

Constructors

RecordStoreNotFoundException()

Declaration:
public RecordStoreNotFoundException ()

Description:
Constructs a newRecordStoreNotFoundException with no detail message.

Member Summary

Constructors
RecordStoreNotFoundException() 497

RecordStoreNotFoundException(String message) 498

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Methods inherited from classThrowable

getMessage(), printStackTrace(), toString()
497

RecordStoreNotFoundException javax.microedition.rms

RecordStoreNotFoundException(String)
RecordStoreNotFoundException(String)

Declaration:
public RecordStoreNotFoundException (String message)

Description:
Constructs a newRecordStoreNotFoundException with the specified detail message.

Parameters:
message - the detail message
498

javax.microedition.rms RecordStoreNotOpenException

RecordStoreNotOpenException()
javax.microedition.rms

RecordStoreNotOpenException
Declaration
public class RecordStoreNotOpenException extends RecordStoreException 493

Object
|
+--Throwable

|
+--Exception

|
+-- javax.microedition.rms.RecordStoreException 493

|
+-- javax.microedition.rms.RecordStoreNotOpenException

Description
Thrown to indicate that an operation was attempted on a closed record store.

Since: MIDP 1.0

Constructors

RecordStoreNotOpenException()

Declaration:
public RecordStoreNotOpenException ()

Description:
Constructs a newRecordStoreNotOpenException with no detail message.

Member Summary

Constructors
RecordStoreNotOpenException() 499

RecordStoreNotOpenException(String message) 500

Inherited Member Summary

Methods inherited from classObject

equals(Object), getClass(), hashCode(), notify(), notifyAll(), wait(), wait(), wait()

Methods inherited from classThrowable

getMessage(), printStackTrace(), toString()
499

RecordStoreNotOpenException javax.microedition.rms

RecordStoreNotOpenException(String)
RecordStoreNotOpenException(String)

Declaration:
public RecordStoreNotOpenException (String message)

Description:
Constructs a newRecordStoreNotOpenException with the specified detail message.

Parameters:
message - the detail message
500

ices

let
policy

or those
r with
el but

.0 and

s, and
entifies
C H A P T E R 15
The Recommended Security
Policy for GSM/UMTS
Compliant Devices

Addendum to the Mobile Information Device Profile version 2.0

Scope of This Document
This addendum is informative. However, all implementations of MIDP 2.0 on GSM/UMTS compliant dev
are expected to comply with this addendum.

MIDP 2.0 defines the framework for authenticating the source of a MIDlet suite and authorizing the MID
suite to perform protected functions by granting permissions it may have requested based on the security
on the device. It also identifies functions that are deemed security vulnerable and defines permissions f
protected functions. Additionally, MIDP 2.0 specifies the common rules for APIs that can be used togethe
the MIDP but are specified outside the MIDP. MIDP 2.0 specification does not mandate a single trust mod
rather allows the model to accord with the device trust policy.

The purpose of this addendum is to extend the base MIDlet suite security framework defined in MIDP 2
to define the following areas:

• The required trust model for GSM/UMTS compliant devices

• The domain number and structure, as reflected in the device security policy

• The mechanism of reading root keys from sources external to the device

• Capabilities of MIDlets based on permissions defined by MIDP 2.0 and other JSRs

• MIDlet behaviour in the roaming network

• MIDlet behaviour when SIM/USIM is changed

• The use of user permission types

• Guidelines on user prompts and notifications

How This Specification Is Organized
This specification is organized as follows:

Sections 2 to 4 establish the relationship between the device security policy, different protection domain
requirements concerning certificate storage on smart cards. Section 5 specifies the function groups and id
501

The Recommended Security Policy for GSM/UMTS Compliant Devices

s 6 and
ations.

/)

rity

igned

ion
vice. A

tificate
ng to
ion

used,

 the
erator
the permissions and the APIs that need to be protected using the MIDP 2.0 security framework. Section
7 specify rules that must be followed when permissions are granted, and also requirements of user notific
Finally Section 8 specifies the MIDlet behaviour during roaming and after changing the smart card.

References
1. Connected Limited Device Configuration (CLDC)

http://jcp.org/jsr/detail/30.jsp (http://jcp.org/jsr/detail/30.jsp)

2. Mobile Information Device Profile (MIDP) 2.0
http://jcp.org/jsr/detail/118.jsp (http://jcp.org/jsr/detail/118.jsp)

3. HTTP 1.1 Specification
http://www.ietf.org/rfc/rfc2616.txt (http://www.ietf.org/rfc/rfc2616.txt)

4. WAP Wireless Identity Module Specification (WIM) WAP-260-WIM-20010712-a
http://www.wapforum.org/what/technical.htm (http://www.wapforum.org/what/technical.htm)

5. WAP Smart Card Provisioning (SCPROV) WAP-186-ProvSC-20010710-a
http://www.wapforum.org/what/technical.htm (http://www.wapforum.org/what/technical.htm)

6. PKCS#15 v.1.1
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-15/ (http://www.rsasecurity.com/rsalabs/pkcs/pkcs-15

7. USIM, 3GPP TS 31.102: “Characteristics of the USIM applications”
http://www.3gpp.org (http://www.3gpp.org/)

8. RFC3280
http://www.ietf.org/rfc (http://www.ietf.org/rfc)

1 General
GSM/UMTS compliant devices implementing this Recommended Security Policy MUST follow the secu
framework specified in the MIDP 2.0. Additionally, devices that support trusted MIDlets MUST follow the
PKI-based authentication scheme as defined in MIDP 2.0 specification.

2 Protection Domains in the Device Security Policy
A protection domain is a way to differentiate between downloaded MIDlet suites based on the entity that s
the MIDlet suite, and to grant or make available to a MIDlet suite a set of permissions. A domain binds a
Protection Domain Root Certificate to a set of permissions. The permissions are specified in the protect
domain security policy, a policy has as many entries as there are protection domains available on the de
domain can exist only for a Protection Domain Root Certificate that contain theid-kp-codeSigning
extended key usage extension. MIDlet suites that authenticate to a trusted Protection Domain Root Cer
are treated as trusted, and assigned to the corresponding protection domain. A MIDlet suite cannot belo
more than one protection domain. The representation of a domain and its security policy is implementat
specific.

3 Protection Domains and the Permissions Framework
This document specifies two different requirements as to how the MIDP permissions framework should be
depending on the protection domain an application executes.

Manufacturer and Operator Domains ˝ MIDlet suites SHOULD seek permission from the user when
accessing security vulnerable APIs and functions. Permissions defined by MIDP 2.0 and other APIs give
guidelines of which functions are seen as security vulnerable and need protection. It is expected that op
502

The Recommended Security Policy for GSM/UMTS
Compliant Devices

. The

main.

r

r, who
dated

Root

in

s and
een as

nt
the

 JSRs.

o

T be
curity

SIM

d
e
ge field
trusted MIDlets will give prompts and notifications to the user when accessing these security protected
functions as required.

Third Party and Untrusted Domains ˝ The device implementation is responsible for prompting the user
according to the security policies specified in Tables 1 through 6 in this document.

3.1 Manufacturer Domain
The trusted manufacturer Protection Domain Root Certificate is used to verify manufacturer MIDlet suites
manufacturer Protection Domain Root Certificate MUST be mapped on to the security policy for the
manufacturer domain on the device. A device MUST support the security policy for the manufacturer do

If the manufacturer Protection Domain Root Certificate is NOT available on the device, the manufacture
domain MUST be disabled.

The manufacturer Protection Domain Root Certificate can only be deleted or modified by the manufacture
may use an update mechanism whose details are outside the scope of this specification. Any new or up
manufacturer Protection Domain Root Certificate MUST be associated with the security policy for the
manufacturer domain on the device. MIDlet suites verified by a previous manufacturer Protection Domain
Certificate MUST be disabled.

Permissions in the Manufacturer domain are all marked asAllowed (see MIDP 2.0 for the definition).
Permissions granted by the Manufacturer domain asAllowed imply that downloaded and authenticated
manufacturer MIDlets suites perform consistently with MIDlets suites pre-installed by the manufacturer
terms of security and prompts to the user whenever events that require user acknowledgement occur.
Manufacturer MIDlets SHOULD seek permission from the user when accessing security vulnerable API
functions. Permissions defined by MIDP 2.0 and other APIs give the guidelines of which functions are s
security vulnerable and need protection.

At MIDlet suite installation, an implementation MUST present the user with theOrganisation andCountry
fields within the Subject field of the manufacturer Protection Domain Root Certificate if theOrganisation and
Countryfields are present. If theOrganisationandCountryfields are absent, the implementation MUST prese
the user with other appropriate information from the Subject field. An implementation MAY also present
user with additional information in the Subject field other thanOrganisationandCountryin all cases. This user
notification MUST take place at application installation.

The Manufacturer domain imposes no restriction on the capabilities specified in the MIDP 2.0 and other

3.2 Operator Domain
A trusted operator Protection Domain Root Certificate is used to verify operator MIDlet suites. There is n
explicit limitation on the number of operator trusted Protection Domain Root Certificates available at the
specified location in the SIM, USIM or WIM. Trusted operator Protection Domain Root Certificates MUS
mapped on to the security policy for the Operator domain on the device. A device MUST support the se
policy for the Operator domain.

If an operator Protection Domain Root Certificate is NOT available on the specified location in the SIM, U
or WIM; the operator domain MUST be disabled.

Trusted Protection Domain Root Certificates are read from the Certificate Directory File (CDF) for truste
certificates [WIM]. Protection Domain Root Certificate found in the trustedCertificates file on the WIM ar
mapped onto the Operator domain or onto the Trusted Third Party domain, depending on the trustedUsa
in the CommonCertificateAttributes associated with the certificate [PKCS#15]:

If the trustedUsage field is present and contains the OID for key usage
˝iso(1)org(3)dod(6)internet(1)private(4)enterprises(1)sun(42)
products(2)javaXMLsoftware(110)midp(2)spec(2)gsm-policy(2)operator(1)˝, then the certificate is to
be mapped onto the Operator domain.
503

The Recommended Security Policy for GSM/UMTS Compliant Devices

en the

e

main
y) and

other

 was

m any

e

s

 of
IDlets

ssions
urity

in the

e
issued.
pute
d
cially

mpute
ld be

s no
r on

y
e are
ed
If the trustedUsage field is not present, or does not contain the OID for key usage ˝Operator Domain˝, th
certificate is to be mapped onto the Trusted Third Party domain.

Operator trusted Protection Domain Root Certificates may be placed in the trustedCertificates Certificat
Directory File (CDF) of a WIM, SIM, or USIM. If operator Protection Domain Root Certificates are stored
directly on a SIM or USIM, that is, not under the WIM application, then they shall be stored in the EF
trustedCertificates CDF located under DF(PKCS#15), as defined by [SCPROV]. Operator Protection Do
Root Certificates can be obtained only from the trusted CDF (the card holder can not update this director
not from any other directory of the smart card.

All operator Protection Domain Root Certificates MUST be mapped onto the same security policy for the
operator domain on the device. The Operator domain cannot be deleted or modified by the user or any
party, except by a device provisioned capability.

A signed and authenticated MIDlet suite MUST be authorized to the Operator domain if the MIDlet suite
authenticated to the operator Protection Domain Root Certificate. The operator root public key MUST be
obtained from a certificate in the trusted CDF of a currently inserted and enabled smart card and not fro
other location on the smart card or on the device. At MIDlet suite installation, an implementation MUST
present the user with theOrganisation andCountryfields within theSubjectfield of the operator Protection
Domain Root Certificate if theOrganisation andCountry fields are present. If theOrganisation andCountry
fields are absent, the implementation MUST present the user with other appropriate information from th
Subject field. An implementation MAY also present the user with additional information in theSubjectfield
other thanOrganisation andCountry in all cases.This user notification MUST take place at application
installation.

The security policy for the operator domain MUST contain all permissions implemented on the device a
“Allowed”. Permissions granted by the Operator domain asAllowed imply that downloaded and authenticated
operator MIDlets suites perform consistently with other MIDlets suites installed by the operator in terms
security and prompts to the user whenever events that require user acknowledgement occur. Operator M
SHOULD seek permission from the user when accessing security vulnerable APIs and functions. Permi
defined by MIDP 2.0 and other APIs provide guidelines as to which APIs and functions are seen as sec
vulnerable and need protection. The Operator domain imposes no restriction on the capabilities specified
MIDP 2.0 and other JSRs.

MIDlet suites installed in the Operator domain MUST store, along with the application itself, a hash of th
Protection Domain Root Certificate under which the signing certificate used to sign the application was
The hash algorithm to be used is the following, starting with the Protection Domain Root Certificate, com
the 20-byte SHA-1 hash of the value of the BIT STRING subjectPublicKey (excluding the tag, length, an
number of unused bits) of that certificate. This method is commonly used to compute key identifiers, espe
to accelerate trust chain building [RFC3280, §4.2.1.2]. The implementation MUST NOT assume for
optimization purposes that X.509 key identifiers or PKCS#15 labels are the correct value; and MUST co
the hash themselves. This hash MUST be used by the device to decide when a given MIDlet suite shou
disabled, as specified in Section 8.

3.3 Trusted Third Party Domain
A trusted third party Protection Domain Root Certificate is used to verify third party MIDlet suites. There i
explicit limitation on the number of trusted third party Protection Domain Root Certificates available eithe
the device or at the specified location in the SIM, USIM or WIM (see section 3.2). A trusted third party
Protection Domain Root Certificates MUST be mapped on to the security policy for the trusted third part
domain on the device. A device MUST support the security policy for the trusted third party domain. If ther
no trusted third party Protection Domain Root Certificates available either on the device or at the specifi
location in the SIM, USIM or WIM; the trusted third party domain MUST be disabled.
504

The Recommended Security Policy for GSM/UMTS
Compliant Devices

d for
oot

ith

to an

 third
f the
tion

 to
d or

er be
tection
d to it.

ission
s and

 the
t the

ased on

075
e

AY
mple,

e user
xtField

ted
.

edia.
licy
tion.
Third party Protection Domain Root Certificates downloaded after device manufacture MUST NOT be use
authentication of MIDlet suites. This does NOT prevent obtaining trusted third party Protection Domain R
Certificates from the specified location in the SIM, USIM, WIM.

At MIDlet suite installation, an implementation MUST present the user with theOrganisation andCountry
fields within theSubject field of the signing certificate of a MIDlet suite if theOrganisation andCountry fields
are present. If theOrganisation andCountry fields are absent, the implementation MUST present the user w
other appropriate information from theSubject field. An implementation MAY also present the user with
additional information in theSubject field other thanOrganisation andCountry in all cases. This user
notification MUST take place at MIDlet suite installation. When the user is prompted to grant permissions
application, the prompt MUST identify the trusted source with the appropriate fields withinSubject field of the
signing certificate as stated above.

The user MUST be able to delete or disable trusted third party Protection Domain Root Certificates. If a
party Protection Domain Root Certificate is to be deleted, the implementation SHOULD warn the user o
consequence of the deletion adequately. The user MUST be able to enable a disabled third party Protec
Domain Root Certificate. A disabled third party Protection Domain Root Certificate MUST NOT be used
verify downloaded MIDlet suites. Furthermore, if a third party Protection Domain Root Certificate is delete
disabled (for example, revoked, deleted, or disabled by the user) the Third Party domain MUST no long
associated with this Protection Domain Root Certificate. If the user chooses to delete or disable the Pro
Domain Root Certificate, implementation may provide an option to delete the MIDlet suites authenticate

The security policy for trusted third party domain MUST NOT granted any permissions on the device as
Allowed.All permissions granted by the Third Party domainMUST beUserpermissions, that is, user interaction
is required for permission to be granted. Table 1 specifies the function groups and the available user perm
types for MIDlet suites in the Third Party domain. Tables 2 through 6 specify the mapping of permission
APIs onto different function groups.

3.4 Untrusted Domain
MIDlets suites that are unsigned will belong to the Untrusted domain. The implementation MUST inform
user whenever a new MIDlet suite is installed in the Untrusted domain. The notification MUST indicate tha
application does not come from a trusted source. The user must be able to make an informed decision b
the available information before granting permissions to an application.

When the user is prompted to grant permissions to an application, the prompt MUST indicate that the
application does not come from a trusted source.

Untrusted MIDlets suites MUST NOT gain read access directly to PIM data through the API defined in JSR
(see Tables 1 and 3 in Section 5). Interactions between an untrusted application and the PIM data can b
enabled, however, by implementations of the javax.microedition.lcdui package: when the application
programmer sets the constraint TextField.PHONENUMBER, an implementation of the TextField class M
propose that the user look up a number in his or her phone book and copy it to the TextField item. For exa
when the TextField item has input focus, the user can access a menu to enter the phone book; when th
selects an entry in the phone book, the contents of the selected entry are “copied and pasted” into the Te
item.

Table 1 specifies the function groups and the available user permissions for MIDlets suites in the Untrus
domain. Tables 2 through 6 specify the mapping of permissions and APIs onto different function groups

4 Remotely Located Security Policy
The MIDP 2.0 specification defines the generic format for a policy file that can be read from removable m
GSM/UMTS compliant devices are not expected to use it in the first phase, but rather to use security po
resident on the device. The possibility of remotely located security policy files is left for further considera
505

The Recommended Security Policy for GSM/UMTS Compliant Devices

tion

n
 capture
 are as

ection

s (for

 to

er

ility

ility

ility

up. In
ork
tion is
 MUST

 added
ing a

mpted.
t suite.

