
[Guide Subtitle]
[optional]

UG683 September 21, 2010 [optional]

EDK Concepts, Tools,
and Techniques

A Hands-On Guide to Effective
Embedded System Design

EDK 12.3

UG683 September 21, 2010

EDK Concepts, Tools, and Techniques www.xilinx.com UG683 September 21, 2010

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective owners.

http://www.xilinx.com

UG683 EDK 12.3 www.xilinx.com EDK Concepts, Tools, and Techniques

Chapter 1: Introduction
About This Guide . 5

Additional Documentation . 5
Attachments to this Guide . 6

How EDK Simplifies Embedded Processor Design . 6
The Integrated Design Suite, Embedded Edition . 6
The Embedded Development Kit (EDK) . 6

How the EDK Tools Expedite the Design Process . 7
What You Need to Set Up Before Starting. 8

Installation Requirements: What You Need to Run EDK Tools 8
Hardware Requirements for this Guide . 9

Chapter 2: Creating a New Project
The Base System Builder . 11

Why Use the BSB? . 11
What You Can Do in the BSB Wizard . 11
The BSB Wizard and the ISE Design Suite . 13

A Note on the BSB and Custom Boards . 18
What’s Next? . 18

Chapter 3: Using Xilinx Platform Studio
What is XPS? . 19
The XPS Software . 19

Project Information Area. 21
System Assembly View . 23
Console Window . 25
Start Up Page . 25

XPS Tools . 25
XPS Directory Structure . 26

Directory View . 27
What’s Next? . 28

Chapter 4: Working with Your Embedded Platform
What’s in a Hardware Platform? . 29
Hardware Platform Development in Xilinx Platform Studio. 29
The Hardware Platform in System Assembly View . 30

Converting the Hardware Platform to a Bitstream . 30
Exporting Your Hardware Platform . 31

What’s Next? . 34

Chapter 5: Introducing the Software Development Kit
About SDK . 35

What Just Happened? . 37
What’s Next? . 40

http://www.xilinx.com

UG683 EDK 12.3 www.xilinx.com EDK Concepts, Tools, and Techniques

Chapter 6: More on the Software Development Kit: Edit, Debug, and
Release

SDK Drivers and Windows. 41
More on Drivers . 41
SDK Windows . 41
Setting Up Your Workspace . 42
Creating New Xilinx C Projects . 43
Running Your Applications . 43

Working with the Debugger . 47
What’s Next? . 48

Chapter 7: Creating Your Own Intellectual Property
Using the CIP Wizard . 49

Overview of IP Creation . 50
Using the CIP Wizard for Creating Custom IP . 50
What You Need to Know Before Running the CIP Wizard . 51

Example Design Description . 61
Reviewing the File Contents . 63
Adding Your Custom IP to Your Processor System . 65

What’s Next? . 79

Chapter 8: Dual Processor Design and Debug
Using the BSB to Create a Dual-Processor Design . 81

Appendix A: Intellectual Property Bus Functional Model Simulation
What are BFMs and Why Should I Use Them? . 89

Appendix B: Creating an AXI-Based Design in EDK
Introduction . 95

Additional Resources . 95
Creating an AXI Project . 96

Hardware and Software Requirements . 96
Creating a New AXI Project . 96
Using Xilinx Platform Studio . 97
Working with Your Embedded Platform . 98
Working with your AXI Design in SDK . 98
Using the Create and Import Peripheral Wizard with an AXI Design 99

Migrating to Xilinx AXI Protocols . 99
BFM . 99

Appendix C: Glossary

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 5
UG683 EDK 12.3

Chapter 1

Introduction

About This Guide
The Xilinx® Embedded Development Kit (EDK) is a suite of tools and Intellectual Property
(IP) that enables you to design a complete embedded processor system for implementation
in a Xilinx Field Programmable Gate Array (FPGA) device.

This guide describes the design flow for developing a custom embedded processing
system using EDK. Some background information is provided, but the main focus is on the
features of and uses for EDK.

Read this guide if you:

• Need an introduction to EDK and its utilities

• Have not recently designed an embedded processor system

• Are in the process of installing the Xilinx EDK tools

• Would like a quick reference while designing a processor system

Note: This guide is written for the Windows operating system. Linux behavior or the graphical user
interface (GUI) display might vary slightly.

Take a Test Drive!

Because the best way to learn a software tool is to use it, this guide provides opportunities
for you to work with the tools under discussion. Specifications for a sample project are
given in the Test Drive sections, along with an explanation of what is happening behind
the scene and why you need to do it. This guide also covers what happens when you run
automated functions.

Test Drives are indicated by the car icon, as shown beside the heading above.

Additional Documentation
More detailed documentation on EDK is available at:
http://www.xilinx.com/ise/embedded/edk_docs.html

Documentation on the Xilinx® Integrated Software Environment (ISE®) is available at:
http://www.xilinx.com/support/software_manuals.htm.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=edk+docs
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=online+books
http://www.xilinx.com

6 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 1: Introduction

Attachments to this Guide
Some examples in this guide require you to access example project files. These files are
included in the .zip file for this guide. You can download the .zip file from the Xilinx EDK
Documentation website:
http://www.xilinx.com/support/documentation/dt_edk_edk12-1.htm.

The following files are included:

• bus_transaction_bfl_code.txt

• leds.c

• pn.do

• pwm_lights.vhd

• readme_EDK_ctt.txt

• sample.bfl.txt

• user_logic.vhd

How EDK Simplifies Embedded Processor Design
Embedded systems are complex. Getting the hardware and software portions of an
embedded design to work are projects in themselves. Merging the two design components
so they function as one system creates additional challenges. Add an FPGA design project
to the mix, and the situation has the potential to become very confusing indeed.

To simplify the design process, Xilinx offers several sets of tools. It is a good idea to get to
know the basic tool names, project file names, and acronyms for these tools. To make this
easier for you, see Appendix C, “Glossary,” which lists the EDK-specific terms and is
provided at the end of this guide.

The Integrated Design Suite, Embedded Edition
Xilinx offers a broad range of development system tools, collectively called the ISE Design
Suite. For embedded system development, Xilinx offers the Embedded Edition of the ISE
Design Suite. The Embedded Edition comprises:

• Integrated Software Environment (ISE)

• PlanAhead design analysis tool

• ChipScope™ Pro (which is useful for on-chip debugging of FPGA designs)

• Embedded Development Kit (EDK). EDK is also available with the ISE Design Suite:
System Edition, which includes tools for DSP design.

For information on how to use the ISE tools for FPGA design, refer to the Xilinx
documentation web page: http://www.xilinx.com/support/software_manuals.htm.

The Embedded Development Kit (EDK)
The Embedded Development Kit (EDK) is a suite of tools and IP that you can use to design
a complete embedded processor system for implementation in a Xilinx FPGA device.

Xilinx Platform Studio (XPS)

Xilinx Platform Studio (XPS) is the development environment used for designing the
hardware portion of your embedded processor system. You can run XPS using a bash shell

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support+docs
http://www.xilinx.com/support/documentation/dt_edk_edk12-1.htm

EDK Concepts, Tools, and Techniques www.xilinx.com 7
UG683 EDK 12.3

How the EDK Tools Expedite the Design Process

command line, in batch mode, or using the GUI, which is what we will be demonstrating
in this guide.

Software Development Kit (SDK)

The Software Development Kit (SDK) is an integrated development environment,
complementary to XPS, that is used for C/C++ embedded software application creation
and verification. SDK is built on the Eclipse open-source framework and might appear
familiar to you or members of your design team. For more information about the Eclipse
development environment, refer to http://www.eclipse.org.

Other EDK Components

Other EDK components include:

• Hardware IP for the Xilinx embedded processors

• Drivers and libraries for the embedded software development

• GNU compiler and debugger for C/C++ software development targeting the
MicroBlaze™ and PowerPC® processors

• Documentation

• Sample projects

EDK is designed to assist in all phases of the embedded design process.