 The
e at the

ether,
other
oups is
ment
5 Permissions for Downloaded MIDlet Suites

5.1 Mapping MIDP 2.0 Permissions onto Function Groups in Protected Domains
A device with a small display may not be able to present all permissions to the user in a single configura
settings menu in a user friendly manner. Therefore the device is not required to present all individual
permissions for user confirmation. Rather, a certain higher-level action triggered by the protected functio
should be brought to the user for acceptance. The high level functions presented to the user essentially
and reflect the actions and consequences of the underlying individual permissions. The function groups
follows:

Network/cost-related groups:

Phone Call ˝ the group represents permissions to any function that results in a voice call.

Net Access̋ the group represents permissions to any function that results in an active network data conn
(for example GSM, GPRS, UMTS, etc.); such functions must be mapped to this group.

Messaging ˝ the group represents permissions to any function that allows sending or receiving message
example, SMS, MMS, etc.)

Application Auto Invocation ˝ the group represents permissions to any function that allows a MIDlet suite
be invoked automatically (for example, push, timed MIDlets, etc.)

Local Connectivity ˝ the group represents permissions to any function that activates a local port for furth
connection (for example, COMM port, IrDa, Bluetooth, etc.)

User-privacy-related groups:

Multimedia recording ˝ the group represents permissions to any function that gives a MIDlet suite the ab
to capture still images, or to record video or audio clips.

Read User Data Access̋ the group represents permissions to any function that gives a MIDlet suite the ab
to read a user’s phone book, or any other data in a file or directory.

Write User Data Access̋ the group represents permissions to any function that gives a MIDlet suite the ab
to add or modify a user’s phone book, or any other data in a file or directory.

Whenever new features are added to the MIDP they should be assigned to the appropriate function gro
addition, APIs that are specified elsewhere (that is, in other JSRs) but rely on the MIDP security framew
should also be assigned to an appropriate function group. If none of the function groups defined in this sec
able to capture the new feature and reflect it to the user adequately, however, then a new function group
be defined in this document.

If a new function group is to be added, the following should be taken into consideration: the group to be
MUST not introduce any redundancy to the existing groups, the new group MUST be capable of protect
wide range of similar features. The latter requirement is to prevent introducing narrowly scoped groups.

It is the function groups and not the individual permissions that should be presented when the user is pro
Furthermore, it is the function groups that should be presented to the user in the settings of a given MIDle

Table 1 presents the policy that must be enforced using the security framework as defined in MIDP 2.0.
table specifies the available permission settings for each function group defined. Settings that are effectiv
time the MIDlet suite is invoked for the first time, and remain effective until the user changes them in the
MIDlet suite’s configuration menu, are called “default settings.” Settings available to the user in the
configuration menu, to which the user can change from a default setting, are called “other settings.” Tog
default and other settings form a pool of available configuration settings for the MIDlet suite. Default and
settings are presented for each function group and each protection domain. The naming of the function gr
implementation specific but MUST follow the guidelines of the function group names defined in this docu
as well as the definitions of these groups.
506

The Recommended Security Policy for GSM/UMTS
Compliant Devices

the
p.

d as
Tables 2 through 5 present individual permissions defined in the MIDP 2.0 and other JSRs, and map to
function groups specified in this section. An individual permission MUST occur in only one function grou

It is recommended that the manufacturer and operator trusted MIDlets suites adhere to the permission
guidelines provided in the tables, and present appropriate prompts to the user for the functions identifie
security protected.

Table 1: Function groups and user settings

Function group Trusted Third Party
domain

Untrusted domain

Phone Call default
setting

Oneshot default setting Oneshot

other
settings

No other settings No

Net Access default
setting

Session default setting Oneshot

other
settings

Oneshot,
Blanket, No

other settings Session, No

Messaging default
setting

Oneshot default setting Oneshot

other
settings

No other settings No

Application Auto
Invocation

default
setting

Session default setting Session

other
settings

Oneshot,
Session,
Blanket, No

other settings Oneshot, No

Local
Connectivity

default
setting

Session default setting Session

other
settings

Blanket, No other settings Blanket, No

Multimedia
recording

default
setting

Session default setting Oneshot

other
settings

Blanket, No other settings Session, No

Read User Data
Access

default
setting

Oneshot default setting No

other
settings

Session,
Blanket, No

other settings No

Write User Data
Access

default
setting

Oneshot default setting Oneshot

other
settings

Session,
Blanket, No

other settings No
507

The Recommended Security Policy for GSM/UMTS Compliant Devices

ings
ST
e user
 Such a
 saved
d

r. For

t

dia

ording

re
a

ket”
nd

tion
ps a
y), the

e

MID

Perm

javax

javax

javax

javax

javax

javax

javax

javax

javax tion
The device MAY enhance and simplify the user experience by applying a single set of configuration sett
(default or other), not just to a single MIDlet suite, but to all MIDlet suites for a given signer. This option MU
NOT compromise the function groups and available settings defined in Table 1. If such an option exists, th
will be prompted to save the settings and reuse them in future for MIDlets suites from the same source.
feature MAY also inform the user that a given source has already been accepted and has an alias to the
configuration settings. For each trusted or untrusted application, the implementation MAY read requeste
permissions from the MIDlet-Permissions and MIDlet-PermissionsOpt attributes, notify the user which
capability the application requires, and prompt the user to accept or reject installation of the application.

Blanket permission given for some combinations of Function groups can lead to higher risks for the use
MIDlet suites in the Third Party domain the user MUST be notified of the higher risk involved and also
acknowledge that this risk is accepted to allow such combinations to be set. The combination of Blanke
permission in Function groups where this applies is:

• Any of Net Access, Messaging or Local Connectivity set to Blanket in combination with any of Multime
recording or Read User Data Access set to Blanket

This restriction need not apply to the Untrusted domain, since these combinations would be forbidden acc
to table 1.

Additionally, the Blanket setting for Application Auto Invocation and the Blanket setting for Net Access a
mutually exclusive. This constraint is to prevent a MIDlet suite from auto-invoking itself, then accessing
chargeable network without the user being aware. If the user attempts to set either the Application Auto
Invocation or the Network Function group to “Blanket” when the other Function group is already in “Blan
mode, the user MUST be prompted as to which of the two Function groups shall be granted “Blanket” a
which Function group shall be granted “Session”.

For each Phone Call and Messaging action, the implementation MUST present the user with the destina
phone number before the user approves the action. For the Messaging group, if the implementation ma
single API call to more than one message (that is, the implementation supports disassembly/reassembl
implementation MUST present the user with the number of messages that will actually be sent out. This
requirement is to ensure that the user always understands the network costs associated with running th
program, whatever API calls are involved.

Table 2: Assigning permissions specified in MIDP 2.0 to function groups

P 2.0 ˝JSR 118

ission Protocol Function group

.microedition.io.Connector.http http Net Access

.microedition.io.Connector.https https Net Access

.microedition.io.Connector.datagram datagram Net Access

.microedition.io.Connector.datagramreceiver datagram server (without host) Net Access

.microedition.io.Connector.socket socket Net Access

.microedition.io.Connector.serversocket server socket (without host) Net Access

.microedition.io.Connector.ssl ssl Net Access

.microedition.io.Connector.comm comm Local Connectivity

.microedition.io.PushRegistry All Application Auto Invoca
508

The Recommended Security Policy for GSM/UMTS
Compliant Devices

ent

kage.

 has
enever

MUST

P

S
P

ja

c

ja

c

ja

e

ja

e

ja

t

ja

t

Table 3: Assigning proposed permissions and API calls specified in the Personal Information Managem
Package of the PDA Profile to function groups

Table 3 Editor’s Note: The necessary permissions to protect the PIM API are not specified in the PIM pac
This table will be updated once these changes are incorporated into the PIM API package.

The implementation MUST ensure that the user is informed of the nature of the user data an application
access to (for instance, events or to-do lists) before allowing the application access to these functions. Wh
a MIDlet adds, deletes or updates a PIM entry under the Oneshot permission type, the implementation
display it to the user for acknowledgement.

DAP PIM Package API (JSR75)

ecurity Policy Identifier (Proposed
ermission)

Permitted Java API Calls Function group

vax.microedition.pim.PIM.

ontact.readonly

PIM.listContactLists()

PIM.openContactList(READ_ONLY)
PIM.openContactList(READ_ONLY, listName)

Read User Data Access

vax.microedition.pim.PIM.

ontact.readwrite

PIM.listContactLists()

PIM.openContactList(READ_ONLY)
PIM.openContactList(READ_WRITE)
PIM.openContactList(READ_ONLY, listName)
PIM.openContactList(READ_WRITE,
listName)

Write User Data Access

vax.microedition.pim.PIM.

vent.readonly

PIM.listEventLists()

PIM.openEventList(READ_ONLY)
PIM.openEventList(READ_ONLY, listName)

Read User Data Access

vax.microedition.pim.PIM.

vent.readwrite

PIM.listEventLists()

PIM.openEventList(READ_ONLY)
PIM.openEventList(READ_WRITE)
PIM.openEventList(READ_ONLY, listName)
PIM.openEventList(READ_WRITE, listName)

Write User Data Access

vax.microedition.pim.PIM.

odo.readonly

PIM.listToDoLists()

PIM.openToDoList(READ_ONLY)
PIM.openToDoList(READ_ONLY, listName)

Read User Data Access

vax.microedition.pim.PIM.

odo.readwrite

PIM.listToDoLists()

PIM.openToDoList(READ_ONLY)
PIM.openToDoList(READ_WRITE)
PIM.openToDoList(READ_ONLY, listName)
PIM.openToDoList(READ_WRITE, listName)

Write User Data Access
509

The Recommended Security Policy for GSM/UMTS Compliant Devices

tion

Bluetoo

Securit
Permis

javax.m
oth.clie

javax.m
lient

javax.m
lient.tcp

javax.m
oth.ser

javax.m
erver

javax.m
erver.tc

Wire

Secu
Perm

javax
send

javax
recei

javax

javax
eceiv
Table 4: Assigning proposed permissions and API calls specified in the Bluetooth API to function groups

Table 4 Editor’s Note: The permissions proposed for Bluetooth API are yet to be defined in JSR82.

Table 5: Assigning proposed permissions and API calls specified in the Wireless Messaging API to func
groups

th API˝ JSR 82

y Policy Identifier (Proposed
sion)

Permitted API calls Function group

icroedition.io.Connector.blueto
nt

Connector.open(˝btspp://<server BD_ADDR>˝˝)
Connector.open(˝btl2cap://<server BD_ADDR>˝˝)

Local Connectivity

icroedition.io.Connector.obex.cConnector.open(˝btgoep://<server BD_ADDR>˝˝)
Connector.open(˝irdaobex://discover˝˝)
Connector.open(˝irdaobex://addr˝˝)
Connector.open(˝irdaobex://conn˝˝)
Connector.open(˝irdaobex://name˝˝)

Local Connectivity

icroedition.io.Connector.obex.cConnector.open(˝tcpobex://<server IP_ADDR>˝˝) Net Access

icroedition.io.Connector.blueto
ver

Connector.open(˝btspp://localhost:˝˝)
Connector.open(˝btl2cap://localhost:˝˝)

Local Connectivity

icroedition.io.Connector.obex.sConnector.open(˝btgoep://localhost:˝˝)
Connector.open(˝irdaobex://localhost:˝˝)

Local Connectivity

icroedition.io.Connector.obex.s
p

Connector.open(˝tcpobex://:<PORT>˝)
Connector.open(˝tcpobex://˝)

Net Access

less Messaging API̋ JSR 120

rity Policy Identifier (Proposed
ission)

Permitted API calls Function group

.microedition.io.Connector.sms.Connector.open(“sms://˝”, WRITE)
Connector.open(“sms://˝”, WRITE, Bool)

Messaging

.microedition.io.Connector.sms.
ve

Connector.open(“sms://˝”, READ)
Connector.open(“sms://˝”, READ, Bool)

Messaging

.microedition.io.Connector.sms Connector.open(“sms://˝”)
Connector.open(“sms://˝”, READ)
Connector.open(“sms://˝”, READ, Bool)
Connector.open(“sms://˝”, WRITE)
Connector.open(“sms://˝”, WRITE, Bool)
Connector.open(“sms://˝”, READ_WRITE)
Connector.open(“sms://˝”, READ_WRITE, Bool)

Messaging

.microedition.io.Connector.cbs.r
e

Connector.open(“cbs://˝”)
Connector.open(“cbs://˝”, READ)
Connector.open(“cbs://˝”, READ, Bool)

Messaging/p>
510

The Recommended Security Policy for GSM/UMTS
Compliant Devices

oups

 player
P.

al

he

 that
 the user
plies to
nctions
o all

 trusted

l have

Mobile

Securi
Permis

javax.m
cord

javax.m
hot
Table 5 Editor’s Note: The permissions for Wireless Messaging API are yet to be defined in JSR120.

Table 6: Assigning proposed permissions and API calls specified in the Mobile Media API to function gr

Table 6 Editor’s Note: The permissions for Mobile Media API are yet to be defined in JSR135.

Implementations MUST ensure that I/O access from the Mobile Media API follows the same security
requirements as the Generic Connection Framework, as specified in the package documentation for
javax.microedition.io. Example methods include javax.microedition.media.Player.start,
javax.microedition.media.Player.prefetch, etc. When these methods are used to fetch the content for the
via an HTTP connection, the implementation MUST enforce the security requirements specified for HTT

5.2 Implementation notes:
When the user grants permission to a function group, this action effectively grants access to all individu
permissions under this function group.

An implementation MUST guarantee that a SecurityException is thrown when the caller does not have t
appropriate security permissions.

If a messaging group is granted a Oneshot permission, it translates into a Blanket permission for
javax.microedition.io.Connector.sms and javax.microedition.io.Connector.cbs, as well as to permissions
enable receiving the messages. Permission for sending the messages is still Oneshot, however; that is,
grants permission to each message sent out by the MIDlet suite within an open connection. The same ap
the Session permission: functions related to sending the messages get Session permission, but other fu
get Blanket permission.“ Blanket permission and No permission granted to the Messaging group apply t
individual permissions under this group.

If a MIDlet uses the capabilities defined in MIDP and other APIs, the following rules MUST apply:

• All the external API functions that need to be protected by MIDP 2.0 security framework MUST have
permissions defined in the subsequent JSRs, and follow the naming rules identified in the MIDP 2.0
Specification, titled “Security for MIDP Applications.”

• The functions that are not deemed security-protected by specification can be accessed explicitly by
and untrusted MIDlet suites, as per general MIDP security rules.

• If an external API does not define permissions for security-protected functions because the API
specification is released earlier than MIDP 2.0, any functions that relate to network access MUST stil
the user prompt implemented by the device.

• A device cannot access the network without appropriate user notification.

• All licensee open classes MUST adhere to the permission framework as defined in this document.

 Media API ˝JSR 135

ty Policy Identifier (Proposed
sions)

Permitted API calls Function group

icroedition.media.RecordControl.startReRecordControl.startRecord () Multimedia recording

icroedition.media.VideoControl.getSnapsVideoControl.getSnapshot (˝) Multimedia recording
511

The Recommended Security Policy for GSM/UMTS Compliant Devices

e
h
is

g is
ailable
 entire

gs for

let

.

imum

suer,
e with

r.

ceded
mber

ST be

ttings

he
6 Permissions Granted to a MIDlet Suite by the Authorization Mechanism
As defined in the “Security for MIDP Applications” section of the MIDP 2.0 specification, MIDlet suite
permissions are effectively the intersection of the domain permissions Midlet-Permission and Midlet-
Permission-Opt found in the JAR manifest. The way in which a MIDlet suite’s granted permissions are
presented to the user is implementation-specific, but the following rules must apply:

• The user must be able to change the default permission setting (provided they in accordance with th
implementation notes in section 5.2) to any setting available for a given MIDlet suite permission, wit
default and available sets of user permission types provided as guides in the tables in Section 5. Th
latitude will allow the user to upgrade or downgrade the default permissions as required.

• If MIDlet permissions are grouped according to capabilities they represent, permissions granted to a
MIDlet suite will be rendered into the function groups to be presented to the user. If function groupin
used, default permission applies to the whole group of permissions under the group. So does the av
set of types of user permissions. If the default permission is changed, the change is effective for the
group at once rather than to the individual permissions under this group.

• A function group cannot be a union of permissions with different default settings and other settings.
Therefore the tables in Section 5 follow the convention of having the same default and available settin
all permissions in a single function group. This rule must be taken into account when designing new
permissions and policies.

A device MUST maintain security related data for each installed MIDlet suite, in addition to generic MID
suite information such as MIDlet suite name and version number. The data MUST include at least the
following:

• The signer of the MIDlet suite, i.e. theSubjectfield in the signing certificate, if the MIDlet suite was signed
At least MIDlet-Vendor MUST be stored along with the installed MIDlet suite.

• Data related to the Protection Domain Root Certificate a signed MIDlet was authenticated to; at min
the Subject field of the Protection Domain Root Certificate.

• Data related to a signer certificate that signed the MIDlet suite; at minimum the certificate’s Subject, Is
and Serial Number fields. (As an alternative, a device may store the entire certificate chain that cam
the MIDlet descriptor file.)

• A list of permissions granted to the MIDlet suite.

A device MUST be able to present information related to the application signer in a user-friendly manne

7 User Prompts and Notifications
The following rules MUST be followed in order to ensure informed user consent to MIDlet actions:

• Any chargeable event generated by a MIDlet in the Third Party and Untrusted domains MUST be pre
by user notification in accordance with user permission settings, for example, showing the phone nu
the MIDlet is dialling, the URL being connected to, or the recipient of an SMS.

• Any chargeable event in progress (for example, peer-to-peer connection the user is charged for) MU
indicated to the user.

• A MIDlet MUST get user approval to connect to the network, in accordance with user permission se
of the policy.

• Any MIDlet permissions must be presented to the user in an intuitive, user-friendly manner.

• A MIDlet MUST not be able to override security prompts and notifications to the user generated by t
system or virtual machine.
512

The Recommended Security Policy for GSM/UMTS
Compliant Devices

the

ird

s
ilure

sted

g the
on 3.2,

hash”
g the

ain
rator-

,
 (as

 the
puted

to one

one of

e is
e new
d 2
to be

T be
cate.
ficate
• A MIDlet MUST not be able to simulate security warnings to mislead the user.

• A MIDlet MUST not be able to simulate key-press events to mislead the user.

8 MIDlet Download and Execution While Roaming and After Changing the Smart Card
All previously authorized and installed MIDlet suites MUST act in accordance with the device policy when
device is roaming, or when the device smart card is changed. Newly downloaded MIDlet suites are
authenticated to a Protection Domain Root Certificate currently available either on the device (only for th
party applications) or at the specified location in the SIM, USIM or WIM (for operator and third party
applications) and are authorized in accordance with the device policy.

If device roaming or a smart card change causes failure to access network resources that the MIDlet wa
previously authorized to access, then the implementation MUST NOT throw a SecurityException. This fa
is not related to MIDlet suite authorization, so the implementation MUST throw an IOException instead.

The permissions assigned to MIDlet suites installed in the Manufacturer, Trusted Third Party, and Untru
domains are not affected by changes of the (U)ICC [(U)ICC], but MIDlet suites installed in the Operator
domain MUST NOT execute if, after a smart card change, the SIM no longer holds the certificate containin
operator root public key that was used to authenticate the MIDlet suite to the Operator domain (see Secti
“Operator Domain”).

Whether a MIDlet suite in the Operator domain can be executed depends on a comparison of “root key
values, computed as the 20-byte SHA-1 hash of the value of the BIT STRING subjectPublicKey (excludin
tag, length, and number of unused bits) of a Protection Domain Root Certificate. The decision process
SHOULD follow the following mechanism:

• When a MIDlet is installed in the Operator domain, it is signed by a certificate whose certification ch
ends with the authenticating Protection Domain Root Certificate, stored in the smart card with the Ope
domain key-usage field. The 20-byte SHA-1 hash of the value of the BIT STRING subjectPublicKey
(excluding the tag, length, and number of unused bits) from that Protection Domain Root Certificate
termed the “authenticating root key hash” of the MIDlet, is stored in the device along with the MIDlet
specified in Section 3.2).

• Whenever the smart card is changed, the 20-byte SHA-1 hash of the value of the BIT STRING
subjectPublicKey (excluding the tag, length, and number of unused bits) of each certificate stored in
new smart card with the Operator-domain key-usage field (Operator-domain root key hashes) is com
and stored before any MIDlet in the Operator domain is executed.

• A MIDlet in the Operator domain is disabled if its authenticating root key hash does not correspond
of the new Operator-domain root key hashes generated after the smart card was changed.

Note: In this mechanism, there are two steps the device performs after the smart card has changed:

1. compute the new Operator domain root key hashes

2. for each MIDlet suite in the Operator domain, check whether its authenticating root key hash match
the new Operator domain root key hashes.

An implementation MAY perform these two steps at any time, provided NO Operator domain MIDlet suit
executed after a smartcard change if its authenticating root key hash does NOT correspond to one of th
Operator-domain root key hashes. Step 2 MAY be performed right after Step 1; alternatively, Steps 1 an
MAY be separated in time, in which case the implementation SHOULD store the results of Step 1 securely
used in in Step 2 at a later time.

If the Operator Protection Domain Root Certificate is not present at the specified location, the user MUS
informed that the application cannot be executed without the authorizing Protection Domain Root Certifi
The device SHOULD also give the user the option to get information on the Protection Domain Root Certi
513

The Recommended Security Policy for GSM/UMTS Compliant Devices

 the

n the
lets

IDlet
could
ble to
that was used to authenticate the application to the Operator domain. This information SHOULD include
Subject field of the root certificate.

Although it is mandatory only to check whether authenticating roots are still present in the smart card whe
smart card is changed, an implementation MAY check on more occasions, and accordingly disable MID
suites in the Operator domain as specified above. If a MIDlet suite cannot be executed because the
authenticating Operator Protection Domain Root Certificate is absent, the device MUST NOT delete the M
suite. The device MAY inform the user in advance via an appropriate mechanism whether a MIDlet suite
execute or not, for example using a “disabled” look and feel in the display. However, the user MUST be a
delete these disabled MIDlets suites.
514

515

hods and

lements

each
ALMANAC LEGEND
The almanac presents classes and intefaces in alphabetic order, regardless of their package. Fields, met
constructors are in alphabetic order in a single list.

This almanac is modeled after the style introduced by Patrick Chan in his excellent bookJava Developers
Almanac.

1. Name of the class, interface, nested class or nested interface. Interfaces are italic.

2. Name of the package containing the class or interface.

3. Inheritance hierarchy. In this example,RealtimeThread extendsThread , which extendsObject .

4. Implemented interfaces. The interface is to the right of, and on the same line as, the class that imp
it. In this example,Thread implementsRunnable , andRealtimeThread implements
Schedulable .

5. The first column above is for the value of the@since comment, which indicates the version in which the
item was introduced.

6. The second column above is for the following icons. If the “protected” symbol does not appear, the
member is public. (Private and package-private modifiers also have no symbols.) One symbol from
group can appear in this column.

7. Return type of a method or declared type of a field. Blank for constructors.

8. Name of the constructor, field or method. Nested classes are listed in 1, not here.

Modifiers
❍ abstract
● final
❏ static
■ static final

Access Modifiers
♦protected

Constructors and Fields
❉ constructor
✍ field

Object
➥Thread Runnable

➥ RealtimeThread Schedulable

RealtimeThread javax.realtime

void addToFeasibility()
RealtimeThread currentRealtimeThread()

Scheduler getScheduler()
❉ RealtimeThread()
❉ RealtimeThread(SchedulingParameters scheduling)
❏ void sleep(Clock clock, HighResolutionTime time)

➊ ➋

➌
➍

➎ ➏

➐ ➑

➘➘

➙
➙

➘

➚

➘
1.3 ❏

1.3

throws InterruptedException➚
516

Almanac

Object
➥Displayable

➥Screen
➥Alert

Object
➥AlertType

Alert javax.microedition.lcdui

void addCommand(Command cmd)

❉ Alert(String title)

❉ Alert(String title, String alertText, Image alertImage,
AlertType alertType)

midp 2.0 ✍■ Command DISMISS_COMMAND

✍■ int FOREVER

int getDefaultTimeout()

Image getImage()

midp 2.0 Gauge getIndicator()

String getString()

int getTimeout()

AlertType getType()

void removeCommand(Command cmd)

void setCommandListener(CommandListener l)

void setImage(Image img)

midp 2.0 void setIndicator(Gauge indicator)

void setString(String str)

void setTimeout(int time)

void setType(AlertType type)

AlertType javax.microedition.lcdui

✍■ AlertType ALARM

❉♦ AlertType()

✍■ AlertType CONFIRMATION

✍■ AlertType ERROR

✍■ AlertType INFO

boolean playSound(Display display)

✍■ AlertType WARNING
517

Almanac
Object
➥Displayable

➥Canvas

Canvas javax.microedition.lcdui

❉♦ Canvas()

✍■ int DOWN

✍■ int FIRE

✍■ int GAME_A

✍■ int GAME_B

✍■ int GAME_C

✍■ int GAME_D

int getGameAction(int keyCode)

int getHeight()

int getKeyCode(int gameAction)

String getKeyName(int keyCode)

int getWidth()

boolean hasPointerEvents()

boolean hasPointerMotionEvents()

boolean hasRepeatEvents()

♦ void hideNotify()

boolean isDoubleBuffered()

✍■ int KEY_NUM0

✍■ int KEY_NUM1

✍■ int KEY_NUM2

✍■ int KEY_NUM3

✍■ int KEY_NUM4

✍■ int KEY_NUM5

✍■ int KEY_NUM6

✍■ int KEY_NUM7

✍■ int KEY_NUM8

✍■ int KEY_NUM9

✍■ int KEY_POUND

✍■ int KEY_STAR

♦ void keyPressed(int keyCode)

♦ void keyReleased(int keyCode)

♦ void keyRepeated(int keyCode)

✍■ int LEFT

❍♦ void paint(Graphics g)

♦ void pointerDragged(int x, int y)

♦ void pointerPressed(int x, int y)

♦ void pointerReleased(int x, int y)

● void repaint()

● void repaint(int x, int y, int width, int height)

✍■ int RIGHT

● void serviceRepaints()
518

Almanac
Certificate

Object
➥Throwable

➥Exception
➥java.io.IOException

➥CertificateException

midp 2.0 void setFullScreenMode(boolean mode)

♦ void showNotify()

midp 2.0 ♦ void sizeChanged(int w, int h)

✍■ int UP

Certificate javax.microedition.pki

String getIssuer()

long getNotAfter()

long getNotBefore()

String getSerialNumber()

String getSigAlgName()

String getSubject()

String getType()

String getVersion()

CertificateException javax.microedition.pki

✍■ byte BAD_EXTENSIONS

✍■ byte BROKEN_CHAIN

✍■ byte CERTIFICATE_CHAIN_TOO_LONG

❉ CertificateException(Certificate certificate, byte status)

❉ CertificateException(String message, Certificate certificate,
byte status)

✍■ byte EXPIRED

Certificate getCertificate()

byte getReason()

✍■ byte INAPPROPRIATE_KEY_USAGE

✍■ byte MISSING_SIGNATURE

✍■ byte NOT_YET_VALID

✍■ byte ROOT_CA_EXPIRED

✍■ byte SITENAME_MISMATCH

✍■ byte UNAUTHORIZED_INTERMEDIATE_CA

✍■ byte UNRECOGNIZED_ISSUER

✍■ byte UNSUPPORTED_PUBLIC_KEY_TYPE

✍■ byte UNSUPPORTED_SIGALG

✍■ byte VERIFICATION_FAILED
519

Almanac
Choice

Object
➥Item

➥ChoiceGroup Choice

Choice javax.microedition.lcdui

int append(String stringPart, Image imagePart)

void delete(int elementNum)

midp 2.0 void deleteAll()

✍■ int EXCLUSIVE

midp 2.0 int getFitPolicy()

midp 2.0 Font getFont(int elementNum)

Image getImage(int elementNum)

int getSelectedFlags(boolean[] selectedArray_return)

int getSelectedIndex()

String getString(int elementNum)

✍■ int IMPLICIT

void insert(int elementNum, String stringPart, Image imagePart)

boolean isSelected(int elementNum)

✍■ int MULTIPLE

midp 2.0 ✍■ int POPUP

void set(int elementNum, String stringPart, Image imagePart)

midp 2.0 void setFitPolicy(int fitPolicy)

midp 2.0 void setFont(int elementNum, Font font)

void setSelectedFlags(boolean[] selectedArray)

void setSelectedIndex(int elementNum, boolean selected)

int size()

midp 2.0 ✍■ int TEXT_WRAP_DEFAULT

midp 2.0 ✍■ int TEXT_WRAP_OFF

midp 2.0 ✍■ int TEXT_WRAP_ON

ChoiceGroup javax.microedition.lcdui

int append(String stringPart, Image imagePart)

❉ ChoiceGroup(String label, int choiceType)

❉ ChoiceGroup(String label, int choiceType, String stringElements,
Image imageElements)

void delete(int elementNum)

void deleteAll()

midp 2.0 int getFitPolicy()

midp 2.0 Font getFont(int elementNum)

Image getImage(int elementNum)

int getSelectedFlags(boolean[] selectedArray_return)

int getSelectedIndex()

String getString(int elementNum)

void insert(int elementNum, String stringPart, Image imagePart)

boolean isSelected(int elementNum)
520

Almanac
Object
➥Command

CommandListener

CommConnection StreamConnection

Object
➥Connector

void set(int elementNum, String stringPart, Image imagePart)

midp 2.0 void setFitPolicy(int fitPolicy)

midp 2.0 void setFont(int elementNum, Font font)

void setSelectedFlags(boolean[] selectedArray)

void setSelectedIndex(int elementNum, boolean selected)

int size()

Command javax.microedition.lcdui

✍■ int BACK

✍■ int CANCEL

❉ Command(String label, int commandType, int priority)

midp 2.0 ❉ Command(String shortLabel, String longLabel, int commandType,
int priority)

✍■ int EXIT

int getCommandType()

String getLabel()

midp 2.0 String getLongLabel()

int getPriority()

✍■ int HELP

✍■ int ITEM

✍■ int OK

✍■ int SCREEN

✍■ int STOP

CommandListener javax.microedition.lcdui

void commandAction(Command c, Displayable d)

CommConnection javax.microedition.io

int getBaudRate()

int setBaudRate(int baudrate)

Connector javax.microedition.io

❏ Connection open(String name) throws java.io.IOException

❏ Connection open(String name, int mode) throws java.io.IOException

❏ Connection open(String name, int mode, boolean timeouts)
throws java.io.IOException

❏ java.io.DataInputStream openDataInputStream(String name) throws java.io.IOException

❏ java.io.DataOutputStream openDataOutputStream(String name) throws java.io.IOException

❏ java.io.InputStream openInputStream(String name) throws java.io.IOException
521

Almanac
Control

Controllable

Object
➥Item

➥CustomItem

❏ java.io.OutputStream openOutputStream(String name) throws java.io.IOException

✍■ int READ

✍■ int READ_WRITE

✍■ int WRITE

Control javax.microedition.media

Controllable javax.microedition.media

Control getControl(String controlType)

Control[] getControls()

CustomItem javax.microedition.lcdui

❉♦ CustomItem(String label)

int getGameAction(int keyCode)

●♦ int getInteractionModes()

❍♦ int getMinContentHeight()

❍♦ int getMinContentWidth()

❍♦ int getPrefContentHeight(int width)

❍♦ int getPrefContentWidth(int height)

♦ void hideNotify()

●♦ void invalidate()

✍■♦ int KEY_PRESS

✍■♦ int KEY_RELEASE

✍■♦ int KEY_REPEAT

♦ void keyPressed(int keyCode)

♦ void keyReleased(int keyCode)

♦ void keyRepeated(int keyCode)

✍■♦ int NONE

❍♦ void paint(Graphics g, int w, int h)

✍■♦ int POINTER_DRAG

✍■♦ int POINTER_PRESS

✍■♦ int POINTER_RELEASE

♦ void pointerDragged(int x, int y)

♦ void pointerPressed(int x, int y)

♦ void pointerReleased(int x, int y)

●♦ void repaint()

●♦ void repaint(int x, int y, int w, int h)

♦ void showNotify()

♦ void sizeChanged(int w, int h)

✍■♦ int TRAVERSE_HORIZONTAL
522

Almanac
Object
➥Item

➥DateField

Object
➥Display

✍■♦ int TRAVERSE_VERTICAL

♦ boolean traverse(int dir, int viewportWidth, int viewportHeight,
int[] visRect_inout)

♦ void traverseOut()

DateField javax.microedition.lcdui

✍■ int DATE

✍■ int DATE_TIME

❉ DateField(String label, int mode)

❉ DateField(String label, int mode, java.util.TimeZone timeZone)

java.util.Date getDate()

int getInputMode()

void setDate(java.util.Date date)

void setInputMode(int mode)

✍■ int TIME

Display javax.microedition.lcdui

midp 2.0 ✍■ int ALERT

void callSerially(Runnable r)

midp 2.0 ✍■ int CHOICE_GROUP_ELEMENT

midp 2.0 ✍■ int COLOR_BACKGROUND

midp 2.0 ✍■ int COLOR_BORDER

midp 2.0 ✍■ int COLOR_FOREGROUND

midp 2.0 ✍■ int COLOR_HIGHLIGHTED_BACKGROUND

midp 2.0 ✍■ int COLOR_HIGHLIGHTED_BORDER

midp 2.0 ✍■ int COLOR_HIGHLIGHTED_FOREGROUND

midp 2.0 boolean flashBacklight(int duration)

midp 2.0 int getBestImageHeight(int imageType)

midp 2.0 int getBestImageWidth(int imageType)

midp 2.0 int getBorderStyle(boolean highlighted)

midp 2.0 int getColor(int colorSpecifier)

Displayable getCurrent()

❏ Display getDisplay(javax.microedition.midlet.MIDlet m)

boolean isColor()

midp 2.0 ✍■ int LIST_ELEMENT

midp 2.0 int numAlphaLevels()

int numColors()

void setCurrent(Alert alert, Displayable nextDisplayable)

void setCurrent(Displayable nextDisplayable)

midp 2.0 void setCurrentItem(Item item)

midp 2.0 boolean vibrate(int duration)
523

Almanac
Object
➥Displayable

Object
➥Font

Displayable javax.microedition.lcdui

void addCommand(Command cmd)

midp 2.0 int getHeight()

midp 2.0 Ticker getTicker()

midp 2.0 String getTitle()

midp 2.0 int getWidth()

boolean isShown()

void removeCommand(Command cmd)

void setCommandListener(CommandListener l)

midp 2.0 void setTicker(Ticker ticker)

midp 2.0 void setTitle(String s)

midp 2.0 ♦ void sizeChanged(int w, int h)