How the EDK Tools Expedite the Design Process
The diagram below shows the simplified flow for an embedded design.

X-Ref Target - Figure 1-1

Figure 1-1: Basic Embedded Design Process Flow

X11124

Device Configuration

ISE Integrated Software Environment

XPS
Xilinx Platform Studio

Design Implementation

Device Configuration

SDK Software Development Kit

Software Profiling

Software Development

Software Debug

ChipScope Pro

Planahead

Also included in the
Embedded Edition

Verification File
Generation

Processor Hardware
Development

Hardware
Platform

http://www.xilinx.com
http://www.eclipse.org

8 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 1: Introduction

Typically, the ISE development software is used first to create an Embedded Processor
source, which is then added to the ISE project.

• You use XPS primarily for embedded processor hardware system development.
Specification of the microprocessor, peripherals, and the interconnection of these
components, along with their respective property assignments, takes place in XPS.

• You use SDK for software development. SDK is also available as a standalone
application. It can be purchased and used without any other Xilinx tools installed on
the machine on which it is loaded.

• You can verify the correct functionality of your hardware platform by running the
design through a Hardware Description Language (HDL) simulator. You can use the
Xilinx simulator ISim to simulate embedded designs.

XPS facilitates three types of simulation:

− Behavioral

− Structural

− Timing-accurate

XPS sets up the verification process structure automatically, including HDL files for
simulation. You only have to enter clock timing and reset stimulus information, along
with any application code.

• After completing your design in XPS, you return to ISE to generate the FPGA
configuration file used to program the target device.

• Once your FPGA is configured with the bitstream containing the embedded design,
you can download and debug the Executable and Linkable Format (ELF) file from
your software project from within SDK.

For more information on the embedded design process as it relates to XPS, see the “Design
Process Overview” in the Embedded System Tools Reference Manual, available at
http://www.xilinx.com/ise/embedded/edk_docs.htm.

What You Need to Set Up Before Starting
Before discussing the tools in depth, it would be a good idea to make sure they are installed
properly and that the environments you set up match required for the “Test Drive”
sections of this guide.

Installation Requirements: What You Need to Run EDK Tools

ISE and EDK

EDK Installation
Requirements

ISE and EDK are both included in the ISE Design Suite, Embedded Edition software. Be
sure the software, along with the latest update, is installed. Visit http://support.xilinx.com
to confirm that you have the latest software versions.

Bash Shell for Linux

When you use EDK on a Linux platform, you need a bash shell. In addition, be sure to
review the supported platforms covered in the Xilinx ISE Design Suite 12: Installation,
Licensing, and Release Notes.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?ver=12.1&locale=en&topic=release+notes
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?ver=12.1&locale=en&topic=release+notes
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=edk+docs

EDK Concepts, Tools, and Techniques www.xilinx.com 9
UG683 EDK 12.3

What You Need to Set Up Before Starting

Software Licensing

Xilinx software uses FLEXnet licensing. When the software is first run, it performs a license
verification process. If it does not find a valid license, the license wizard guides you
through the process of obtaining a license and ensuring that the Xilinx tools can use the
license. If you are only evaluating the software, you can obtain an evaluation license.

For more information about licensing Xilinx software, refer to the ISE Design Suite 12:
Installation, Licensing, and Release Notes.

Simulation Installation Requirements

To perform simulation using the EDK tools, you must have an appropriate simulator
installed and simulation libraries compiled:

1. A Secure-IP capable mixed language simulator (ModelSim PE/SE v6.5c or Incisive
Enterprise Simulator (IES) IES9.2 or later, or VCS/VCS-MX 2009.12) must be installed
for the simulation steps. MXE is not supported for embedded designs. It doesn't have
mixed language or SecureIP support.

You can optionally install the CoreConnect™ toolkit. The CoreConnect toolkit is
required only if you intend to run Bus Functional Model (BFM) Simulation. If you do
not intend to run BFM simulations, you may skip installation of the CoreConnect
Toolkit.
CoreConnect is a free utility provided by IBM. You can download CoreConnect from
the Xilinx website at:
http://www.xilinx.com/products/ipcenter/dr_pcentral_coreconnect.htm.

Note: BFM simulation is currently supported only with ModelSim.

Simulation
Installation
Requirements

2. If you haven’t already done so, compile the simulation libraries following the
procedure outlined in the EDK help system.

a. To open the help from XPS, select Help > Help Topics. Alternately, the XPS Help
is available on the web at
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/platf
orm_studio/platform_studio_start.htm.

b. Navigate to Procedures for Embedded Processor Design > Simulation >
Compiling Simulation Libraries in XPS > Compiling Simulation Libraries in
XPS.

For additional details on the installation process, refer to the ISE Design Suite 12:
Installation, Licensing, and Release Notes.

Hardware Requirements for this Guide
In order to complete the design in this guide, you’ll need a Spartan®-6 SP605 Evaluation
Board and cables.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?ver=12.1&locale=en&topic=release+notes
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?ver=12.1&locale=en&topic=release+notes
http://www.xilinx.com/products/ipcenter/dr_pcentral_coreconnect.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/platform_studio/platform_studio_start.htm
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?ver=12.1&locale=en&topic=release+notes
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?ver=12.1&locale=en&topic=release+notes
http://www.xilinx.com

10 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 1: Introduction

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 11
UG683 EDK 12.3

Chapter 2

Creating a New Project

Now that you’ve been introduced to the Xilinx® Embedded Development Kit (EDK),
you’ll begin looking at how to use it to develop an embedded system.

The Base System Builder
About the BSB The Base System Builder (BSB) is a wizard in the Xilinx Platform Studio (XPS) software

that quickly and efficiently establishes a working design. You can then customize your
design.

At the end of this section, you will have the opportunity to begin your first Test Drive,
using the BSB to create a project.

Why Use the BSB?
Xilinx recommends using the BSB wizard to create the foundation for any new embedded
design project. While the wizard might be all you need to create your design, if you require
more customization, the BSB saves you time by automating common hardware and
software platform configuration tasks. After running the wizard, you have a working
project that contains all the basic elements needed to build more customized or complex
systems.

What You Can Do in the BSB Wizard
Use the BSB wizard to create your project file; choose a board; select and configure a
processor and I/O interfaces; add internal peripherals; set up software; and generate a
system summary report.

The BSB recognizes the system components and configurations on the selected board, and
provides the options appropriate to your selections.

When you create the files, you have the option of applying settings from another project
you have created with the BSB.

http://www.xilinx.com

12 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 2: Creating a New Project

Selecting a Board Type

The BSB allows you to select a board type from a list or to create a custom board.

Supported Boards

Selecting a Board
Type

You can target one of the supported embedded processor development boards available
from Xilinx or one of its partners. When you have chosen among the peripherals available
on your selected board, the BSB creates a user constraints (UCF) file that includes pinouts
for the peripherals you selected. The BSB also creates a completed platform and test
application that is ready to be downloaded and run on the board. Each option has
functional default values that are pre-selected in Xilinx Platform Studio (XPS). You can
further enhance this base-level project in XPS or implement it with utilities provided by
ISE®.

When you first install EDK, only Xilinx board files are installed. To target a third party
board, you must add the necessary board support files. The BSB Board Selection screen
contains a link that helps you find third party board support files. After the files are
installed, the BSB drop-down menus display those boards as well.

Custom Boards

If you are developing a design for a custom board, the BSB lets you select and interconnect
one of the available processor cores (MicroBlaze™ or PowerPC® processors, depending on
your selected target FPGA device) with a variety of compatible and commonly used
peripheral cores from the IP library. This gives you a hardware system to use as a starting
point. You can add more processors and peripherals, if needed. The utilities provided in
XPS assist with this, including the creation of custom peripherals.