Font javax.microedition.lcdui

int charsWidth(char[] ch, int offset, int length)

int charWidth(char ch)

✍■ int FACE_MONOSPACE

✍■ int FACE_PROPORTIONAL

✍■ int FACE_SYSTEM

midp 2.0 ✍■ int FONT_INPUT_TEXT

midp 2.0 ✍■ int FONT_STATIC_TEXT

int getBaselinePosition()

❏ Font getDefaultFont()

int getFace()

midp 2.0 ❏ Font getFont(int fontSpecifier)

❏ Font getFont(int face, int style, int size)

int getHeight()

int getSize()

int getStyle()

boolean isBold()

boolean isItalic()

boolean isPlain()

boolean isUnderlined()

✍■ int SIZE_LARGE

✍■ int SIZE_MEDIUM

✍■ int SIZE_SMALL

int stringWidth(String str)

✍■ int STYLE_BOLD

✍■ int STYLE_ITALIC
524

Almanac
Object
➥Displayable

➥Screen
➥Form

Object
➥javax.microedition.lcdui.Displayable

➥javax.microedition.lcdui.Canvas
➥GameCanvas

✍■ int STYLE_PLAIN

✍■ int STYLE_UNDERLINED

int substringWidth(String str, int offset, int len)

Form javax.microedition.lcdui

int append(Image img)

int append(Item item)

int append(String str)

void delete(int itemNum)

midp 2.0 void deleteAll()

❉ Form(String title)

❉ Form(String title, Item items)

Item get(int itemNum)

midp 2.0 int getHeight()

midp 2.0 int getWidth()

void insert(int itemNum, Item item)

void set(int itemNum, Item item)

void setItemStateListener(ItemStateListener iListener)

int size()

GameCanvas javax.microedition.lcdui.game

✍■ int DOWN_PRESSED

✍■ int FIRE_PRESSED

void flushGraphics()

void flushGraphics(int x, int y, int width, int height)

✍■ int GAME_A_PRESSED

✍■ int GAME_B_PRESSED

✍■ int GAME_C_PRESSED

✍■ int GAME_D_PRESSED

❉♦ GameCanvas(boolean suppressKeyEvents)

♦ javax.microedition.lcdui.Graphic
s

getGraphics()

int getKeyStates()

✍■ int LEFT_PRESSED

void paint(javax.microedition.lcdui.Graphics g)

✍■ int RIGHT_PRESSED

✍■ int UP_PRESSED
525

Almanac
Object
➥Item

➥Gauge

Object
➥Graphics

Gauge javax.microedition.lcdui

midp 2.0 ✍■ int CONTINUOUS_IDLE

midp 2.0 ✍■ int CONTINUOUS_RUNNING

❉ Gauge(String label, boolean interactive, int maxValue,
int initialValue)

int getMaxValue()

int getValue()

midp 2.0 ✍■ int INCREMENTAL_IDLE

midp 2.0 ✍■ int INCREMENTAL_UPDATING

midp 2.0 ✍■ int INDEFINITE

boolean isInteractive()

void setMaxValue(int maxValue)

void setValue(int value)

Graphics javax.microedition.lcdui

✍■ int BASELINE

✍■ int BOTTOM

void clipRect(int x, int y, int width, int height)

midp 2.0 void copyArea(int x_src, int y_src, int width, int height, int x_dest,
int y_dest, int anchor)

✍■ int DOTTED

void drawArc(int x, int y, int width, int height, int startAngle, int arcAngle)

void drawChar(char character, int x, int y, int anchor)

void drawChars(char[] data, int offset, int length, int x, int y, int anchor)

void drawImage(Image img, int x, int y, int anchor)

void drawLine(int x1, int y1, int x2, int y2)

void drawRect(int x, int y, int width, int height)

midp 2.0 void drawRegion(Image src, int x_src, int y_src, int width, int height,
int transform, int x_dest, int y_dest, int anchor)

midp 2.0 void drawRGB(int[] rgbData, int offset, int scanlength, int x, int y,
int width, int height, boolean processAlpha)

void drawRoundRect(int x, int y, int width, int height, int arcWidth,
int arcHeight)

void drawString(String str, int x, int y, int anchor)

void drawSubstring(String str, int offset, int len, int x, int y, int anchor)

void fillArc(int x, int y, int width, int height, int startAngle, int arcAngle)

void fillRect(int x, int y, int width, int height)

void fillRoundRect(int x, int y, int width, int height, int arcWidth,
int arcHeight)

midp 2.0 void fillTriangle(int x1, int y1, int x2, int y2, int x3, int y3)

int getBlueComponent()

int getClipHeight()
526

Almanac
HttpConnection ContentConnection

int getClipWidth()

int getClipX()

int getClipY()

int getColor()

midp 2.0 int getDisplayColor(int color)

Font getFont()

int getGrayScale()

int getGreenComponent()

int getRedComponent()

int getStrokeStyle()

int getTranslateX()

int getTranslateY()

✍■ int HCENTER

✍■ int LEFT

✍■ int RIGHT

void setClip(int x, int y, int width, int height)

void setColor(int RGB)

void setColor(int red, int green, int blue)

void setFont(Font font)

void setGrayScale(int value)

void setStrokeStyle(int style)

✍■ int SOLID

✍■ int TOP

void translate(int x, int y)

✍■ int VCENTER

HttpConnection javax.microedition.io

✍■ String GET

long getDate() throws java.io.IOException

long getExpiration() throws java.io.IOException

String getFile()

String getHeaderField(int n) throws java.io.IOException

String getHeaderField(String name) throws java.io.IOException

long getHeaderFieldDate(String name, long def)
throws java.io.IOException

int getHeaderFieldInt(String name, int def) throws java.io.IOException

String getHeaderFieldKey(int n) throws java.io.IOException

String getHost()

long getLastModified() throws java.io.IOException

int getPort()

String getProtocol()

String getQuery()

String getRef()

String getRequestMethod()

String getRequestProperty(String key)
527

Almanac
int getResponseCode() throws java.io.IOException

String getResponseMessage() throws java.io.IOException

String getURL()

✍■ String HEAD

✍■ int HTTP_ACCEPTED

✍■ int HTTP_BAD_GATEWAY

✍■ int HTTP_BAD_METHOD

✍■ int HTTP_BAD_REQUEST

✍■ int HTTP_CLIENT_TIMEOUT

✍■ int HTTP_CONFLICT

✍■ int HTTP_CREATED

✍■ int HTTP_ENTITY_TOO_LARGE

✍■ int HTTP_EXPECT_FAILED

✍■ int HTTP_FORBIDDEN

✍■ int HTTP_GATEWAY_TIMEOUT

✍■ int HTTP_GONE

✍■ int HTTP_INTERNAL_ERROR

✍■ int HTTP_LENGTH_REQUIRED

✍■ int HTTP_MOVED_PERM

✍■ int HTTP_MOVED_TEMP

✍■ int HTTP_MULT_CHOICE

✍■ int HTTP_NO_CONTENT

✍■ int HTTP_NOT_ACCEPTABLE

✍■ int HTTP_NOT_AUTHORITATIVE

✍■ int HTTP_NOT_FOUND

✍■ int HTTP_NOT_IMPLEMENTED

✍■ int HTTP_NOT_MODIFIED

✍■ int HTTP_OK

✍■ int HTTP_PARTIAL

✍■ int HTTP_PAYMENT_REQUIRED

✍■ int HTTP_PRECON_FAILED

✍■ int HTTP_PROXY_AUTH

✍■ int HTTP_REQ_TOO_LONG

✍■ int HTTP_RESET

✍■ int HTTP_SEE_OTHER

✍■ int HTTP_TEMP_REDIRECT

✍■ int HTTP_UNAUTHORIZED

✍■ int HTTP_UNAVAILABLE

✍■ int HTTP_UNSUPPORTED_RANGE

✍■ int HTTP_UNSUPPORTED_TYPE

✍■ int HTTP_USE_PROXY

✍■ int HTTP_VERSION

✍■ String POST

void setRequestMethod(String method) throws java.io.IOException

void setRequestProperty(String key, String value)
throws java.io.IOException
528

Almanac
HttpsConnection HttpConnection

Object
➥Throwable

➥Exception
➥RuntimeException

➥IllegalStateException

Object
➥Image

Object
➥Item

➥ImageItem

HttpsConnection javax.microedition.io

int getPort()

SecurityInfo getSecurityInfo() throws java.io.IOException

IllegalStateException java.lang

❉ IllegalStateException()

❉ IllegalStateException(String s)

Image javax.microedition.lcdui

❏ Image createImage(byte[] imageData, int imageOffset, int imageLength)

❏ Image createImage(Image source)

midp 2.0 ❏ Image createImage(Image image, int x, int y, int width, int height,
int transform)

midp 2.0 ❏ Image createImage(java.io.InputStream stream) throws java.io.IOException

❏ Image createImage(int width, int height)

❏ Image createImage(String name) throws java.io.IOException

midp 2.0 ❏ Image createRGBImage(int[] rgb, int width, int height,
boolean processAlpha)

Graphics getGraphics()

int getHeight()

midp 2.0 void getRGB(int[] rgbData, int offset, int scanlength, int x, int y, int width,
int height)

int getWidth()

boolean isMutable()

ImageItem javax.microedition.lcdui

String getAltText()

midp 2.0 int getAppearanceMode()

Image getImage()

int getLayout()

❉ ImageItem(String label, Image img, int layout, String altText)

midp 2.0 ❉ ImageItem(String label, Image image, int layout, String altText,
int appearanceMode)

✍■ int LAYOUT_CENTER

✍■ int LAYOUT_DEFAULT
529

Almanac
Object
➥Throwable

➥Exception
➥RecordStoreException

➥InvalidRecordIDException

Object
➥Item

✍■ int LAYOUT_LEFT

✍■ int LAYOUT_NEWLINE_AFTER

✍■ int LAYOUT_NEWLINE_BEFORE

✍■ int LAYOUT_RIGHT

void setAltText(String text)

void setImage(Image img)

void setLayout(int layout)

InvalidRecordIDException javax.microedition.rms

❉ InvalidRecordIDException()

❉ InvalidRecordIDException(String message)

Item javax.microedition.lcdui

midp 2.0 void addCommand(Command cmd)

midp 2.0 ✍■ int BUTTON

String getLabel()

midp 2.0 int getLayout()

midp 2.0 int getMinimumHeight()

midp 2.0 int getMinimumWidth()

midp 2.0 int getPreferredHeight()

midp 2.0 int getPreferredWidth()

midp 2.0 ✍■ int HYPERLINK

midp 2.0 ✍■ int LAYOUT_2

midp 2.0 ✍■ int LAYOUT_BOTTOM

midp 2.0 ✍■ int LAYOUT_CENTER

midp 2.0 ✍■ int LAYOUT_DEFAULT

midp 2.0 ✍■ int LAYOUT_EXPAND

midp 2.0 ✍■ int LAYOUT_LEFT

midp 2.0 ✍■ int LAYOUT_NEWLINE_AFTER

midp 2.0 ✍■ int LAYOUT_NEWLINE_BEFORE

midp 2.0 ✍■ int LAYOUT_RIGHT

midp 2.0 ✍■ int LAYOUT_SHRINK

midp 2.0 ✍■ int LAYOUT_TOP

midp 2.0 ✍■ int LAYOUT_VCENTER

midp 2.0 ✍■ int LAYOUT_VEXPAND

midp 2.0 ✍■ int LAYOUT_VSHRINK

midp 2.0 void notifyStateChanged()

midp 2.0 ✍■ int PLAIN

midp 2.0 void removeCommand(Command cmd)
530

Almanac
ItemCommandListener

ItemStateListener

Object
➥Layer

Object
➥LayerManager

midp 2.0 void setDefaultCommand(Command cmd)

midp 2.0 void setItemCommandListener(ItemCommandListener l)

void setLabel(String label)

midp 2.0 void setLayout(int layout)

midp 2.0 void setPreferredSize(int width, int height)

ItemCommandListener javax.microedition.lcdui

void commandAction(Command c, Item item)

ItemStateListener javax.microedition.lcdui

void itemStateChanged(Item item)

Layer javax.microedition.lcdui.game

● int getHeight()

● int getWidth()

● int getX()

● int getY()

● boolean isVisible()

void move(int dx, int dy)

❍ void paint(javax.microedition.lcdui.Graphics g)

void setPosition(int x, int y)

void setVisible(boolean visible)

LayerManager javax.microedition.lcdui.game

void append(Layer l)

Layer getLayerAt(int index)

int getSize()

void insert(Layer l, int index)

❉ LayerManager()

void paint(javax.microedition.lcdui.Graphics g, int x, int y)

void remove(Layer l)

void setViewWindow(int x, int y, int width, int height)
531

Almanac
Object
➥Displayable

➥Screen
➥List Choice

Object
➥Manager

List javax.microedition.lcdui

int append(String stringPart, Image imagePart)

void delete(int elementNum)

void deleteAll()

midp 2.0 int getFitPolicy()

midp 2.0 Font getFont(int elementNum)

Image getImage(int elementNum)

int getSelectedFlags(boolean[] selectedArray_return)

int getSelectedIndex()

String getString(int elementNum)

void insert(int elementNum, String stringPart, Image imagePart)

boolean isSelected(int elementNum)

❉ List(String title, int listType)

❉ List(String title, int listType, String stringElements,
Image imageElements)

midp 2.0 void removeCommand(Command cmd)

✍■ Command SELECT_COMMAND

void set(int elementNum, String stringPart, Image imagePart)

midp 2.0 void setFitPolicy(int fitPolicy)

midp 2.0 void setFont(int elementNum, Font font)

midp 2.0 void setSelectCommand(Command command)

void setSelectedFlags(boolean[] selectedArray)

void setSelectedIndex(int elementNum, boolean selected)

int size()

Manager javax.microedition.media

❏ Player createPlayer(java.io.InputStream stream, String type)
throws java.io.IOException, MediaException

❏ Player createPlayer(String locator) throws java.io.IOException,
MediaException

❏ String[] getSupportedContentTypes(String protocol)

❏ String[] getSupportedProtocols(String content_type)

❏ void playTone(int note, int duration, int volume) throws MediaException

✍■ String TONE_DEVICE_LOCATOR
532

Almanac
Object
➥Throwable

➥Exception
➥MediaException

Object
➥MIDlet

Object
➥Throwable

➥Exception
➥MIDletStateChangeException

Player Controllable

MediaException javax.microedition.media

❉ MediaException()

❉ MediaException(String reason)

MIDlet javax.microedition.midlet

midp 2.0 ● int checkPermission(String permission)

❍♦ void destroyApp(boolean unconditional)
throws MIDletStateChangeException

● String getAppProperty(String key)

❉♦ MIDlet()

● void notifyDestroyed()

● void notifyPaused()

❍♦ void pauseApp()

midp 2.0 ● boolean platformRequest(String URL)
throws javax.microedition.io.ConnectionNotFoundException

● void resumeRequest()

❍♦ void startApp() throws MIDletStateChangeException

MIDletStateChangeException javax.microedition.midlet

❉ MIDletStateChangeException()

❉ MIDletStateChangeException(String s)

Player javax.microedition.media

void addPlayerListener(PlayerListener playerListener)

void close()

✍■ int CLOSED

void deallocate()

String getContentType()

long getDuration()

long getMediaTime()

int getState()

void prefetch() throws MediaException

✍■ int PREFETCHED

void realize() throws MediaException
533

Almanac
PlayerListener

Object
➥PushRegistry

RecordComparator

✍■ int REALIZED

void removePlayerListener(PlayerListener playerListener)

void setLoopCount(int count)

long setMediaTime(long now) throws MediaException

void start() throws MediaException

✍■ int STARTED

void stop() throws MediaException

✍■ long TIME_UNKNOWN

✍■ int UNREALIZED

PlayerListener javax.microedition.media

✍■ String CLOSED

✍■ String DEVICE_AVAILABLE

✍■ String DEVICE_UNAVAILABLE

✍■ String DURATION_UPDATED

✍■ String END_OF_MEDIA

✍■ String ERROR

void playerUpdate(Player player, String event, Object eventData)

✍■ String STARTED

✍■ String STOPPED

✍■ String VOLUME_CHANGED

PushRegistry javax.microedition.io

❏ String getFilter(String connection)

❏ String getMIDlet(String connection)

❏ String[] listConnections(boolean available)

❏ long registerAlarm(String midlet, long time)
throws ClassNotFoundException,
ConnectionNotFoundException

❏ void registerConnection(String connection, String midlet, String filter)
throws ClassNotFoundException, java.io.IOException

❏ boolean unregisterConnection(String connection)

RecordComparator javax.microedition.rms

int compare(byte[] rec1, byte[] rec2)

✍■ int EQUIVALENT

✍■ int FOLLOWS

✍■ int PRECEDES
534

Almanac
RecordEnumeration

RecordFilter

RecordListener

Object
➥RecordStore

RecordEnumeration javax.microedition.rms

void destroy()

boolean hasNextElement()

boolean hasPreviousElement()

boolean isKeptUpdated()

void keepUpdated(boolean keepUpdated)

byte[] nextRecord() throws InvalidRecordIDException,
RecordStoreNotOpenException, RecordStoreException

int nextRecordId() throws InvalidRecordIDException

int numRecords()

byte[] previousRecord() throws InvalidRecordIDException,
RecordStoreNotOpenException, RecordStoreException

int previousRecordId() throws InvalidRecordIDException

void rebuild()

void reset()

RecordFilter javax.microedition.rms

boolean matches(byte[] candidate)