Selecting and Configuring a Processor

You can choose a MicroBlaze or PowerPC processor and select:

• Reference clock frequency

• Processor-bus clock frequency

• Reset polarity

• Processor configuration for debug

• Cache setup

• Floating Point Unit (FPU) setting

Selecting and Configuring Multiple I/O Interfaces

The BSB wizard understands the external memory and I/O devices available on your
predefined board and allows you to select the following:

• Which devices to use

• Baud rate

• Peripheral type

• Number of data bits

• Parity

• Whether or not to use interrupts

You can open data sheets for external memory and I/O devices from within the BSB
wizard.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 13
UG683 EDK 12.3

The Base System Builder

Adding Internal Peripherals

The BSB wizard allows you to add additional peripherals. The peripherals must be
supported by the selected board and FPGA device architecture. For a custom board, only
certain peripherals are available for general selection and automatic system connection.

Setting Up Software

Standard input and output devices can be specified in the BSB, and sample C applications
are generated. The Software Development Kit (SDK) is recommended for software
development, and you’ll have the chance to try it as you work through this guide. Sample
C applications used in Software Debug Test Drives are generated in SDK.

Viewing a System Summary Page

After you make your selections in the wizard, the BSB displays a system summary page. At
this point, you can choose to generate the project, or you can go back to any previous
wizard screen and revise the settings.

Device and Board
Selections used in
Test Drives

This guide uses the Spartan®-6 LX45T Starter Board and targets a MicroBlaze processor.
The options you select are listed in “Take a Test Drive! Creating a New Embedded Project,”
page 14.

If you use a board with an FPGA with a PowerPC 405 (Virtex®-4 FX) or PowerPC 440
(Virtex-5 FXT) processor, either a MicroBlaze or the appropriate PowerPC processor can be
used. In almost all cases the behavior of the tools is identical.

The BSB Wizard and the ISE Design Suite
The following test drive walks you through starting your new project in the ISE software
and using the New Project wizard to create your project. When your project is created, ISE
recognizes that your design includes an embedded processor. ISE automatically starts
Xilinx Platform Studio (XPS) and opens the BSB to complete your design.

The Xilinx
Microprocessor
Project (*.xmp) File

A Xilinx Microprocessor Project (XMP) file is the top-level file description of the embedded
system. All project information is saved in the XMP file.

The XMP file is created and handled in ISE like any other source, such as HDL code and
constraints files. You'll learn all about that process in the next test drive.

http://www.xilinx.com

14 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 2: Creating a New Project

Take a Test Drive! Creating a New Embedded Project

For this test drive, you will start the ISE Project Navigator software and create a project
with an embedded processor system as the top level.

1. Start ISE Project Navigator.

2. Select File > New Project to open the New Project wizard.

3. Use the information in the table below to make your selections in the wizard screens.

When you click Finish, the New Project Wizard closes and the project you just created
opens in ISE Project Navigator.

Wizard Screen System Property Setting or Command to Use

Create New
Project

Name Choose a name for your project (do
not use spaces).

Location and Working
Directory

Choose a location and working
directory for your project (again,
no spaces).

Description You can also add a description for
your project (optional).

Top-level source type Select HDL (default).

Project Settings Product Category All

Family Spartan6

Device XC6SLX45T

Package FGG484

Speed -3

Synthesis Tool XST (VHDL/Verilog)

Simulator User-specifica

Preferred Language VHDL

Accept all other defaults.

Project Summary Shows a summary of entries
made in the New Project
Wizard.

No changes.

a.*Supported simulators are listed in “Installation Requirements: What You Need to Run
EDK Tools,” page 8.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 15
UG683 EDK 12.3

The Base System Builder

You’ll now use the New Source Wizard to create an embedded processor project.

1. Click the New Source button on the left-hand side of the Design Hierarchy window.

The New Source Wizard opens.

2. Use the information in the table below to make your selections in the wizard screens.

After you complete the New Project wizard, ISE recognizes that you have an
embedded processor system and starts XPS.

A dialog box appears, asking if you want to create a Base System using the BSB wizard.

3. Click Yes.

4. In the Base System Builder Interconnect Type dialog box, select PLB system to create
a PLB system.

Note: For information about creating an AXI system, refer to Appendix B, “Creating an AXI-
Based Design in EDK.”

5. In the Base System Builder wizard, create a project using the settings described in the
following table.

Note: If no setting or command is indicated in the table, accept the default values.
.

Wizard Screen System Property Setting or Command to Use

Select Source
Type

Source Type Embedded Processor

File name system

Location Accept the default location.

Add to project Leave this checked.

Project Summary Shows a summary of entries
made in the New Source Wizard.

No changes.

Wizard Screens System Property Setting or Command to Use

Welcome to the
Base System
Builder

Project type options I would like to create a new
design.

Board Selection Board Vendor Xilinx

Board Name Spartan-6 SP605 Evaluation
Boarda

Board Revision C

System
Configuration

Type of system Single-Processor System.

Processor
Configuration

Processor Type MicroBlaze

System Clock Frequency 66.67 MHz

Local Memory 16 KB

Enable Floating Point Unit Do not enable the floating point
unit.

http://www.xilinx.com

16 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 2: Creating a New Project

Peripheral
Configuration

Processor 1 (MicroBlaze)
Peripherals list

Remove the following
peripherals from the “Processor
1 (MicroBlaze) Peripherals” list
of default values:

• Ethernet_MAC
• IIC_DVI
• IIC_SFP
• PCIe Bridge

Add the following peripherals:

• xps_bram_if_cntlr
• Soft_TEMAC
• xps_timer (after adding this

peripheral, select the Use
Interrupt check box)

• Select the entry for RS232
Uart 1 and select select
xps_uart16550 from the
RS232_Uart_1 drop-down
list.

Cache
Configuration

Instruction/Data caches Do not enable caches.

Application
Configuration

Example Application Options Do not change the default values
for the example applications.

Wizard Screens System Property Setting or Command to Use

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 17
UG683 EDK 12.3

The Base System Builder

6. After reviewing the system summary, click Finish.

Read and then dismiss the dialog boxes that appear after you exit the BSB Wizard.

If you’ve used earlier revisions of this guide, you might notice that the sample design you
create here is more complex than previous designs that we’ve done. There are two reasons
for this. First, with the BSB, it’s as easy to create a complex design as it is to create a simple
one. When a design is created using the BSB, it is guaranteed to close timing and work in
hardware. The MicroBlaze design you just created is effectively the same as that used in the
targeted design platforms that Xilinx offers.

Summary System Summary page After you’ve selected and
configured all of your system
components, the BSB displays an
overview of the system for you
to verify your selections.

You should have a processor
system with the following
components:

• MicroBlaze processor
• DIP Switch interface
• Flash interface
• IIC EEPROM interface
• 4-bit LED interface
• DDR3 interface
• 4-bit pushbutton interface
• UART
• Soft TEMAC
• Compact Flash Interface
• Two LMB Block RAM

interfaces
• One PLB Block RAM interface
• Timer

You can go back to any previous
wizard page and make revisions.

The BSB creates a default
memory map. The memory map
cannot be modified inside the
BSB, but it can be changed after
the BSB is finished.

a. The SP605 board contains a Spartan-6 device, which means that the BSB allows you to
configure one or more MicroBlaze processors.

Wizard Screens System Property Setting or Command to Use

http://www.xilinx.com

18 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 2: Creating a New Project

A Note on the BSB and Custom Boards
If you plan to create a project that includes a customer board, you can create a Xilinx Board
Description file (*.xbd) for your custom board library and place it in the Global Repository.
For more information about Global Repositories, refer to "Directory Structures for EDK
Libraries" in the Platform Studio Online Help, available at
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/platform_stu
dio/platform_studio_start.htm.

What’s Next?
The upcoming sections address Hardware Fundamentals.

• In Chapter 3, “Using Xilinx Platform Studio,” you will use the XPS software.

• In Chapter 4, “Working with Your Embedded Platform,” you will continue with the
hardware design and learn how you can view and modify your new project in XPS.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/platform_studio/platform_studio_start.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/platform_studio/platform_studio_start.htm
http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 19
UG683 EDK 12.3

Chapter 3

Using Xilinx Platform Studio

Now that you have created a baseline project with the Base System Builder (BSB) wizard,
it’s time to take a look at the options available in Xilinx® Platform Studio (XPS). Using XPS,
you can build on the project you created using the BSB. This chapter takes you on a tour of
XPS, and subsequent chapters describe how to use XPS to modify your design.

Note: Taking the tour of XPS provided in this chapter is recommended. It enables you to follow the
rest of this guide and other documentation on XPS more easily.

What is XPS?
XPS includes a graphical user interface that provides a set of tools to aid in project design.
This chapter describes the XPS software and some of the most commonly used tools.

The XPS Software
From the XPS software, you can design a complete embedded processor system for
implementation within a Xilinx FPGA device. The XPS main window is shown in the
following figure.

Optional Test Drives are provided in this chapter so you can explore the information and
tools available in each of the XPS main window areas.

http://www.xilinx.com

20 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 3: Using Xilinx Platform Studio

Using the XPS User
Interface

The XPS main window is divided into these three areas:

• Project Information Area (1)

• System Assembly View (2)

• Console Window (3)

The XPS main window also has labels to identify the following areas:

• Connectivity Panel (4)

• View Buttons (5)

• Filters Pane (6)

X-Ref Target - Figure 3-1

Figure 3-1: XPS Project Window

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 21
UG683 EDK 12.3

The XPS Software

Project Information Area
The Project Information Area offers control of and information about your project. The
Project Information Area includes the Project, Applications, and IP Catalog tabs.

Project Tab

The Project Tab, shown in the following figure, lists references to project-related files.
Information is grouped in the following general categories:

• Project Files

Project-specific files such as the Microprocessor Hardware Specification (MHS) files,
Microprocessor Software Specification (MSS) files, User Constraints File (UCF) files,
iMPACT Command files, Implementation Option files, and Bitgen Option files.

• Project Options

Project-specific options, such as Device, Netlist, Implementation, Hardware
Description Language (HDL), and Sim Model options.

• Design Summary

A graphical display of the state of your embedded design and gives you easy access to
system files.

X-Ref Target - Figure 3-2

Figure 3-2: Project Information Area, Project Tab

http://www.xilinx.com

22 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 3: Using Xilinx Platform Studio

Applications Tab

The Applications tab, shown in Figure 3-3, lists the software application option settings,
header files, and source files that are associated with each application project. With this tab
selected, you can:

• Create and add a software application project, build the project, and load it to the
block RAM.

• Set compiler options.

• Add source and header files to the project.

Note: You can create and manage software projects in XPS; however, SDK is the recommended
tool for software development.

IP Catalog Tab

The IP catalog tab (shown in Figure 3-1), lists information about the IP cores, including:

• Core name and licensing status (not licensed, locked, or unlocked)

• Release version and status (active, early access, or deprecated)

• Supported processors

• Classification

Additional details about the IP core, including the version change history, data sheet, and
the Microprocessor Peripheral Description (MPD) file, are available when you right-click
the IP core in the IP Catalog tab. By default, the IP cores are grouped hierarchically by
function.

Note: You might have to click and drag to expand the pane to view all details of the IP.

X-Ref Target - Figure 3-3

Figure 3-3: Project Information Area, Applications Tab

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 23
UG683 EDK 12.3

The XPS Software

Take a Test Drive! Reviewing the Project Information Area

1. With your project open in XPS, click the Project tab.

2. Right-click any item under Project Files and select Open. In future Test Drives, you
will edit some of these files. In particular, the system.mhs file contains a text
representation of your entire embedded system.

3. Close the file by selecting File > Close.

4. Right-click any item in the Project Options category to open the Project Options dialog
box. Alternatively, you can select Project > Project Options.

5. Close the Project Options dialog box.

6. Click the IP Catalog tab.

7. At the top left of the IP Catalog window, note the two buttons. Click them and observe
how they change how the IP catalog displays.

8. Right-click any item in the IP Catalog to see what options are available.

Note: You might need to expand the selection by clicking the plus sign next to the IP
description.

Notice a few parts of the IP Catalog in particular:

− Add IP, which adds the selected IP to your design

− View PDF Datasheet, which brings up the datasheet for the IP

− View IP Modifications (Change Log), which lists the revision history for the
selected IP.

9. Find and expand the Communication Low-Speed IP category.

10. Right-click the xps_uart16550 IP Type peripheral and select View PDF Datasheet
to view the related PDF datasheet in your PDF viewer. Similar data sheets are available
for all embedded IP.

System Assembly View
The System Assembly View allows you to view and configure system block elements. If the
System Assembly View is not already maximized in the main window, click and open the
System Assembly View tab at the bottom of the pane.

Bus Interface, Ports, and Addresses Tabs

The System Assembly View comprises three panes, which you can access by clicking the
tabs at the top of the view.

• The Bus Interface tab displays the buses in your design. Use this view to modify the
information and connections for each bus.

• The Ports tab displays ports in your design. Use this view to modify the details for
each port.

• The Addresses tab displays the address range for each IP instance in your design.
Click Generate Addresses to automatically generate the system address map.

http://www.xilinx.com

24 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 3: Using Xilinx Platform Studio

Connectivity Panel

With the Bus Interfaces tab selected, you’ll see the Connectivity Panel (label 4 in Figure 3-1,
page 20), which is a graphical representation of the hardware platform connections. You
can hover your mouse over the Connectivity Panel to view available bus connections.

A vertical line represents a bus, and a horizontal line represents a bus interface to an IP
core. If a compatible connection can be made, a connector is displayed at the intersection
between the bus and IP core bus interface.

The lines and connectors are color-coded to show bus compatibility. Differently shaped
connection symbols indicate whether IP blocks are bus masters or bus slaves. A hollow
connector represents a connection that you can make. A filled connector represents an
existing connection. To create or disable a connection, click the connector symbol.

Filters Pane

XPS provides filters that you can use to change how you view the Bus Interfaces and Ports
in the System Assembly View. The filters are listed in the Filters pane (label 6 in Figure 3-1,
page 20) when the Bus Interfaces or Ports tabs are selected. Using these filters can unclutter
your connectivity panel when creating a design with a large number different buses.

View Buttons

So you can sort information and revise your design more easily, the System Assembly
View provides two buttons that change how the data is arranged (label 5 in Figure 3-1,
page 20):

• Change to Hierarchical/Flat View button

− The default display is called hierarchical view. The information that is displayed for
your design is based on the IP core instances in your hardware platform and
organized in an expandable tree structure.

− In flat view, you can sort the information alphanumerically by any column.

• Expand/Collapse All Tree Nodes button

The +/- icon expands or collapses all nets or buses associated with an IP to allow quick
association of a net with the IP elements.

Take a Test Drive! Exploring the System Assembly View

1. Click the Ports tab located at the top of the screen.

2. Expand the External Ports category to view the signals that leave the embedded
system (and ultimately the FPGA device).

3. Note the signal names in the Net column and find the signals related to the
fpga_0_RS232_Uart_1 ports. (You might need to drag the right side of the Net
column header to see its entire contents.) These signals are referenced in the next step.

4. Scroll down, locate, and expand the RS232_Uart_1 peripheral.

Note the net names and how they correspond to the names of external signals. The sin
(serial in) and sout (serial out) net from the UART are name-associated with the
external ports.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 25
UG683 EDK 12.3

XPS Tools

5. Right-click the RS232_Uart_1 peripheral and select Configure IP to launch the
associated IP Configuration dialog box. You can open a similar configuration dialog
box for any peripheral in your system.

a. Observe what happens when you hold the mouse cursor over a parameter name.

b. Note the three top tabs and buttons available for this core.

c. Close this dialog when finished.