RecordListener javax.microedition.rms

void recordAdded(RecordStore recordStore, int recordId)

void recordChanged(RecordStore recordStore, int recordId)

void recordDeleted(RecordStore recordStore, int recordId)

RecordStore javax.microedition.rms

int addRecord(byte[] data, int offset, int numBytes)
throws RecordStoreNotOpenException, RecordStoreException,
RecordStoreFullException

void addRecordListener(RecordListener listener)

✍■ int AUTHMODE_ANY

✍■ int AUTHMODE_PRIVATE

void closeRecordStore() throws RecordStoreNotOpenException,
RecordStoreException

void deleteRecord(int recordId) throws RecordStoreNotOpenException,
InvalidRecordIDException, RecordStoreException

❏ void deleteRecordStore(String recordStoreName)
throws RecordStoreException,
RecordStoreNotFoundException

RecordEnumeration enumerateRecords(RecordFilter filter,
RecordComparator comparator, boolean keepUpdated)
throws RecordStoreNotOpenException

long getLastModified() throws RecordStoreNotOpenException
535

Almanac
Object
➥Throwable

➥Exception
➥RecordStoreException

Object
➥Throwable

➥Exception
➥RecordStoreException

➥RecordStoreFullException

String getName() throws RecordStoreNotOpenException

int getNextRecordID() throws RecordStoreNotOpenException,
RecordStoreException

int getNumRecords() throws RecordStoreNotOpenException

byte[] getRecord(int recordId) throws RecordStoreNotOpenException,
InvalidRecordIDException, RecordStoreException

int getRecord(int recordId, byte[] buffer, int offset)
throws RecordStoreNotOpenException,
InvalidRecordIDException, RecordStoreException

int getRecordSize(int recordId) throws RecordStoreNotOpenException,
InvalidRecordIDException, RecordStoreException

int getSize() throws RecordStoreNotOpenException

int getSizeAvailable() throws RecordStoreNotOpenException

int getVersion() throws RecordStoreNotOpenException

❏ String[] listRecordStores()

❏ RecordStore openRecordStore(String recordStoreName,
boolean createIfNecessary) throws RecordStoreException,
RecordStoreFullException, RecordStoreNotFoundException

midp 2.0 ❏ RecordStore openRecordStore(String recordStoreName,
boolean createIfNecessary, int authmode, boolean writable)
throws RecordStoreException, RecordStoreFullException,
RecordStoreNotFoundException

midp 2.0 ❏ RecordStore openRecordStore(String recordStoreName, String vendorName,
String suiteName) throws RecordStoreException,
RecordStoreNotFoundException

void removeRecordListener(RecordListener listener)

midp 2.0 void setMode(int authmode, boolean writable)
throws RecordStoreException

void setRecord(int recordId, byte[] newData, int offset, int numBytes)
throws RecordStoreNotOpenException,
InvalidRecordIDException, RecordStoreException,
RecordStoreFullException

RecordStoreException javax.microedition.rms

❉ RecordStoreException()

❉ RecordStoreException(String message)

RecordStoreFullException javax.microedition.rms

❉ RecordStoreFullException()

❉ RecordStoreFullException(String message)
536

Almanac
Object
➥Throwable

➥Exception
➥RecordStoreException

➥RecordStoreNotFoundException

Object
➥Throwable

➥Exception
➥RecordStoreException

➥RecordStoreNotOpenException

Object
➥Displayable

➥Screen

SecureConnection SocketConnection

SecurityInfo

ServerSocketConnection StreamConnectionNotifier

RecordStoreNotFoundException javax.microedition.rms

❉ RecordStoreNotFoundException()

❉ RecordStoreNotFoundException(String message)

RecordStoreNotOpenException javax.microedition.rms

❉ RecordStoreNotOpenException()

❉ RecordStoreNotOpenException(String message)

Screen javax.microedition.lcdui

SecureConnection javax.microedition.io

SecurityInfo getSecurityInfo() throws java.io.IOException

SecurityInfo javax.microedition.io

String getCipherSuite()

String getProtocolName()

String getProtocolVersion()

javax.microedition.pki.Certificate getServerCertificate()

ServerSocketConnection javax.microedition.io

String getLocalAddress() throws java.io.IOException

int getLocalPort() throws java.io.IOException
537

Almanac
SocketConnection StreamConnection

Object
➥Item

➥Spacer

Object
➥Layer

➥Sprite

SocketConnection javax.microedition.io

✍■ byte DELAY

String getAddress() throws java.io.IOException

String getLocalAddress() throws java.io.IOException

int getLocalPort() throws java.io.IOException

int getPort() throws java.io.IOException

int getSocketOption(byte option) throws IllegalArgumentException,
java.io.IOException

✍■ byte KEEPALIVE

✍■ byte LINGER

✍■ byte RCVBUF

void setSocketOption(byte option, int value)
throws IllegalArgumentException, java.io.IOException

✍■ byte SNDBUF

Spacer javax.microedition.lcdui

void addCommand(Command cmd)

void setDefaultCommand(Command cmd)

void setLabel(String label)

void setMinimumSize(int minWidth, int minHeight)

❉ Spacer(int minWidth, int minHeight)

Sprite javax.microedition.lcdui.game

● boolean collidesWith(javax.microedition.lcdui.Image image, int x, int y,
boolean pixelLevel)

● boolean collidesWith(Sprite s, boolean pixelLevel)

● boolean collidesWith(TiledLayer t, boolean pixelLevel)

void defineCollisionRectangle(int x, int y, int width, int height)

void defineReferencePixel(int x, int y)

● int getFrame()

int getFrameSequenceLength()

int getRawFrameCount()

int getRefPixelX()

int getRefPixelY()

void nextFrame()

● void paint(javax.microedition.lcdui.Graphics g)

void prevFrame()

void setFrame(int sequenceIndex)

void setFrameSequence(int[] sequence)
538

Almanac
Object
➥Item

➥StringItem

Object
➥Displayable

➥Screen
➥TextBox

void setImage(javax.microedition.lcdui.Image img, int frameWidth,
int frameHeight)

void setRefPixelPosition(int x, int y)

void setTransform(int transform)

❉ Sprite(javax.microedition.lcdui.Image image)

❉ Sprite(javax.microedition.lcdui.Image image, int frameWidth,
int frameHeight)

❉ Sprite(Sprite s)

✍■ int TRANS_MIRROR

✍■ int TRANS_MIRROR_ROT180

✍■ int TRANS_MIRROR_ROT270

✍■ int TRANS_MIRROR_ROT90

✍■ int TRANS_NONE

✍■ int TRANS_ROT180

✍■ int TRANS_ROT270

✍■ int TRANS_ROT90

StringItem javax.microedition.lcdui

midp 2.0 int getAppearanceMode()

midp 2.0 Font getFont()

String getText()

midp 2.0 void setFont(Font font)

void setText(String text)

❉ StringItem(String label, String text)

midp 2.0 ❉ StringItem(String label, String text, int appearanceMode)

TextBox javax.microedition.lcdui

void delete(int offset, int length)

int getCaretPosition()

int getChars(char[] data)

int getConstraints()

int getMaxSize()

String getString()

void insert(char[] data, int offset, int length, int position)

void insert(String src, int position)

void setChars(char[] data, int offset, int length)

void setConstraints(int constraints)

midp 2.0 void setInitialInputMode(String characterSubset)

int setMaxSize(int maxSize)
539

Almanac
Object
➥Item

➥TextField

Object
➥Ticker

void setString(String text)

int size()

❉ TextBox(String title, String text, int maxSize, int constraints)

TextField javax.microedition.lcdui

✍■ int ANY

✍■ int CONSTRAINT_MASK

midp 2.0 ✍■ int DECIMAL

void delete(int offset, int length)

✍■ int EMAILADDR

int getCaretPosition()

int getChars(char[] data)

int getConstraints()

int getMaxSize()

String getString()

midp 2.0 ✍■ int INITIAL_CAPS_SENTENCE

midp 2.0 ✍■ int INITIAL_CAPS_WORD

void insert(char[] data, int offset, int length, int position)

void insert(String src, int position)

midp 2.0 ✍■ int NON_PREDICTIVE

✍■ int NUMERIC

✍■ int PASSWORD

✍■ int PHONENUMBER

midp 2.0 ✍■ int SENSITIVE

void setChars(char[] data, int offset, int length)

void setConstraints(int constraints)

midp 2.0 void setInitialInputMode(String characterSubset)

int setMaxSize(int maxSize)

void setString(String text)

int size()

❉ TextField(String label, String text, int maxSize, int constraints)

midp 2.0 ✍■ int UNEDITABLE

✍■ int URL

Ticker javax.microedition.lcdui

String getString()

void setString(String str)

❉ Ticker(String str)
540

Almanac
Object
➥Layer

➥TiledLayer

Object
➥Timer

Object
➥TimerTask Runnable

TiledLayer javax.microedition.lcdui.game

int createAnimatedTile(int staticTileIndex)

void fillCells(int col, int row, int numCols, int numRows, int tileIndex)

int getAnimatedTile(int animatedTileIndex)

int getCell(int col, int row)

● int getCellHeight()

● int getCellWidth()

● int getColumns()

● int getRows()

● void paint(javax.microedition.lcdui.Graphics g)

void setAnimatedTile(int animatedTileIndex, int staticTileIndex)

void setCell(int col, int row, int tileIndex)

void setStaticTileSet(javax.microedition.lcdui.Image image, int tileWidth,
int tileHeight)

❉ TiledLayer(int columns, int rows,
javax.microedition.lcdui.Image image, int tileWidth,
int tileHeight)

Timer java.util

void cancel()

void schedule(TimerTask task, Date time)

void schedule(TimerTask task, Date firstTime, long period)

void schedule(TimerTask task, long delay)

void schedule(TimerTask task, long delay, long period)

void scheduleAtFixedRate(TimerTask task, Date firstTime, long period)

void scheduleAtFixedRate(TimerTask task, long delay, long period)

❉ Timer()

TimerTask java.util

boolean cancel()

❍ void run()

long scheduledExecutionTime()

❉♦ TimerTask()
541

Almanac
ToneControl javax.microedition.media.Control

UDPDatagramConnection DatagramConnection

VolumeControl javax.microedition.media.Control

ToneControl javax.microedition.media.control

✍■ byte BLOCK_END

✍■ byte BLOCK_START

✍■ byte C4

✍■ byte PLAY_BLOCK

✍■ byte REPEAT

✍■ byte RESOLUTION

✍■ byte SET_VOLUME

void setSequence(byte[] sequence)

✍■ byte SILENCE

✍■ byte TEMPO

✍■ byte VERSION

UDPDatagramConnection javax.microedition.io

String getLocalAddress() throws java.io.IOException

int getLocalPort() throws java.io.IOException

VolumeControl javax.microedition.media.control

int getLevel()

boolean isMuted()

int setLevel(int level)

void setMute(boolean mute)
542

-

-

-

Index

A
addCommand(Command)

of javax.microedition.lcdui.Alert132
of javax.microedition.lcdui.Displayable219
of javax.microedition.lcdui.Item295
of javax.microedition.lcdui.Spacer317

addPlayerListener(PlayerListener)
of javax.microedition.media.Player411

addRecord(byte[], int, int)
of javax.microedition.rms.RecordStore483

addRecordListener(RecordListener)
of javax.microedition.rms.RecordStore483

ALARM
of javax.microedition.lcdui.AlertType137

ALERT
of javax.microedition.lcdui.Display207

Alert
of javax.microedition.lcdui128

Alert(String)
of javax.microedition.lcdui.Alert131

Alert(String, String, Image, AlertType)
of javax.microedition.lcdui.Alert131

AlertType
of javax.microedition.lcdui136

AlertType()
of javax.microedition.lcdui.AlertType137

ANY
of javax.microedition.lcdui.TextField334

append(Image)
of javax.microedition.lcdui.Form236

append(Item)
of javax.microedition.lcdui.Form236

append(Layer)
of javax.microedition.lcdui.game.LayerMan-

ager362
append(String)

of javax.microedition.lcdui.Form237
append(String, Image)

of javax.microedition.lcdui.Choice159
of javax.microedition.lcdui.ChoiceGroup168
of javax.microedition.lcdui.List307

AUTHMODE_ANY
of javax.microedition.rms.RecordStore483

AUTHMODE_PRIVATE
of javax.microedition.rms.RecordStore483

B
BACK

of javax.microedition.lcdui.Command178
BAD_EXTENSIONS

of javax.microedition.pki.CertificateException
459

BASELINE
of javax.microedition.lcdui.Graphics253

BLOCK_END
of javax.microedition.media.control.ToneCon

trol 425
BLOCK_START

of javax.microedition.media.control.ToneCon
trol 425

BOTTOM
of javax.microedition.lcdui.Graphics253

BROKEN_CHAIN
of javax.microedition.pki.CertificateException

459
BUTTON

of javax.microedition.lcdui.Item291

C
C4

of javax.microedition.media.control.ToneCon
trol 425

callSerially(Runnable)
of javax.microedition.lcdui.Display210

CANCEL
of javax.microedition.lcdui.Command178

cancel()
of java.util.Timer41
of java.util.TimerTask47

Canvas
of javax.microedition.lcdui139

Canvas()
of javax.microedition.lcdui.Canvas147

Certificate
of javax.microedition.pki455

CERTIFICATE_CHAIN_TOO_LONG
of javax.microedition.pki.CertificateException

459
CertificateException

of javax.microedition.pki458
CertificateException(Certificate, byte)

of javax.microedition.pki.CertificateException
461
543

Index
CertificateException(String, Certificate, byte)
of javax.microedition.pki.CertificateException

461
charsWidth(char[], int, int)

of javax.microedition.lcdui.Font226
charWidth(char)

of javax.microedition.lcdui.Font227
checkPermission(String)

of javax.microedition.midlet.MIDlet445
Choice

of javax.microedition.lcdui155
CHOICE_GROUP_ELEMENT

of javax.microedition.lcdui.Display208
ChoiceGroup

of javax.microedition.lcdui166
ChoiceGroup(String, int)

of javax.microedition.lcdui.ChoiceGroup167
ChoiceGroup(String, int, String[], Image[])

of javax.microedition.lcdui.ChoiceGroup168
clipRect(int, int, int, int)

of javax.microedition.lcdui.Graphics254
close()

of javax.microedition.media.Player411
CLOSED

of javax.microedition.media.Player409
of javax.microedition.media.PlayerListener

417
closeRecordStore()

of javax.microedition.rms.RecordStore484
collidesWith(Image, int, int, boolean)

of javax.microedition.lcdui.game.Sprite374
collidesWith(Sprite, boolean)

of javax.microedition.lcdui.game.Sprite374
collidesWith(TiledLayer, boolean)

of javax.microedition.lcdui.game.Sprite375
COLOR_BACKGROUND

of javax.microedition.lcdui.Display208
COLOR_BORDER

of javax.microedition.lcdui.Display208
COLOR_FOREGROUND

of javax.microedition.lcdui.Display208
COLOR_HIGHLIGHTED_BACKGROUND

of javax.microedition.lcdui.Display209
COLOR_HIGHLIGHTED_BORDER

of javax.microedition.lcdui.Display209
COLOR_HIGHLIGHTED_FOREGROUND

of javax.microedition.lcdui.Display209
Command

of javax.microedition.lcdui175

Command(String, int, int)
of javax.microedition.lcdui.Command180

Command(String, String, int, int)
of javax.microedition.lcdui.Command181

commandAction(Command, Displayable)
of javax.microedition.lcdui.CommandListener

183
commandAction(Command, Item)

of javax.microedition.lcdui.ItemCommandLis-
tener300

CommandListener
of javax.microedition.lcdui183

CommConnection
of javax.microedition.io55

compare(byte[], byte[])
of javax.microedition.rms.RecordComparator

472
CONFIRMATION

of javax.microedition.lcdui.AlertType137
Connector

of javax.microedition.io60
CONSTRAINT_MASK

of javax.microedition.lcdui.TextField335
CONTINUOUS_IDLE

of javax.microedition.lcdui.Gauge242
CONTINUOUS_RUNNING

of javax.microedition.lcdui.Gauge242
Control

of javax.microedition.media396
Controllable

of javax.microedition.media397
copyArea(int, int, int, int, int, int, int)

of javax.microedition.lcdui.Graphics255
createAnimatedTile(int)

of javax.microedition.lcdui.game.TiledLayer
386

createImage(byte[], int, int)
of javax.microedition.lcdui.Image273

createImage(Image)
of javax.microedition.lcdui.Image274

createImage(Image, int, int, int, int, int)
of javax.microedition.lcdui.Image274

createImage(InputStream)
of javax.microedition.lcdui.Image275

createImage(int, int)
of javax.microedition.lcdui.Image276

createImage(String)
of javax.microedition.lcdui.Image276

createPlayer(InputStream, String)
of javax.microedition.media.Manager401
544

Index

s

createPlayer(String)
of javax.microedition.media.Manager401

createRGBImage(int[], int, int, boolean)
of javax.microedition.lcdui.Image276

CustomItem
of javax.microedition.lcdui184

CustomItem(String)
of javax.microedition.lcdui.CustomItem190

D
DATE

of javax.microedition.lcdui.DateField202
DATE_TIME

of javax.microedition.lcdui.DateField202
DateField

of javax.microedition.lcdui201
DateField(String, int)

of javax.microedition.lcdui.DateField203
DateField(String, int, TimeZone)

of javax.microedition.lcdui.DateField203
deallocate()

of javax.microedition.media.Player411
DECIMAL

of javax.microedition.lcdui.TextField335
defineCollisionRectangle(int, int, int, int)

of javax.microedition.lcdui.game.Sprite375
defineReferencePixel(int, int)

of javax.microedition.lcdui.game.Sprite376
DELAY

of javax.microedition.io.SocketConnection
110

delete(int)
of javax.microedition.lcdui.Choice160
of javax.microedition.lcdui.ChoiceGroup169
of javax.microedition.lcdui.Form237
of javax.microedition.lcdui.List307

delete(int, int)
of javax.microedition.lcdui.TextBox325
of javax.microedition.lcdui.TextField339

deleteAll()
of javax.microedition.lcdui.Choice160
of javax.microedition.lcdui.ChoiceGroup169
of javax.microedition.lcdui.Form237
of javax.microedition.lcdui.List308

deleteRecord(int)
of javax.microedition.rms.RecordStore484

deleteRecordStore(String)
of javax.microedition.rms.RecordStore484

destroy()
of javax.microedition.rms.RecordEnumeration

474
destroyApp(boolean)

of javax.microedition.midlet.MIDlet445
DEVICE_AVAILABLE

of javax.microedition.media.PlayerListener
417

DEVICE_UNAVAILABLE
of javax.microedition.media.PlayerListener

417
DISMISS_COMMAND

of javax.microedition.lcdui.Alert130
Display

of javax.microedition.lcdui205
Displayable

of javax.microedition.lcdui218
DOTTED

of javax.microedition.lcdui.Graphics253
DOWN

of javax.microedition.lcdui.Canvas143
DOWN_PRESSED

of javax.microedition.lcdui.game.GameCanva
351

drawArc(int, int, int, int, int, int)
of javax.microedition.lcdui.Graphics256

drawChar(char, int, int, int)
of javax.microedition.lcdui.Graphics256

drawChars(char[], int, int, int, int, int)
of javax.microedition.lcdui.Graphics257

drawImage(Image, int, int, int)
of javax.microedition.lcdui.Graphics257

drawLine(int, int, int, int)
of javax.microedition.lcdui.Graphics258

drawRect(int, int, int, int)
of javax.microedition.lcdui.Graphics258

drawRegion(Image, int, int, int, int, int, int, int,
int)

of javax.microedition.lcdui.Graphics258
drawRGB(int[], int, int, int, int, int, int, boolean)

of javax.microedition.lcdui.Graphics260
drawRoundRect(int, int, int, int, int, int)

of javax.microedition.lcdui.Graphics261
drawString(String, int, int, int)

of javax.microedition.lcdui.Graphics261
drawSubstring(String, int, int, int, int, int)

of javax.microedition.lcdui.Graphics262
DURATION_UPDATED

of javax.microedition.media.PlayerListener
418
545

Index

s

s

s

s

s

s

E
EMAILADDR

of javax.microedition.lcdui.TextField335
END_OF_MEDIA

of javax.microedition.media.PlayerListener
418

enumerateRecords(RecordFilter, RecordCom-
parator, boolean)

of javax.microedition.rms.RecordStore485
EQUIVALENT

of javax.microedition.rms.RecordComparator
471

ERROR
of javax.microedition.lcdui.AlertType137
of javax.microedition.media.PlayerListener

418
EXCLUSIVE

of javax.microedition.lcdui.Choice158
EXIT

of javax.microedition.lcdui.Command179
EXPIRED

of javax.microedition.pki.CertificateException
459

F
FACE_MONOSPACE

of javax.microedition.lcdui.Font224
FACE_PROPORTIONAL

of javax.microedition.lcdui.Font224
FACE_SYSTEM

of javax.microedition.lcdui.Font225
fillArc(int, int, int, int, int, int)

of javax.microedition.lcdui.Graphics262
fillCells(int, int, int, int, int)

of javax.microedition.lcdui.game.TiledLayer
386

fillRect(int, int, int, int)
of javax.microedition.lcdui.Graphics263

fillRoundRect(int, int, int, int, int, int)
of javax.microedition.lcdui.Graphics263

fillTriangle(int, int, int, int, int, int)
of javax.microedition.lcdui.Graphics264

FIRE
of javax.microedition.lcdui.Canvas144

FIRE_PRESSED
of javax.microedition.lcdui.game.GameCanvas

351

flashBacklight(int)
of javax.microedition.lcdui.Display210

flushGraphics()
of javax.microedition.lcdui.game.GameCanva

353
flushGraphics(int, int, int, int)

of javax.microedition.lcdui.game.GameCanva
353

FOLLOWS
of javax.microedition.rms.RecordComparator

471
Font

of javax.microedition.lcdui223
FONT_INPUT_TEXT

of javax.microedition.lcdui.Font225
FONT_STATIC_TEXT

of javax.microedition.lcdui.Font225
FOREVER

of javax.microedition.lcdui.Alert131
Form

of javax.microedition.lcdui231
Form(String)

of javax.microedition.lcdui.Form235
Form(String, Item[])

of javax.microedition.lcdui.Form236

G
GAME_A

of javax.microedition.lcdui.Canvas144
GAME_A_PRESSED

of javax.microedition.lcdui.game.GameCanva
351

GAME_B
of javax.microedition.lcdui.Canvas144

GAME_B_PRESSED
of javax.microedition.lcdui.game.GameCanva

351
GAME_C

of javax.microedition.lcdui.Canvas144
GAME_C_PRESSED

of javax.microedition.lcdui.game.GameCanva
351

GAME_D
of javax.microedition.lcdui.Canvas144

GAME_D_PRESSED
of javax.microedition.lcdui.game.GameCanva

351
GameCanvas

of javax.microedition.lcdui.game349
546

Index
GameCanvas(boolean)
of javax.microedition.lcdui.game.GameCanvas

352
Gauge

of javax.microedition.lcdui240
Gauge(String, boolean, int, int)

of javax.microedition.lcdui.Gauge244
GET

of javax.microedition.io.HttpConnection72
get(int)

of javax.microedition.lcdui.Form237
getAddress()

of javax.microedition.io.SocketConnection
110

getAltText()
of javax.microedition.lcdui.ImageItem285

getAnimatedTile(int)
of javax.microedition.lcdui.game.TiledLayer

386
getAppearanceMode()

of javax.microedition.lcdui.ImageItem285
of javax.microedition.lcdui.StringItem321

getAppProperty(String)
of javax.microedition.midlet.MIDlet446

getBaselinePosition()
of javax.microedition.lcdui.Font227

getBaudRate()
of javax.microedition.io.CommConnection58

getBestImageHeight(int)
of javax.microedition.lcdui.Display211

getBestImageWidth(int)
of javax.microedition.lcdui.Display212

getBlueComponent()
of javax.microedition.lcdui.Graphics264

getBorderStyle(boolean)
of javax.microedition.lcdui.Display212

getCaretPosition()
of javax.microedition.lcdui.TextBox325
of javax.microedition.lcdui.TextField339

getCell(int, int)
of javax.microedition.lcdui.game.TiledLayer

387
getCellHeight()

of javax.microedition.lcdui.game.TiledLayer
387

getCellWidth()
of javax.microedition.lcdui.game.TiledLayer

387
getCertificate()

of javax.microedition.pki.CertificateException

461
getChars(char[])

of javax.microedition.lcdui.TextBox325
of javax.microedition.lcdui.TextField340

getCipherSuite()
of javax.microedition.io.SecurityInfo103

getClipHeight()
of javax.microedition.lcdui.Graphics264

getClipWidth()
of javax.microedition.lcdui.Graphics264

getClipX()
of javax.microedition.lcdui.Graphics265

getClipY()
of javax.microedition.lcdui.Graphics265

getColor()
of javax.microedition.lcdui.Graphics265

getColor(int)
of javax.microedition.lcdui.Display212

getColumns()
of javax.microedition.lcdui.game.TiledLayer

387
getCommandType()

of javax.microedition.lcdui.Command181
getConstraints()

of javax.microedition.lcdui.TextBox326
of javax.microedition.lcdui.TextField340

getContentType()
of javax.microedition.media.Player411

getControl(String)
of javax.microedition.media.Controllable397

getControls()
of javax.microedition.media.Controllable398

getCurrent()
of javax.microedition.lcdui.Display213

getDate()
of javax.microedition.io.HttpConnection78
of javax.microedition.lcdui.DateField203

getDefaultFont()
of javax.microedition.lcdui.Font227

getDefaultTimeout()
of javax.microedition.lcdui.Alert132

getDisplay(MIDlet)
of javax.microedition.lcdui.Display213

getDisplayColor(int)
of javax.microedition.lcdui.Graphics265

getDuration()
of javax.microedition.media.Player412

getExpiration()
of javax.microedition.io.HttpConnection79
547

Index

s

-

-

getFace()
of javax.microedition.lcdui.Font228

getFile()
of javax.microedition.io.HttpConnection79

getFilter(String)
of javax.microedition.io.PushRegistry96

getFitPolicy()
of javax.microedition.lcdui.Choice160
of javax.microedition.lcdui.ChoiceGroup169
of javax.microedition.lcdui.List308

getFont()
of javax.microedition.lcdui.Graphics266
of javax.microedition.lcdui.StringItem321

getFont(int)
of javax.microedition.lcdui.Choice160
of javax.microedition.lcdui.ChoiceGroup169
of javax.microedition.lcdui.Font228
of javax.microedition.lcdui.List308

getFont(int, int, int)
of javax.microedition.lcdui.Font228

getFrame()
of javax.microedition.lcdui.game.Sprite376

getFrameSequenceLength()
of javax.microedition.lcdui.game.Sprite377

getGameAction(int)
of javax.microedition.lcdui.Canvas147
of javax.microedition.lcdui.CustomItem190

getGraphics()
of javax.microedition.lcdui.game.GameCanvas

353
of javax.microedition.lcdui.Image277

getGrayScale()
of javax.microedition.lcdui.Graphics266

getGreenComponent()
of javax.microedition.lcdui.Graphics266

getHeaderField(int)
of javax.microedition.io.HttpConnection79

getHeaderField(String)
of javax.microedition.io.HttpConnection79

getHeaderFieldDate(String, long)
of javax.microedition.io.HttpConnection80

getHeaderFieldInt(String, int)
of javax.microedition.io.HttpConnection80

getHeaderFieldKey(int)
of javax.microedition.io.HttpConnection80

getHeight()
of javax.microedition.lcdui.Canvas148
of javax.microedition.lcdui.Displayable219
of javax.microedition.lcdui.Font228
of javax.microedition.lcdui.Form238

of javax.microedition.lcdui.game.Layer357
of javax.microedition.lcdui.Image278

getHost()
of javax.microedition.io.HttpConnection81

getImage()
of javax.microedition.lcdui.Alert132
of javax.microedition.lcdui.ImageItem285

getImage(int)
of javax.microedition.lcdui.Choice161
of javax.microedition.lcdui.ChoiceGroup170
of javax.microedition.lcdui.List309

getIndicator()
of javax.microedition.lcdui.Alert132

getInputMode()
of javax.microedition.lcdui.DateField204

getInteractionModes()
of javax.microedition.lcdui.CustomItem191

getIssuer()
of javax.microedition.pki.Certificate456

getKeyCode(int)
of javax.microedition.lcdui.Canvas148

getKeyName(int)
of javax.microedition.lcdui.Canvas148

getKeyStates()
of javax.microedition.lcdui.game.GameCanva

354
getLabel()

of javax.microedition.lcdui.Command181
of javax.microedition.lcdui.Item295

getLastModified()
of javax.microedition.io.HttpConnection81
of javax.microedition.rms.RecordStore486

getLayerAt(int)
of javax.microedition.lcdui.game.LayerMan-

ager362
getLayout()

of javax.microedition.lcdui.ImageItem285
of javax.microedition.lcdui.Item295

getLevel()
of javax.microedition.media.control.Volume-

Control429
getLocalAddress()

of javax.microedition.io.ServerSocketConnec
tion 106

of javax.microedition.io.SocketConnection
111

of javax.microedition.io.UDPDatagramCon-
nection114

getLocalPort()
of javax.microedition.io.ServerSocketConnec
548

Index
tion 107
of javax.microedition.io.SocketConnection

111
of javax.microedition.io.UDPDatagramCon-

nection114
getLongLabel()

of javax.microedition.lcdui.Command181
getMaxSize()

of javax.microedition.lcdui.TextBox326
of javax.microedition.lcdui.TextField340

getMaxValue()
of javax.microedition.lcdui.Gauge244

getMediaTime()
of javax.microedition.media.Player412

getMIDlet(String)
of javax.microedition.io.PushRegistry97

getMinContentHeight()
of javax.microedition.lcdui.CustomItem191

getMinContentWidth()
of javax.microedition.lcdui.CustomItem191

getMinimumHeight()
of javax.microedition.lcdui.Item296

getMinimumWidth()
of javax.microedition.lcdui.Item296

getName()
of javax.microedition.rms.RecordStore486

getNextRecordID()
of javax.microedition.rms.RecordStore486

getNotAfter()
of javax.microedition.pki.Certificate456

getNotBefore()
of javax.microedition.pki.Certificate456

getNumRecords()
of javax.microedition.rms.RecordStore486

getPort()
of javax.microedition.io.HttpConnection81
of javax.microedition.io.HttpsConnection87
of javax.microedition.io.SocketConnection

111
getPrefContentHeight(int)

of javax.microedition.lcdui.CustomItem191
getPrefContentWidth(int)

of javax.microedition.lcdui.CustomItem192
getPreferredHeight()

of javax.microedition.lcdui.Item296
getPreferredWidth()

of javax.microedition.lcdui.Item296
getPriority()

of javax.microedition.lcdui.Command182

getProtocol()
of javax.microedition.io.HttpConnection81

getProtocolName()
of javax.microedition.io.SecurityInfo104

getProtocolVersion()
of javax.microedition.io.SecurityInfo104

getQuery()
of javax.microedition.io.HttpConnection81

getRawFrameCount()
of javax.microedition.lcdui.game.Sprite377

getReason()
of javax.microedition.pki.CertificateException

462
getRecord(int)

of javax.microedition.rms.RecordStore487
getRecord(int, byte[], int)

of javax.microedition.rms.RecordStore487
getRecordSize(int)

of javax.microedition.rms.RecordStore488
getRedComponent()

of javax.microedition.lcdui.Graphics266
getRef()

of javax.microedition.io.HttpConnection82
getRefPixelX()

of javax.microedition.lcdui.game.Sprite377
getRefPixelY()

of javax.microedition.lcdui.game.Sprite377
getRequestMethod()

of javax.microedition.io.HttpConnection82
getRequestProperty(String)

of javax.microedition.io.HttpConnection82
getResponseCode()

of javax.microedition.io.HttpConnection82
getResponseMessage()

of javax.microedition.io.HttpConnection83
getRGB(int[], int, int, int, int, int, int)

of javax.microedition.lcdui.Image278
getRows()

of javax.microedition.lcdui.game.TiledLayer
388

getSecurityInfo()
of javax.microedition.io.HttpsConnection88
of javax.microedition.io.SecureConnection