6. Click the Change to Hierarchical/Flat View button and see how the display changes.

Any changes you make in the System Assembly View immediately cause XPS to update
the system.mhs file. You can open this file from the Project Files area, as shown in
Figure 3-2.

Console Window
The Console window (label 3 in Figure 3-1, page 20) provides feedback from the tools
invoked during runtime. Notice the three tabs: Console, Warnings, and Errors.

Start Up Page
The Start Up page has information relevant to your version of XPS, including sets of links
for release information and design flows. There is also a tab to help you locate EDK
documentation.

If the Start Up page isn’t already open, select Help > View Start Up Page to open it.

XPS Tools
In addition to the software interface, XPS includes the underlying tools you need to
develop the hardware and software components of an embedded processor system:

• The Base System Builder (BSB) wizard, for creating new projects. You can start the
BSB from the New Project dialog box that appears when you start XPS, or you can
select File > New Project from the XPS main window.

• The Hardware Platform Generation tool, Platgen, for generating the embedded
processor system. To start Platgen, click Hardware > Generate Netlist.

• The Simulation Model Generation tool, Simgen, generates simulation models of your
embedded hardware system based on your original embedded hardware design
(behavioral) or finished FPGA implementation (timing-accurate).
Click Simulation > Generate Simulation HDL Files to start Simgen.

• The Create and Import Peripheral wizard helps you create your own peripherals and
import them into EDK-compliant repositories or XPS projects. To start the wizard,
click Hardware > Create or Import Peripheral.

• The Library Generation tool, Libgen, configures libraries, device drivers, file systems,
and interrupt handlers for the embedded processor system. Click Software >
Generate Libraries and BSPs to start Libgen.

http://www.xilinx.com

26 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 3: Using Xilinx Platform Studio

Take a Test Drive! Reviewing the XPS Structure
You can access the XPS tools described above in the Hardware and Simulation toolbar
menus. Take a look at them and familiarize yourself with the options that are available.

XPS Directory Structure
For the Test Drive design you started, the BSB has automated the set up of the project
directory structure and started a simple but complete project. The time savings that the
BSB provides during platform configuration can be negated if you don’t understand what
the tools are doing behind the scenes. Take a look at the directory structure the BSB created
and see how it could be useful as the project development progresses.

Note: The files are stored in the location where you created your project file.
X-Ref Target - Figure 3-4

Figure 3-4: File Directory Structure

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 27
UG683 EDK 12.3

XPS Directory Structure

Directory View
The BSB automatically creates a project directory with the name of your embedded system
source. This directory contains the subdirectories for your project in the repository search
path, shown in Figure 3-4:

Two other directories contain the files generated by the BSB:

• TestApp_Memory_microblaze_0

• TestApp_Peripheral_microblaze_1

These directories contain test application C-source code, header files, and linker scripts.
Although they are there and available for your use, you are going to use sample
applications created in SDK in this guide. These topics are covered in upcoming chapters.

In the main project directory, you will also find a few individual files. Those of interest are:

The MHS and MSS files are the main products of your XPS design. Your entire hardware
and software system is represented by these two files.

__xps Contains intermediate files generated by XPS and other tools
for internal project management. You will not use this
directory.

blockdiagram Contains files related to the block diagram.

data Contains the user constraints file (UCF). For more
information on this file and how to use it, see the ISE® UCF
help topics at:

http://www.xilinx.com/support/documentation/sw_man
uals/xilinx12_1/manuals.pdf.

etc Contains files that capture the options used to run various
tools. This directory is empty because no actions outside of
the BSB have been performed.

pcores Used for including custom hardware peripherals. The
pcores directory is described in more detail in Chapter 5,
“Introducing the Software Development Kit.”

system.xmp This is the top-level project design file. XPS reads this file
and graphically displays its contents in the XPS user
interface.

system.mhs The system Microprocessor Hardware Specification, or
MHS file, captures the system elements, their parameters,
and connectivity in a text format. The MHS file is the
hardware foundation for your project.

system.mss The system Microprocessor Software Specification, or
MSS file, captures the software portion of the design,
describing the system elements and various software
parameters associated with the peripheral in a text
format. The MSS file is the software foundation for your
project.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/manuals.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/manuals.pdf

28 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 3: Using Xilinx Platform Studio

Take a Test Drive! Exploring the Directory Structure

In this Test Drive, you’ll take a first-hand look at the XPS directory structure.

1. Using a file explorer utility, such as Window Explorer, navigate to the top-level
directory of your project.

2. Open the various subdirectories and become familiar with the basic file set.

What’s Next?
Now that you know your way around XPS, you are ready to begin working with the
project you started. You’ll continue with Chapter 4, “Working with Your Embedded
Platform.”

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 29
UG683 EDK 12.3

Chapter 4

Working with Your Embedded Platform

What’s in a Hardware Platform?
The embedded hardware platform includes one or more processors, along with a variety
of peripherals and memory blocks. These blocks of IP use an interconnect network to
communicate. Additional ports connect to the “outside world,” which could be the rest of
the FPGA or outside of the FPGA entirely. The behavior of each processor or peripheral
core can be customized. Implementation parameters control optional features and specify
how the hardware platform is ultimately implemented in the FPGA.

Hardware Platform Development in Xilinx Platform Studio

About the
Microprocessor
Hardware
Specification (MHS)
File

Xilinx® Platform Studio (XPS) provides an interactive development environment that
allows you to specify all aspects of your hardware platform. XPS maintains your hardware
platform description in a high-level form, known as the Microprocessor Hardware
Specification (MHS) file. The MHS, which is an editable text file, is the principal source file
representing the hardware component of your embedded system. XPS synthesizes the
MHS source file into netlists ready for the FPGA place and route process using an
executable called Platgen.

The MHS file is integral to your design process. It contains all peripheral instantiations
along with their parameters. The MHS file defines the configuration of the embedded
processor system. It includes information on the bus architecture, peripherals, processor,
connectivity, and address space. For more information about the MHS file, refer to the
“Microprocessor Hardware Specification (MHS)” chapter of the Platform Specification
Format Reference Manual, available at
http://www.xilinx.com/ise/embedded/edk_docs.htm.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=12.1&topic=edk+docs
http://www.xilinx.com

30 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 4: Working with Your Embedded Platform

Take a Test Drive! Examining the MHS File

In this Test Drive, you’ll take a quick tour of the MHS file that was created when you ran
the BSB wizard.

1. Select the Project tab in the Project Information Area of the XPS software.

2. Look under the Project Files heading to find MHS File:system.mhs. Double-click
the file to open it.

3. Search for xps_uart16550 in the system.mhs file by selecting Edit > Find and using
the Find tool that appears below the main window area.

Note the line in the MHS file that states:

PORT sin = fpga_0_RS232_Uart_1_sin_pin

4. Search the file for another instance of the port name
fpga_0_RS232_Uart_1_sin_pin. You’ll find it at the top of the file as a PORT.

When a PORT is shown inside of a BEGIN/END pair, as it is here, it’s a port on a piece
of IP. When you see a PORT at the top of the MHS, it connects the embedded platform
to the outside world.

5. Take some time to review other IP cores in your design. When you are finished, close
the system.mhs file.

The Hardware Platform in System Assembly View
The System Assembly View in XPS displays the hardware platform IP instances in an
expandable tree and table format.

XPS provides extensive display customization, sorting, and data filtering capability so you
can easily review your embedded design. The IP elements, their ports, properties, and
parameters are configurable in the System Assembly View and are written directly to the
MHS file.

Editing a port name or setting a parameter takes effect when you press Enter or click OK.
XPS automatically writes the system modification to the hardware database, which is
contained in the MHS file.

Hand-editing the MHS file is not recommended, especially when you’re just starting out
with XPS. The recommended method of forcing changes in the MHS file is to use the
features of the System Assembly View. As you gain experience with XPS and the MHS file,
you can also use the built-in text editor to make changes.

Note: Additional information about adding, deleting, and customizing IP are described in Chapter 7:
“Creating Your Own Intellectual Property.”