102
getSelectedFlags(boolean[])

of javax.microedition.lcdui.Choice161
of javax.microedition.lcdui.ChoiceGroup170
of javax.microedition.lcdui.List309

getSelectedIndex()
of javax.microedition.lcdui.Choice162
549

Index
of javax.microedition.lcdui.ChoiceGroup171
of javax.microedition.lcdui.List309

getSerialNumber()
of javax.microedition.pki.Certificate457

getServerCertificate()
of javax.microedition.io.SecurityInfo104

getSigAlgName()
of javax.microedition.pki.Certificate457

getSize()
of javax.microedition.lcdui.Font229
of javax.microedition.lcdui.game.LayerMan-

ager362
of javax.microedition.rms.RecordStore488

getSizeAvailable()
of javax.microedition.rms.RecordStore488

getSocketOption(byte)
of javax.microedition.io.SocketConnection

112
getState()

of javax.microedition.media.Player412
getString()

of javax.microedition.lcdui.Alert133
of javax.microedition.lcdui.TextBox326
of javax.microedition.lcdui.TextField340
of javax.microedition.lcdui.Ticker346

getString(int)
of javax.microedition.lcdui.Choice162
of javax.microedition.lcdui.ChoiceGroup171
of javax.microedition.lcdui.List310

getStrokeStyle()
of javax.microedition.lcdui.Graphics266

getStyle()
of javax.microedition.lcdui.Font229

getSubject()
of javax.microedition.pki.Certificate457

getSupportedContentTypes(String)
of javax.microedition.media.Manager402

getSupportedProtocols(String)
of javax.microedition.media.Manager402

getText()
of javax.microedition.lcdui.StringItem321

getTicker()
of javax.microedition.lcdui.Displayable219

getTimeout()
of javax.microedition.lcdui.Alert133

getTitle()
of javax.microedition.lcdui.Displayable220

getTranslateX()
of javax.microedition.lcdui.Graphics267

getTranslateY()
of javax.microedition.lcdui.Graphics267

getType()
of javax.microedition.lcdui.Alert133
of javax.microedition.pki.Certificate457

getURL()
of javax.microedition.io.HttpConnection83

getValue()
of javax.microedition.lcdui.Gauge245

getVersion()
of javax.microedition.pki.Certificate457
of javax.microedition.rms.RecordStore488

getWidth()
of javax.microedition.lcdui.Canvas149
of javax.microedition.lcdui.Displayable220
of javax.microedition.lcdui.Form238
of javax.microedition.lcdui.game.Layer357
of javax.microedition.lcdui.Image279

getX()
of javax.microedition.lcdui.game.Layer357

getY()
of javax.microedition.lcdui.game.Layer357

Graphics
of javax.microedition.lcdui247

H
hasNextElement()

of javax.microedition.rms.RecordEnumeration
474

hasPointerEvents()
of javax.microedition.lcdui.Canvas149

hasPointerMotionEvents()
of javax.microedition.lcdui.Canvas149

hasPreviousElement()
of javax.microedition.rms.RecordEnumeration

474
hasRepeatEvents()

of javax.microedition.lcdui.Canvas149
HCENTER

of javax.microedition.lcdui.Graphics253
HEAD

of javax.microedition.io.HttpConnection72
HELP

of javax.microedition.lcdui.Command179
hideNotify()

of javax.microedition.lcdui.Canvas149
of javax.microedition.lcdui.CustomItem192

HTTP_ACCEPTED
of javax.microedition.io.HttpConnection72
550

Index
HTTP_BAD_GATEWAY
of javax.microedition.io.HttpConnection72

HTTP_BAD_METHOD
of javax.microedition.io.HttpConnection73

HTTP_BAD_REQUEST
of javax.microedition.io.HttpConnection73

HTTP_CLIENT_TIMEOUT
of javax.microedition.io.HttpConnection73

HTTP_CONFLICT
of javax.microedition.io.HttpConnection73

HTTP_CREATED
of javax.microedition.io.HttpConnection73

HTTP_ENTITY_TOO_LARGE
of javax.microedition.io.HttpConnection73

HTTP_EXPECT_FAILED
of javax.microedition.io.HttpConnection73

HTTP_FORBIDDEN
of javax.microedition.io.HttpConnection74

HTTP_GATEWAY_TIMEOUT
of javax.microedition.io.HttpConnection74

HTTP_GONE
of javax.microedition.io.HttpConnection74

HTTP_INTERNAL_ERROR
of javax.microedition.io.HttpConnection74

HTTP_LENGTH_REQUIRED
of javax.microedition.io.HttpConnection74

HTTP_MOVED_PERM
of javax.microedition.io.HttpConnection74

HTTP_MOVED_TEMP
of javax.microedition.io.HttpConnection75

HTTP_MULT_CHOICE
of javax.microedition.io.HttpConnection75

HTTP_NO_CONTENT
of javax.microedition.io.HttpConnection75

HTTP_NOT_ACCEPTABLE
of javax.microedition.io.HttpConnection75

HTTP_NOT_AUTHORITATIVE
of javax.microedition.io.HttpConnection75

HTTP_NOT_FOUND
of javax.microedition.io.HttpConnection75

HTTP_NOT_IMPLEMENTED
of javax.microedition.io.HttpConnection76

HTTP_NOT_MODIFIED
of javax.microedition.io.HttpConnection76

HTTP_OK
of javax.microedition.io.HttpConnection76

HTTP_PARTIAL
of javax.microedition.io.HttpConnection76

HTTP_PAYMENT_REQUIRED
of javax.microedition.io.HttpConnection76

HTTP_PRECON_FAILED
of javax.microedition.io.HttpConnection76

HTTP_PROXY_AUTH
of javax.microedition.io.HttpConnection76

HTTP_REQ_TOO_LONG
of javax.microedition.io.HttpConnection77

HTTP_RESET
of javax.microedition.io.HttpConnection77

HTTP_SEE_OTHER
of javax.microedition.io.HttpConnection77

HTTP_TEMP_REDIRECT
of javax.microedition.io.HttpConnection77

HTTP_UNAUTHORIZED
of javax.microedition.io.HttpConnection77

HTTP_UNAVAILABLE
of javax.microedition.io.HttpConnection77

HTTP_UNSUPPORTED_RANGE
of javax.microedition.io.HttpConnection77

HTTP_UNSUPPORTED_TYPE
of javax.microedition.io.HttpConnection78

HTTP_USE_PROXY
of javax.microedition.io.HttpConnection78

HTTP_VERSION
of javax.microedition.io.HttpConnection78

HttpConnection
of javax.microedition.io65

HttpsConnection
of javax.microedition.io85

HYPERLINK
of javax.microedition.lcdui.Item292

I
IllegalStateException

of java.lang37
IllegalStateException()

of java.lang.IllegalStateException37
IllegalStateException(String)

of java.lang.IllegalStateException38
Image

of javax.microedition.lcdui270
ImageItem

of javax.microedition.lcdui281
ImageItem(String, Image, int, String)

of javax.microedition.lcdui.ImageItem283
ImageItem(String, Image, int, String, int)

of javax.microedition.lcdui.ImageItem284
IMPLICIT

of javax.microedition.lcdui.Choice158
551

Index
INAPPROPRIATE_KEY_USAGE
of javax.microedition.pki.CertificateException

459
INCREMENTAL_IDLE

of javax.microedition.lcdui.Gauge243
INCREMENTAL_UPDATING

of javax.microedition.lcdui.Gauge243
INDEFINITE

of javax.microedition.lcdui.Gauge243
INFO

of javax.microedition.lcdui.AlertType137
INITIAL_CAPS_SENTENCE

of javax.microedition.lcdui.TextField336
INITIAL_CAPS_WORD

of javax.microedition.lcdui.TextField336
insert(char[], int, int, int)

of javax.microedition.lcdui.TextBox326
of javax.microedition.lcdui.TextField341

insert(int, Item)
of javax.microedition.lcdui.Form238

insert(int, String, Image)
of javax.microedition.lcdui.Choice162
of javax.microedition.lcdui.ChoiceGroup171
of javax.microedition.lcdui.List310

insert(Layer, int)
of javax.microedition.lcdui.game.LayerMan-

ager363
insert(String, int)

of javax.microedition.lcdui.TextBox327
of javax.microedition.lcdui.TextField341

invalidate()
of javax.microedition.lcdui.CustomItem192

InvalidRecordIDException
of javax.microedition.rms469

InvalidRecordIDException()
of javax.microedition.rms.InvalidRecordIDEx-

ception469
InvalidRecordIDException(String)

of javax.microedition.rms.InvalidRecordIDEx-
ception470

isBold()
of javax.microedition.lcdui.Font229

isColor()
of javax.microedition.lcdui.Display213

isDoubleBuffered()
of javax.microedition.lcdui.Canvas150

isInteractive()
of javax.microedition.lcdui.Gauge245

isItalic()
of javax.microedition.lcdui.Font229

isKeptUpdated()
of javax.microedition.rms.RecordEnumeration

474
isMutable()

of javax.microedition.lcdui.Image280
isMuted()

of javax.microedition.media.control.Volume-
Control429

isPlain()
of javax.microedition.lcdui.Font229

isSelected(int)
of javax.microedition.lcdui.Choice163
of javax.microedition.lcdui.ChoiceGroup172
of javax.microedition.lcdui.List310

isShown()
of javax.microedition.lcdui.Displayable220

isUnderlined()
of javax.microedition.lcdui.Font230

isVisible()
of javax.microedition.lcdui.game.Layer357

ITEM
of javax.microedition.lcdui.Command179

Item
of javax.microedition.lcdui287

ItemCommandListener
of javax.microedition.lcdui300

itemStateChanged(Item)
of javax.microedition.lcdui.ItemStateListener

301
ItemStateListener

of javax.microedition.lcdui301

J
java.applet - package515

K
KEEPALIVE

of javax.microedition.io.SocketConnection
110

keepUpdated(boolean)
of javax.microedition.rms.RecordEnumeration

474
KEY_NUM0

of javax.microedition.lcdui.Canvas144
KEY_NUM1

of javax.microedition.lcdui.Canvas145
KEY_NUM2

of javax.microedition.lcdui.Canvas145
552

Index

s

KEY_NUM3
of javax.microedition.lcdui.Canvas145

KEY_NUM4
of javax.microedition.lcdui.Canvas145

KEY_NUM5
of javax.microedition.lcdui.Canvas145

KEY_NUM6
of javax.microedition.lcdui.Canvas145

KEY_NUM7
of javax.microedition.lcdui.Canvas146

KEY_NUM8
of javax.microedition.lcdui.Canvas146

KEY_NUM9
of javax.microedition.lcdui.Canvas146

KEY_POUND
of javax.microedition.lcdui.Canvas146

KEY_PRESS
of javax.microedition.lcdui.CustomItem188

KEY_RELEASE
of javax.microedition.lcdui.CustomItem188

KEY_REPEAT
of javax.microedition.lcdui.CustomItem189

KEY_STAR
of javax.microedition.lcdui.Canvas146

keyPressed(int)
of javax.microedition.lcdui.Canvas150
of javax.microedition.lcdui.CustomItem193

keyReleased(int)
of javax.microedition.lcdui.Canvas150
of javax.microedition.lcdui.CustomItem193

keyRepeated(int)
of javax.microedition.lcdui.Canvas150
of javax.microedition.lcdui.CustomItem193

L
Layer

of javax.microedition.lcdui.game356
LayerManager

of javax.microedition.lcdui.game360
LayerManager()

of javax.microedition.lcdui.game.LayerMan-
ager362

LAYOUT_2
of javax.microedition.lcdui.Item292

LAYOUT_BOTTOM
of javax.microedition.lcdui.Item292

LAYOUT_CENTER
of javax.microedition.lcdui.ImageItem282
of javax.microedition.lcdui.Item292

LAYOUT_DEFAULT
of javax.microedition.lcdui.ImageItem282
of javax.microedition.lcdui.Item292

LAYOUT_EXPAND
of javax.microedition.lcdui.Item293

LAYOUT_LEFT
of javax.microedition.lcdui.ImageItem283
of javax.microedition.lcdui.Item293

LAYOUT_NEWLINE_AFTER
of javax.microedition.lcdui.ImageItem283
of javax.microedition.lcdui.Item293

LAYOUT_NEWLINE_BEFORE
of javax.microedition.lcdui.ImageItem283
of javax.microedition.lcdui.Item293

LAYOUT_RIGHT
of javax.microedition.lcdui.ImageItem283
of javax.microedition.lcdui.Item293

LAYOUT_SHRINK
of javax.microedition.lcdui.Item294

LAYOUT_TOP
of javax.microedition.lcdui.Item294

LAYOUT_VCENTER
of javax.microedition.lcdui.Item294

LAYOUT_VEXPAND
of javax.microedition.lcdui.Item294

LAYOUT_VSHRINK
of javax.microedition.lcdui.Item294

LEFT
of javax.microedition.lcdui.Canvas146
of javax.microedition.lcdui.Graphics253

LEFT_PRESSED
of javax.microedition.lcdui.game.GameCanva

352
LINGER

of javax.microedition.io.SocketConnection
110

List
of javax.microedition.lcdui303

List(String, int)
of javax.microedition.lcdui.List306

List(String, int, String[], Image[])
of javax.microedition.lcdui.List306

LIST_ELEMENT
of javax.microedition.lcdui.Display209

listConnections(boolean)
of javax.microedition.io.PushRegistry97

listRecordStores()
of javax.microedition.rms.RecordStore489
553

Index

s

M
Manager

of javax.microedition.media399
matches(byte[])

of javax.microedition.rms.RecordFilter478
MediaException

of javax.microedition.media404
MediaException()

of javax.microedition.media.MediaException
404

MediaException(String)
of javax.microedition.media.MediaException

404
MIDlet

of javax.microedition.midlet444
MIDlet()

of javax.microedition.midlet.MIDlet445
MIDletStateChangeException

of javax.microedition.midlet450
MIDletStateChangeException()

of javax.microedition.midlet.MIDletState-
ChangeException450

MIDletStateChangeException(String)
of javax.microedition.midlet.MIDletState-

ChangeException451
MISSING_SIGNATURE

of javax.microedition.pki.CertificateException
459

move(int, int)
of javax.microedition.lcdui.game.Layer358

MULTIPLE
of javax.microedition.lcdui.Choice158

N
nextFrame()

of javax.microedition.lcdui.game.Sprite378
nextRecord()

of javax.microedition.rms.RecordEnumeration
475

nextRecordId()
of javax.microedition.rms.RecordEnumeration

475
NON_PREDICTIVE

of javax.microedition.lcdui.TextField336
NONE

of javax.microedition.lcdui.CustomItem189
NOT_YET_VALID

of javax.microedition.pki.CertificateException

460
notifyDestroyed()

of javax.microedition.midlet.MIDlet446
notifyPaused()

of javax.microedition.midlet.MIDlet446
notifyStateChanged()

of javax.microedition.lcdui.Item297
numAlphaLevels()

of javax.microedition.lcdui.Display213
numColors()

of javax.microedition.lcdui.Display214
NUMERIC

of javax.microedition.lcdui.TextField337
numRecords()

of javax.microedition.rms.RecordEnumeration
476

O
OK

of javax.microedition.lcdui.Command179
open(String)

of javax.microedition.io.Connector62
open(String, int)

of javax.microedition.io.Connector62
open(String, int, boolean)

of javax.microedition.io.Connector62
openDataInputStream(String)

of javax.microedition.io.Connector63
openDataOutputStream(String)

of javax.microedition.io.Connector63
openInputStream(String)

of javax.microedition.io.Connector64
openOutputStream(String)

of javax.microedition.io.Connector64
openRecordStore(String, boolean)

of javax.microedition.rms.RecordStore489
openRecordStore(String, boolean, int, boolean)

of javax.microedition.rms.RecordStore490
openRecordStore(String, String, String)

of javax.microedition.rms.RecordStore490

P
paint(Graphics)

of javax.microedition.lcdui.Canvas151
of javax.microedition.lcdui.game.GameCanva

355
of javax.microedition.lcdui.game.Layer358
of javax.microedition.lcdui.game.Sprite378
554

Index
of javax.microedition.lcdui.game.TiledLayer
388

paint(Graphics, int, int)
of javax.microedition.lcdui.CustomItem193
of javax.microedition.lcdui.game.LayerMan-

ager363
PASSWORD

of javax.microedition.lcdui.TextField337
pauseApp()

of javax.microedition.midlet.MIDlet447
PHONENUMBER

of javax.microedition.lcdui.TextField337
PLAIN

of javax.microedition.lcdui.Item295
platformRequest(String)

of javax.microedition.midlet.MIDlet447
PLAY_BLOCK

of javax.microedition.media.control.ToneCon-
trol 426

Player
of javax.microedition.media406

PlayerListener
of javax.microedition.media416

playerUpdate(Player, String, Object)
of javax.microedition.media.PlayerListener

419
playSound(Display)

of javax.microedition.lcdui.AlertType138
playTone(int, int, int)

of javax.microedition.media.Manager402
POINTER_DRAG

of javax.microedition.lcdui.CustomItem189
POINTER_PRESS

of javax.microedition.lcdui.CustomItem189
POINTER_RELEASE

of javax.microedition.lcdui.CustomItem189
pointerDragged(int, int)

of javax.microedition.lcdui.Canvas152
of javax.microedition.lcdui.CustomItem194

pointerPressed(int, int)
of javax.microedition.lcdui.Canvas152
of javax.microedition.lcdui.CustomItem194

pointerReleased(int, int)
of javax.microedition.lcdui.Canvas152
of javax.microedition.lcdui.CustomItem195

POPUP
of javax.microedition.lcdui.Choice158

POST
of javax.microedition.io.HttpConnection78

PRECEDES
of javax.microedition.rms.RecordComparator

472
prefetch()

of javax.microedition.media.Player412
PREFETCHED

of javax.microedition.media.Player410
prevFrame()

of javax.microedition.lcdui.game.Sprite378
previousRecord()

of javax.microedition.rms.RecordEnumeration
476

previousRecordId()
of javax.microedition.rms.RecordEnumeration

476
PushRegistry

of javax.microedition.io89

R
RCVBUF

of javax.microedition.io.SocketConnection
110

READ
of javax.microedition.io.Connector61

READ_WRITE
of javax.microedition.io.Connector61

realize()
of javax.microedition.media.Player413

REALIZED
of javax.microedition.media.Player410

rebuild()
of javax.microedition.rms.RecordEnumeration

476
recordAdded(RecordStore, int)

of javax.microedition.rms.RecordListener479
recordChanged(RecordStore, int)

of javax.microedition.rms.RecordListener479
RecordComparator

of javax.microedition.rms471
recordDeleted(RecordStore, int)

of javax.microedition.rms.RecordListener480
RecordEnumeration

of javax.microedition.rms473
RecordFilter

of javax.microedition.rms478
RecordListener

of javax.microedition.rms479
RecordStore

of javax.microedition.rms481
555

Index

-

-

s

RecordStoreException
of javax.microedition.rms493

RecordStoreException()
of javax.microedition.rms.RecordStoreExcep-

tion 493
RecordStoreException(String)

of javax.microedition.rms.RecordStoreExcep-
tion 494

RecordStoreFullException
of javax.microedition.rms495

RecordStoreFullException()
of javax.microedition.rms.RecordStoreFullEx-

ception495
RecordStoreFullException(String)

of javax.microedition.rms.RecordStoreFullEx-
ception496

RecordStoreNotFoundException
of javax.microedition.rms497

RecordStoreNotFoundException()
of javax.microedition.rms.RecordStoreNot-

FoundException497
RecordStoreNotFoundException(String)

of javax.microedition.rms.RecordStoreNot-
FoundException498

RecordStoreNotOpenException
of javax.microedition.rms499

RecordStoreNotOpenException()
of javax.microedition.rms.RecordStoreNo-

tOpenException499
RecordStoreNotOpenException(String)

of javax.microedition.rms.RecordStoreNo-
tOpenException500

registerAlarm(String, long)
of javax.microedition.io.PushRegistry97

registerConnection(String, String, String)
of javax.microedition.io.PushRegistry98

remove(Layer)
of javax.microedition.lcdui.game.LayerMan-

ager364
removeCommand(Command)

of javax.microedition.lcdui.Alert133
of javax.microedition.lcdui.Displayable220
of javax.microedition.lcdui.Item297
of javax.microedition.lcdui.List311

removePlayerListener(PlayerListener)
of javax.microedition.media.Player413

removeRecordListener(RecordListener)
of javax.microedition.rms.RecordStore491

repaint()
of javax.microedition.lcdui.Canvas152

of javax.microedition.lcdui.CustomItem195
repaint(int, int, int, int)

of javax.microedition.lcdui.Canvas153
of javax.microedition.lcdui.CustomItem195

REPEAT
of javax.microedition.media.control.ToneCon

trol 426
reset()

of javax.microedition.rms.RecordEnumeration
477

RESOLUTION
of javax.microedition.media.control.ToneCon

trol 426
resumeRequest()

of javax.microedition.midlet.MIDlet448
RIGHT

of javax.microedition.lcdui.Canvas147
of javax.microedition.lcdui.Graphics254

RIGHT_PRESSED
of javax.microedition.lcdui.game.GameCanva

352
ROOT_CA_EXPIRED

of javax.microedition.pki.CertificateException
460

run()
of java.util.TimerTask47

S
schedule(TimerTask, Date)

of java.util.Timer41
schedule(TimerTask, Date, long)

of java.util.Timer42
schedule(TimerTask, long)

of java.util.Timer42
schedule(TimerTask, long, long)

of java.util.Timer43
scheduleAtFixedRate(TimerTask, Date, long)

of java.util.Timer43
scheduleAtFixedRate(TimerTask, long, long)

of java.util.Timer44
scheduledExecutionTime()

of java.util.TimerTask47
SCREEN

of javax.microedition.lcdui.Command180
Screen

of javax.microedition.lcdui315
SecureConnection

of javax.microedition.io100
556

Index
SecurityInfo
of javax.microedition.io103

SELECT_COMMAND
of javax.microedition.lcdui.List306

SENSITIVE
of javax.microedition.lcdui.TextField338

ServerSocketConnection
of javax.microedition.io105

serviceRepaints()
of javax.microedition.lcdui.Canvas153

set(int, Item)
of javax.microedition.lcdui.Form239

set(int, String, Image)
of javax.microedition.lcdui.Choice163
of javax.microedition.lcdui.ChoiceGroup172
of javax.microedition.lcdui.List311