Converting the Hardware Platform to a Bitstream
For a design to work in an FPGA, it needs to be converted to a bitstream. This conversion
is a three-step process. First, XPS generates a netlist that is representative of your
embedded hardware platform. Next, the design is implemented (mapped into FPGA logic)
in the ISE® Design Suite tools. In the final step, the implemented design is converted to the
bitstream that can be then downloaded to the FPGA.

Note: In the examples used in this guide, the design implemented in the FPGA consists only of the
embedded hardware platform. Typical FPGA designs also include logic developed outside of XPS.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 31
UG683 EDK 12.3

The Hardware Platform in System Assembly View

Generating the Netlist

When you instruct XPS to generate the netlist, it invokes the platform building tool,
Platgen, which does the following:

− Reads the design platform configuration MHS file.

− Generates a Hardware Description Language (HDL) representation of the MHS
file written to system.[vhd|v] along with a system_stub.[vhd|v] file. The
system file is your MHS description written in HDL format.

Note: The system_stub file is a top-level HDL template file that could be used to
instantiate your processor system as a component in a larger, HDL-based design. The
easier way, however, is to just use the system.xmp file, as you’ll use in the examples in
this guide. To see the created HDL files, look in the <project_name>\system\hdl directory.

− Synthesizes the design using Xilinx Synthesis Technology (XST).

− Produces a netlist file (with an .ngc extension)

More information about Platgen is provided in the “Platform Generator (Platgen)” chapter
of the Embedded System Tools Reference Manual, available at
http://www.xilinx.com/ise/embedded/edk_docs.htm.

You can control netlist generation from within XPS or from the ISE Project Navigator
interface. In the sections ahead, we will be doing the actual netlist generation from within
the ISE interface.

Exporting Your Hardware Platform
In the Embedded Development Kit (EDK), your hardware platform is designed in XPS and
your software is developed and debugged in the Software Development Kit (SDK). The
information about your hardware platform is required for SDK, so you will export a file
called system.xml.

The system.xml File The system.xml file has the information SDK requires for you to do software
development and debug work on the hardware platform that you designed.

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=edk+docs
http://www.xilinx.com

32 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 4: Working with Your Embedded Platform

Take a Test Drive! Exporting Your Hardware Platform to
SDK

1. In the XPS software, select Project > Export Hardware Design to SDK.

2. A directory location is selected for you and can’t be changed when the design is
exported from XPS. The ultimate repository search path to the system.xml file is then
\system\SDK\SDK_Export\hw\.. in your project directory.

Note: There are other XML files used in XPS, so it is important to know the location of the XML
file that you will be using.

3. Select Export Only. You’ll run several Test Drives of SDK in upcoming chapters.

What Just Happened?

It is important to understand the details of the export operation, especially if you are
managing multiple hardware versions.

When you select Export Only, a utility creates a number of files used by SDK. In addition
to the XML file, documentation on the software drivers and hardware IP is included so you
can access necessary information from within SDK.

The other option, Export & Launch SDK, automatically overwrites any existing XML files
that already exist in the export directory. Any existing bitstream (BIT) and Block Memory
Map (BMM) files in the export directory are erased. Because your project was instantiated
in Project Navigator, the option to automatically include the bitstream and BMM files is
unavailable.

Note: When, in future projects, you export a project created in BSB and select the Include
bitstream and BMM files option, XPS saves these files in the export directory. This process
prevents the export directory from containing hardware files that are out of synchronization.

In the \system\SDK\SDK_Export\hw directory, a number of HTML files are created in
addition to the system.xml file. Opening the system.html file shows a hyperlink-
enabled block diagram with all of the details of your embedded hardware platform.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 33
UG683 EDK 12.3

The Hardware Platform in System Assembly View

Take a Test Drive! Generating the Bitstream

Now that you’ve described your Hardware Platform in XPS, you’ll use the ISE Project
Navigator software to implement the design and generate the bitstream.

Implementing the
Design in ISE using
Project Navigator

Compiled C code is not part of that bitstream. It is added later in SDK.

1. Review the Project Navigator main window. The Design panel on the left side should
look like this:

Generating a
Bitstream and
Creating a UCF file

You’re about to run the design through to the point at which a bitstream is generated.
But before you can do that, you need to add some information so that the ISE Place and
Route (PAR) tool has information about your design, such as the pinout and the speed
at which it needs to run.

As you learned earlier, that information is included in the UCF file. When you run the
BSB, a UCF is created for you.

X-Ref Target - Figure 4-1

Figure 4-1: ISE Project Navigator Design Area

http://www.xilinx.com

34 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 4: Working with Your Embedded Platform

2. In the Project Navigator software, select Project > Add Source, navigate from your
project search repository to system/data, and add the system.ucf file.

This step is only necessary when the XMP source is the top-level design in an ISE
project. If the XMP is instantiated in a VHDL or Verilog file, ISE manages the EDK UCF
file.

3. The Adding Source Files dialog box appears to show the progress of processing the
UCF file. When the file processing completes, click OK.

Your Sources window should now look like this:

Notice that the file system.ucf is added and is associated with the embedded system
design (system.xmp).

4. Click to select the system.xmp item in the Design window.

EDK system.bit and
BmmFile_bd.bmm
Files

5. In the Processes pane, double-click Generate Programming File to create your
bitstream. It takes a few minutes and should conclude with the message “Process
‘Generate Programming File’ completed successfully.”

The generated bitstream is called system.bit. There is another file generated called
edkBmmFile_bd.bmm, which is used by the SDK for loading memory onto your target
board.

Make a mental note of both of these files and their locations in the root of your hardware
project. These files are used in subsequent chapters.

What’s Next?
Now you can start developing the software for your project using SDK. The next two
chapters explain embedded software design fundamentals.

X-Ref Target - Figure 4-2

Figure 4-2: The system.xmp and the system.ucf Files

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 35
UG683 EDK 12.3

Chapter 5

Introducing the Software Development
Kit

The Xilinx® Software Development Kit (SDK) facilitates the development of embedded
software application projects. SDK is a complementary program to XPS. Using SDK, you
develop the software that is used on the embedded platform built in XPS. SDK is based on
the Eclipse open source tool suite. For more information about Eclipse, see
http://www.eclipse.org.

About SDK
In the ISE 12 release, some of the terminology is different than in previous versions of ISE.

The terms used in SDK are:

• Software project

• Hardware platform

• Board support package

• Perspectives

• Views

SDK Terminology You start your design by creating a software project. The SDK environment can manage
multiple software projects. When you create your software project, SDK prompts you to
create a hardware platform and a board support package (BSP).

The hardware platform is the embedded hardware design that is created in XPS. The
hardware platform includes the XML-based hardware description file, the bitstream file,
and the BMM file. When you import the XML file into SDK, you import the hardware
platform. In the ISE Design Suite 12 release, multiple hardware platforms can exist in a
single workspace.

The BSP is a collection of libraries and drivers that form the lowest layer of your
application software stack. Your software applications must link against or run on top of a
given software platform using the provided Application Program Interfaces (APIs).

http://www.eclipse.org
http://www.xilinx.com

36 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 5: Introducing the Software Development Kit

You can have SDK create board support packages for two different run-time
environments:

Board Support
Package Types in
SDK

• Standalone - A simple, semi-hosted and single-threaded environment that provides
basic features such as standard input/output and access to processor hardware
features.

• Xilkernel - A simple and lightweight kernel that provides POSIX-style services such
as scheduling, threads, synchronization, message passing, and timers.

In SDK, multiple board support packages can exist simultaneously. For example, you
might have a BSP for a design that runs on the standalone environment, and one that uses
Xilkernel.

After you set up your board support package (or packages), SDK creates software projects.

Perspectives and
Views

SDK looks different depending on what activity you are performing. When you are
developing your C or C++ code, SDK displays one set of windows. When you are
debugging your code on hardware, SDK appears differently and displays windows
specific to debugging. When you are profiling code, you use the gprof view. These
different displays of windows are called perspectives, and each window in the perspective
is called a view.

Note: Profiling is not covered in this guide. For more information about Profiling in EDK,
refer to the EDK Profiling User Guide.

Take a Test Drive! Creating a Hardware Platform

1. Double-click the Xilinx Software Development Kit desktop icon, or select Programs >
ISE Design Suite 12 > EDK > Xilinx Software Development Kit from the Windows
Start menu.

2. Select a workspace. This is the folder in which your software projects are stored. To
create a new workspace, make a new folder in your project directory. For this example,
create a new workspace called SDK_Workspace.

Caution! Make sure the path name does not have spaces.

3. SDK opens to the Welcome screen. We won’t spend a lot of time looking at this right
now. You can re-open it at any time by selecting Help > Welcome.

4. Create a new Hardware Platform by selecting File > New > Xilinx Hardware Platform
Specification.

The New Hardware Project dialog box opens.

5. For this example, name the project CTT_Hardware_Platform and identify the
system.xml file that you exported in Chapter 4. The default location for this file is in
the SDK/SDK_Export/hw subdirectory of the ISE Project directory. Check the
timestamp on the file to make sure that you are pointing to the correct file.

6. Click the arrow next to Bitstream and BMM Files to expand that section of the dialog
box.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&ver=12.1&topic=sw+manuals&sub=edk_prof.pdf

EDK Concepts, Tools, and Techniques www.xilinx.com 37
UG683 EDK 12.3

About SDK

7. In the Bitstream and BMM File fields, select the system.bit and
edkBmmFile_bd.bmm files, respectively, for your project. These files are located in
the top-level folder of the ISE project you created.

8. Click Finish.

SDK opens with a number of views. The most notable of these views are the Project
Explorer, which at this time only displays your hardware platform, and the
system.xml file, which opens in its own view. Take a moment to review the contents
of the system.xml file.

Take a Test Drive! Creating a Board Support Package

Now that you have imported your hardware platform, you need to create a corresponding
software platform.

1. Still working in SDK, select File > New > Xilinx Board Support Package.

Recall that there can be multiple BSPs for a given embedded design. The first one you
create in this Test Drive is a standalone (as opposed to a Xilkernel) project.

2. Populate the new BSP Project with the following selections:

− Project name: standalone_bsp_0

− Project Location: Use default location

− Hardware Platform: CTT_Hardware_Platform

Note: If your embedded system had more than one processor, indicate in the CPU field
which processor the board support package is targeting.

− Board Support Package OS: standalone

3. Click Finish.

4. Click OK in the Board Support Package Settings dialog box.

To re-open this dialog box later, right-click the project name and select Board Support
Package Settings.

What Just Happened?
SDK examined your hardware specification file (system.xml), along with the type of
board support package that you selected, and compiled the appropriate libraries
corresponding to the components of your hardware platform. You can view the log for this
process in the Console view.

Expand the microblaze_0 section under standalone_bsp_1 in the Project Explorer tab.
The code, include, lib, and libsrc folders contain the libraries for all of the hardware
in your embedded design.

Double-click any of the files in this view to view them in the SDK Editor area.

http://www.xilinx.com

38 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 5: Introducing the Software Development Kit

Take a Test Drive! Setting Up the Software Environment

Now you can begin writing code that targets the embedded processor design which you
built in the previous chapters. To do this, create a Xilinx C Project for
standalone_bsp_0.

1. Select File > New > Xilinx C Project.

There are a number of sample applications available. You are going to start with a
simple “Hello World” application.

2. Select the “Hello World” Sample Project Template. The Project name fills in
automatically with hello_world_0.

3. For the project location, make sure that the Use default location check box is selected

4. Click Next.

5. Select the Target an existing Board Support Package check box.

6. Click Finish.

The hello_world_0 sample application builds automatically, producing an ELF file
suitable for downloading onto the target hardware.

The C/C++ Projects tab now contains information related to the software platform and
the software project. The relevant project management information is displayed in this
window.

X-Ref Target - Figure 5-1

Figure 5-1: Project Files Displayed in the Project Explorer Tab

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 39
UG683 EDK 12.3

About SDK

7. In the Project Explorer window, expand the src folder in the hello_world_0
software project. Notice the Binaries folder, under which is the ELF file that will be
downloaded to the target board.

8. Double-click the helloworld.c file to open it in the SDK Editor window. You can
modify the sample code or create your own.

You can also see lscript.ld, the default linker script that was generated for this project. A
linker script is required to specify where your software code is loaded in the hardware
system memory. You can customize this linker script for your design by right-clicking the
lscript.ld file and selecting Properties.

You now have a complete framework for editing, compiling, and building a software
project. The next step is debugging, which you will do in the next Test Drive.

Take a Test Drive! Debugging in SDK

Debugging is the process of downloading and running C code on the target hardware to
evaluate whether the code is performing correctly. Before you can begin debugging, you
must set up your SP605 board as follows:

1. Connect two mini-USB cables between your computer and the two mini-USB jacks on
the SP605 board.

One of the USB connections connects to a JTAG download and debug interface built
into the SP605 board.

The other USB connection is a USB-to-RS232 Bridge. In order for your PC to map the
USB port to a COM port, you must download the appropriate driver from Silicon Labs.

2. When the Windows Found New Hardware Wizard opens, select the option to have the
wizard find the driver for the hardware. You will have to do this multiple times.

3. Install the CP210x VCP drivers that came with your SP605 board. You can also find
these drivers on the Silicon Labs website:
http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx

4. Turn on the power to your SP605 board.

Download Bitstream
with Bootloop

Because this is an FPGA, you must configure it with a bitstream that loads a design into the
FPGA. In this case, the design is an embedded processor system.

1. In SDK, select Xilinx Tools > Program FPGA.

The bitstream (BIT) and block memory map (BMM) files are automatically populated
for you.

2. Select Program. When the Programming completes, your FPGA is configured with
your design.

At this point, you have downloaded the bitstream to the FPGA and initialized the
microprocessor with a single-instruction “branch-to-itself” program called
“bootloop.”Bootloop keeps the processor in a known state while it waits for another
program to be downloaded to run or be debugged.

http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx
http://www.xilinx.com

40 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 5: Introducing the Software Development Kit

3. In the Project Explorer, under Binaries, right-click hello_world_0.elf and select
Debug As > Launch on Hardware.

The executable is downloaded to the hardware where specified in the linker script. The
"STDIO connections" are disabled by default.

A dialog box appears, informing you that the perspective is about to change from
C/C++ to Debug.

4. Open a Hyperterminal (or another terminal emulation program) and set the display to
9600 baud, 8 bit data, 1 stop bit. Be sure to set the COM port to correspond to the COM
port that the Silicon Labs driver is using.

The Debug
Perspective

5. In the Debug Perspective, the C code is now highlighted at the first executable line of
code (you might need to scroll to view helloworld.c). The debug window shows that
for Thread[0] the main() function is currently sitting at line28 because there is an
automatically-inserted breakpoint.

Note: If your display does not show line numbers, you can turn them on by right-clicking in the
window, selecting Preferences, then navigating to General > Editors > Text Editors and
selecting the Show line numbers check box.

6. Execute the code by clicking the Resume button or pressing F8 on your keyboard.

7. Terminate the debug session by clicking the Terminate button or pressing Ctrl +
F2 on your keyboard.

8. The output in the terminal window displays “Hello World.” When you are finished,
close SDK.

What Just Happened?

The code you executed in SDK displays a classic “Hello World” message in the terminal
window to demonstrate how simply software can be executed using SDK.

What’s Next?
This chapter showed you how to set up an SDK project, download a bitstream to a target
board, and execute a simple program.