SET_VOLUME
of javax.microedition.media.control.ToneCon-

trol 426
setAltText(String)

of javax.microedition.lcdui.ImageItem285
setAnimatedTile(int, int)

of javax.microedition.lcdui.game.TiledLayer
388

setBaudRate(int)
of javax.microedition.io.CommConnection58

setCell(int, int, int)
of javax.microedition.lcdui.game.TiledLayer

389
setChars(char[], int, int)

of javax.microedition.lcdui.TextBox328
of javax.microedition.lcdui.TextField342

setClip(int, int, int, int)
of javax.microedition.lcdui.Graphics267

setColor(int)
of javax.microedition.lcdui.Graphics267

setColor(int, int, int)
of javax.microedition.lcdui.Graphics267

setCommandListener(CommandListener)
of javax.microedition.lcdui.Alert134
of javax.microedition.lcdui.Displayable221

setConstraints(int)
of javax.microedition.lcdui.TextBox328
of javax.microedition.lcdui.TextField342

setCurrent(Alert, Displayable)
of javax.microedition.lcdui.Display214

setCurrent(Displayable)
of javax.microedition.lcdui.Display214

setCurrentItem(Item)
of javax.microedition.lcdui.Display216

setDate(Date)
of javax.microedition.lcdui.DateField204

setDefaultCommand(Command)
of javax.microedition.lcdui.Item298
of javax.microedition.lcdui.Spacer318

setFitPolicy(int)
of javax.microedition.lcdui.Choice163
of javax.microedition.lcdui.ChoiceGroup172
of javax.microedition.lcdui.List312

setFont(Font)
of javax.microedition.lcdui.Graphics268
of javax.microedition.lcdui.StringItem322

setFont(int, Font)
of javax.microedition.lcdui.Choice164
of javax.microedition.lcdui.ChoiceGroup173
of javax.microedition.lcdui.List312

setFrame(int)
of javax.microedition.lcdui.game.Sprite378

setFrameSequence(int[])
of javax.microedition.lcdui.game.Sprite379

setFullScreenMode(boolean)
of javax.microedition.lcdui.Canvas153

setGrayScale(int)
of javax.microedition.lcdui.Graphics268

setImage(Image)
of javax.microedition.lcdui.Alert134
of javax.microedition.lcdui.ImageItem286

setImage(Image, int, int)
of javax.microedition.lcdui.game.Sprite379

setIndicator(Gauge)
of javax.microedition.lcdui.Alert134

setInitialInputMode(String)
of javax.microedition.lcdui.TextBox328
of javax.microedition.lcdui.TextField343

setInputMode(int)
of javax.microedition.lcdui.DateField204

setItemCommandListener(ItemCommandLis-
tener)

of javax.microedition.lcdui.Item298
setItemStateListener(ItemStateListener)

of javax.microedition.lcdui.Form239
setLabel(String)

of javax.microedition.lcdui.Item298
of javax.microedition.lcdui.Spacer318

setLayout(int)
of javax.microedition.lcdui.ImageItem286
of javax.microedition.lcdui.Item299

setLevel(int)
of javax.microedition.media.control.Volume-

Control429
557

Index

-

setLoopCount(int)
of javax.microedition.media.Player414

setMaxSize(int)
of javax.microedition.lcdui.TextBox329
of javax.microedition.lcdui.TextField343

setMaxValue(int)
of javax.microedition.lcdui.Gauge245

setMediaTime(long)
of javax.microedition.media.Player414

setMinimumSize(int, int)
of javax.microedition.lcdui.Spacer318

setMode(int, boolean)
of javax.microedition.rms.RecordStore491

setMute(boolean)
of javax.microedition.media.control.Volume-

Control429
setPosition(int, int)

of javax.microedition.lcdui.game.Layer358
setPreferredSize(int, int)

of javax.microedition.lcdui.Item299
setRecord(int, byte[], int, int)

of javax.microedition.rms.RecordStore492
setRefPixelPosition(int, int)

of javax.microedition.lcdui.game.Sprite380
setRequestMethod(String)

of javax.microedition.io.HttpConnection83
setRequestProperty(String, String)

of javax.microedition.io.HttpConnection84
setSelectCommand(Command)

of javax.microedition.lcdui.List312
setSelectedFlags(boolean[])

of javax.microedition.lcdui.Choice164
of javax.microedition.lcdui.ChoiceGroup173
of javax.microedition.lcdui.List313

setSelectedIndex(int, boolean)
of javax.microedition.lcdui.Choice164
of javax.microedition.lcdui.ChoiceGroup174
of javax.microedition.lcdui.List313

setSequence(byte[])
of javax.microedition.media.control.ToneCon-

trol 427
setSocketOption(byte, int)

of javax.microedition.io.SocketConnection
112

setStaticTileSet(Image, int, int)
of javax.microedition.lcdui.game.TiledLayer

389
setString(String)

of javax.microedition.lcdui.Alert135
of javax.microedition.lcdui.TextBox329

of javax.microedition.lcdui.TextField343
of javax.microedition.lcdui.Ticker346

setStrokeStyle(int)
of javax.microedition.lcdui.Graphics268

setText(String)
of javax.microedition.lcdui.StringItem322

setTicker(Ticker)
of javax.microedition.lcdui.Displayable221

setTimeout(int)
of javax.microedition.lcdui.Alert135

setTitle(String)
of javax.microedition.lcdui.Displayable221

setTransform(int)
of javax.microedition.lcdui.game.Sprite380

setType(AlertType)
of javax.microedition.lcdui.Alert135

setValue(int)
of javax.microedition.lcdui.Gauge246

setViewWindow(int, int, int, int)
of javax.microedition.lcdui.game.LayerMan-

ager364
setVisible(boolean)

of javax.microedition.lcdui.game.Layer358
showNotify()

of javax.microedition.lcdui.Canvas154
of javax.microedition.lcdui.CustomItem195

SILENCE
of javax.microedition.media.control.ToneCon

trol 426
SITENAME_MISMATCH

of javax.microedition.pki.CertificateException
460

size()
of javax.microedition.lcdui.Choice165
of javax.microedition.lcdui.ChoiceGroup174
of javax.microedition.lcdui.Form239
of javax.microedition.lcdui.List314
of javax.microedition.lcdui.TextBox329
of javax.microedition.lcdui.TextField343

SIZE_LARGE
of javax.microedition.lcdui.Font225

SIZE_MEDIUM
of javax.microedition.lcdui.Font225

SIZE_SMALL
of javax.microedition.lcdui.Font226

sizeChanged(int, int)
of javax.microedition.lcdui.Canvas154
of javax.microedition.lcdui.CustomItem196
of javax.microedition.lcdui.Displayable222
558

Index

-

SNDBUF
of javax.microedition.io.SocketConnection

110
SocketConnection

of javax.microedition.io108
SOLID

of javax.microedition.lcdui.Graphics254
Spacer

of javax.microedition.lcdui316
Spacer(int, int)

of javax.microedition.lcdui.Spacer317
Sprite

of javax.microedition.lcdui.game365
Sprite(Image)

of javax.microedition.lcdui.game.Sprite373
Sprite(Image, int, int)

of javax.microedition.lcdui.game.Sprite373
Sprite(Sprite)

of javax.microedition.lcdui.game.Sprite374
start()

of javax.microedition.media.Player415
startApp()

of javax.microedition.midlet.MIDlet448
STARTED

of javax.microedition.media.Player410
of javax.microedition.media.PlayerListener

418
STOP

of javax.microedition.lcdui.Command180
stop()

of javax.microedition.media.Player415
STOPPED

of javax.microedition.media.PlayerListener
418

StringItem
of javax.microedition.lcdui319

StringItem(String, String)
of javax.microedition.lcdui.StringItem320

StringItem(String, String, int)
of javax.microedition.lcdui.StringItem320

stringWidth(String)
of javax.microedition.lcdui.Font230

STYLE_BOLD
of javax.microedition.lcdui.Font226

STYLE_ITALIC
of javax.microedition.lcdui.Font226

STYLE_PLAIN
of javax.microedition.lcdui.Font226

STYLE_UNDERLINED
of javax.microedition.lcdui.Font226

substringWidth(String, int, int)
of javax.microedition.lcdui.Font230

T
TEMPO

of javax.microedition.media.control.ToneCon
trol 426

TEXT_WRAP_DEFAULT
of javax.microedition.lcdui.Choice158

TEXT_WRAP_OFF
of javax.microedition.lcdui.Choice159

TEXT_WRAP_ON
of javax.microedition.lcdui.Choice159

TextBox
of javax.microedition.lcdui323

TextBox(String, String, int, int)
of javax.microedition.lcdui.TextBox324

TextField
of javax.microedition.lcdui330

TextField(String, String, int, int)
of javax.microedition.lcdui.TextField338

Ticker
of javax.microedition.lcdui345

Ticker(String)
of javax.microedition.lcdui.Ticker346

TiledLayer
of javax.microedition.lcdui.game382

TiledLayer(int, int, Image, int, int)
of javax.microedition.lcdui.game.TiledLayer

385
TIME

of javax.microedition.lcdui.DateField202
TIME_UNKNOWN

of javax.microedition.media.Player410
Timer

of java.util40
Timer()

of java.util.Timer41
TimerTask

of java.util46
TimerTask()

of java.util.TimerTask46
TONE_DEVICE_LOCATOR

of javax.microedition.media.Manager400
ToneControl

of javax.microedition.media.control422
TOP

of javax.microedition.lcdui.Graphics254
559

Index

s

-

TRANS_MIRROR
of javax.microedition.lcdui.game.Sprite371

TRANS_MIRROR_ROT180
of javax.microedition.lcdui.game.Sprite371

TRANS_MIRROR_ROT270
of javax.microedition.lcdui.game.Sprite372

TRANS_MIRROR_ROT90
of javax.microedition.lcdui.game.Sprite372

TRANS_NONE
of javax.microedition.lcdui.game.Sprite372

TRANS_ROT180
of javax.microedition.lcdui.game.Sprite372

TRANS_ROT270
of javax.microedition.lcdui.game.Sprite372

TRANS_ROT90
of javax.microedition.lcdui.game.Sprite372

translate(int, int)
of javax.microedition.lcdui.Graphics269

traverse(int, int, int, int[])
of javax.microedition.lcdui.CustomItem196

TRAVERSE_HORIZONTAL
of javax.microedition.lcdui.CustomItem190

TRAVERSE_VERTICAL
of javax.microedition.lcdui.CustomItem190

traverseOut()
of javax.microedition.lcdui.CustomItem199

U
UDPDatagramConnection

of javax.microedition.io113
UNAUTHORIZED_INTERMEDIATE_CA

of javax.microedition.pki.CertificateException
460

UNEDITABLE
of javax.microedition.lcdui.TextField338

UNREALIZED
of javax.microedition.media.Player410

UNRECOGNIZED_ISSUER
of javax.microedition.pki.CertificateException

460
unregisterConnection(String)

of javax.microedition.io.PushRegistry99
UNSUPPORTED_PUBLIC_KEY_TYPE

of javax.microedition.pki.CertificateException
460

UNSUPPORTED_SIGALG
of javax.microedition.pki.CertificateException

460

UP
of javax.microedition.lcdui.Canvas147

UP_PRESSED
of javax.microedition.lcdui.game.GameCanva

352
URL

of javax.microedition.lcdui.TextField338

V
VCENTER

of javax.microedition.lcdui.Graphics254
VERIFICATION_FAILED

of javax.microedition.pki.CertificateException
461

VERSION
of javax.microedition.media.control.ToneCon

trol 427
vibrate(int)

of javax.microedition.lcdui.Display216
VOLUME_CHANGED

of javax.microedition.media.PlayerListener
419

VolumeControl
of javax.microedition.media.control428

W
WARNING

of javax.microedition.lcdui.AlertType137
WRITE

of javax.microedition.io.Connector61
560

	Mobile Information Device Profile
	Contents
	Overview
	Mobile Information Device Profile, v2.0 (JSR-118)
	Over The Air User Initiated Provisioning Specification
	Security for MIDP Applications
	Trusted MIDlet Suites using X.509 PKI
	java.lang
	IllegalStateException

	java.util
	Timer
	TimerTask

	javax.microedition.io
	CommConnection
	Optional Parameters
	BNF Format for Connector.open() string
	Security
	Examples
	Recommended Port Naming Convention
	Connector
	HttpConnection
	HttpsConnection
	PushRegistry
	SecureConnection
	BNF Format for Connector.open() string
	Examples
	SecurityInfo
	ServerSocketConnection
	BNF Format for Connector.open() string
	Examples
	SocketConnection
	BNF Format for Connector.open() string
	UDPDatagramConnection
	BNF Format for Connector.open() string

	javax.microedition.lcdui
	Alert
	AlertType
	Canvas
	Choice
	ChoiceGroup
	Command
	CommandListener
	CustomItem
	DateField
	Display
	Displayable
	Font
	Form
	Gauge
	Graphics
	Image
	ImageItem
	Item
	ItemCommandListener
	ItemStateListener
	List
	Screen
	Spacer
	StringItem
	TextBox
	TextField
	Ticker

	javax.microedition.lcdui.game
	GameCanvas
	Layer
	LayerManager
	Sprite
	TiledLayer

	javax.microedition.media
	Control
	Controllable
	Manager
	MediaException
	Player
	Simple Playback
	Player Life Cycle
	Player States
	Player Events
	Player’s Controls
	Simple Playback Example
	PlayerListener

	javax.microedition.media.control
	ToneControl
	VolumeControl

	javax.microedition.midlet
	MIDlet
	MIDletStateChangeException

	javax.microedition.pki
	Certificate
	CertificateException

	javax.microedition.rms
	InvalidRecordIDException
	RecordComparator
	RecordEnumeration
	RecordFilter
	RecordListener
	RecordStore
	RecordStoreException
	RecordStoreFullException
	RecordStoreNotFoundException
	RecordStoreNotOpenException

	The Recommended Security Policy for GSM/UMTS Compliant Devices
	Almanac
	Alert
	AlertType
	Canvas
	Certificate
	CertificateException
	Choice
	ChoiceGroup
	Command
	CommandListener
	CommConnection
	Connector
	Control
	Controllable
	CustomItem
	DateField
	Display
	Displayable
	Font
	Form
	GameCanvas
	Gauge
	Graphics
	HttpConnection
	HttpsConnection
	IllegalStateException
	Image
	ImageItem
	InvalidRecordIDException
	Item
	ItemCommandListener
	ItemStateListener
	Layer
	LayerManager
	List
	Manager
	MediaException
	MIDlet
	MIDletStateChangeException
	Player
	PlayerListener
	PushRegistry
	RecordComparator
	RecordEnumeration
	RecordFilter
	RecordListener
	RecordStore
	RecordStoreException
	RecordStoreFullException
	RecordStoreNotFoundException
	RecordStoreNotOpenException
	Screen
	SecureConnection
	SecurityInfo
	ServerSocketConnection
	SocketConnection
	Spacer
	Sprite
	StringItem
	TextBox
	TextField
	Ticker
	TiledLayer
	Timer
	TimerTask
	ToneControl
	UDPDatagramConnection
	VolumeControl

	Index