In the next chapter, you’ll be digging deeper into SDK as you create a new software project,
use the source code management, and explore debugging in greater depth.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 41
UG683 EDK 12.3

Chapter 6

More on the Software Development Kit:
Edit, Debug, and Release

The Xilinx® Software Development Kit (SDK) can be used for the entire lifecycle of the
software development process. This lifecycle consists of creating, editing, and building
your software projects, debugging your software on target hardware, perhaps profiling it
on your target hardware, and then releasing your software and optionally programming it
into Flash memory. All of these activities can be done in SDK. In this chapter, we’ll look
more at the first two items on this list: software development and debug.

SDK Drivers and Windows
Before getting started with SDK, you need to know about the “low-level” drivers that
Xilinx provides. You also need to understand the layout of windows in the SDK software.

More on Drivers
The “low-level” drivers that Xilinx provides are located in the \EDK\sw\
XilinxProcessorIPLib\drivers directory of your EDK installation area. Here, you
will see a directory for each peripheral's driver. There are drivers corresponding to each
piece of hardware available to you in Platform Studio. For each driver, the directory
contains source code, HTML documentation on the driver, and examples of how the
drivers can be used.

SDK Windows
As demonstrated in the previous chapter, SDK has different workspaces, called
perspectives.

So far we've worked in the C/C++ perspective and the Debug perspective. The other
perspective built into SDK is the Profiling perspective.

Note: Profiling in SDK is not covered in this guide. For information about profiling, refer to the EDK
Profiling Guide.

http://www.xilinx.com

42 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 6: More on the Software Development Kit: Edit, Debug, and Release

Whether you are working in the C/C++ Perspective or the Debug perspective, you'll find
the SDK windowing system very powerful. There are two kinds of windows within
perspectives: editing windows and informational windows. The editing windows, which
contain C or C++ source code, are language-specific and syntax aware. Right-click an item
in an editing window to open a comprehensive list of actions that can be done on that item.

Informational windows are particularly flexible. You can have as many informational
windows as you like. An informational window can have any number of views, each of
which is indicated by a tab at the top of the window. Views in the Debug perspective
include Disassembly, Register, Memory, and Breakpoints.

Views can be moved, dragged, and combined in any number of ways. Click any tab on any
window in either the C/C++ or Debug Perspective or drag it to another window. Its
contents are displayed in the new window. To see the views available for a given
perspective, select Window > Show View.

Experiment with moving windows around. The ability to easily customize your
workspace is one of the more powerful features of SDK. SDK remembers the position of
the windows and views for your perspective within a project.

Take a Test Drive! Editing Software
In the previous chapter, you compiled and debugged a sample software module. In this
next test drive, you’ll run two more sample modules and create a third software module
from scratch to call the first two routines. This will give you a bit more experience
managing source files for multiple projects.

Setting Up Your Workspace
1. Start a new SDK Session by double-clicking the SDK icon on your desktop.

2. Create a new workspace and save it anywhere on your system. Do not use spaces in
the filename or path.

3. Import the same hardware platform used in “Take a Test Drive! Creating a Hardware
Platform” in Chapter 5. Select File > New > Xilinx Hardware Platform Specification.
Name the project Advanced_CTT_Project. The system.xml file is located in the
<project home>\system\SDK\SDK_Export\hw subdirectory.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 43
UG683 EDK 12.3

SDK Drivers and Windows

Creating New Xilinx C Projects
Now that the SDK project space is set up correctly, you can create a new Xilinx C project.
SDK automatically creates the Board Support Package if one hasn't been created yet.

1. Create a new Xilinx C Project. Call it Editor_C_Project and make it a Hello World
sample application.

2. Click Next.

A dialog box opens, asking if you want a new Board Support Package. For this test
drive, click Finish to have SDK create the new BSP.

In the next few steps, you will create two more Xilinx C Projects, each with a different
Sample Application. We will then show how to call them from the hello_world
applications. While this isn’t a complex process, you must be familiar with this
fundamental type of file management in order to create larger, real-life projects. If you
need a refresher at any time, review the project management steps done in the Test
Drives in Chapter 5.

3. Create two more Xilinx C Projects using the same technique that was used in step 1.
Use the Memory Test and Peripheral Test sample applications. For both projects, select
the Target an Existing Board Support Package check box and identify the
"hello_world_bsp_0{OS:standalone}" BSP.

Running Your Applications
Before you can run these two applications, download the FPGA's bitstream to the board, as
you did in Chapter 5.

1. Select Xilinx Tools > Program FPGA.

2. Populate the Program FPGA dialog box by selecting the locations of the Bit and Bmm
files for your project, and then click Save and Program.

We will now observe what the two sample programs do. You’ll run the memory_test
application and then the peripheral_tests application.

3. Open a hyperterminal session and be sure it's set to 9600-8-N-1.

4. In the project management area, right-click memory_tests_0.elf under the
hierarchy of memory_tests_0/Binaries/.

5. Select Debug As > Launch on Hardware. If a confirmation dialog box appears, click
Yes to confirm the Perspective Switch. The Debug perspective opens.

6. Select Run > Resume to run the program. The program output displays on your
terminal window.

If the flash memory test runs, it will fail, because writing to flash requires different calls
to be used.

Note: This functionality will be supported in a future version of the sample applications.

7. Select Run > Terminate to end your debug session.

8. Open the C/C++ perspective and run the peripheral_tests_0 C project in the
same way that you just ran the memory_tests_0 project. The program displays on
your terminal window. Note that peripheral_tests_0 will take longer to run.

9. Select Run > Terminate to end your debug session.

Now that the two applications have run successfully, we will modify hello_world to
individually call each application.

http://www.xilinx.com

44 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 6: More on the Software Development Kit: Edit, Debug, and Release

Take a Test Drive! Working with Multiple Source Files
and Projects
You’ll now modify your existing two software applications so that they can be called by
helloworld.c. We'll change the name of main() in each application to something that
a new main() function can call.

1. In the C/C++ perspective, double-click the memorytest.c and testperiph.c
applications to open them. When opened, they will appear in an edit window.

Note: These applications are located in the src folder for the respective projects.

2. In memorytest.c, change the name of main() to memorytest_main(). This
should be around line number 53.

Note: If line numbers aren't showing, right-click in the left margin of the edit window and select
Show Line Numbers.

As you change the name of main(), notice that this new name shows up in the Outline
view. If an Outline isn't visible, select Window > Show View > Outline.

3. In testperiph.c, change the name of main() to peripheraltest_main(). This
should be around line 58.

4. Save both files.

The files build automatically. They will fail since there is no longer a main function,
which the build is looking for. If you were to change either function's name back to
main, the build would proceed error-free.

We will now modify helloworld.c to have it call the memorytest_main() and
peripheraltest_main() functions.

5. Open helloworld.c and modify it as shown in Figure 6-1. The helloworld.c file
is in the src folder in the C Project called Editor_C_Project.

X-Ref Target - Figure 6-1

Figure 6-1: Modified Version of helloworld.c File

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 45
UG683 EDK 12.3

SDK Drivers and Windows

6. Save the file, and observe that it, too, builds automatically.

Note: You can turn automatic building on and off by selecting Project > Build Automatically.

SDK will error out, since it has no knowledge of where the peripheral test or memory
test functions are. (They're in their own C Projects). We will now drag and drop the
relevant source files to Editor_C_Project so that helloworld.c can access them.

7. Drag and drop source files from memory_tests_0 and peripheral_tests_0 into
the src subfolder of the Editor _C_Project folder. Figure 6-2 shows the source files that
the directory should contain.

Note: Do not move over the platform_config.h, platform.c, or platform.h files.
These files are already part of Editor_C_Project.

X-Ref Target - Figure 6-2

Figure 6-2: Source Files in Editor_C_Project

http://www.xilinx.com

46 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 6: More on the Software Development Kit: Edit, Debug, and Release

As you drag and drop the files, the "Editor_C_Project" will build after each file. After
you've dropped the last file and the ELF file successfully builds, the following message
displays in the Console View:

Invoking: MicroBlaze Print Size

mb-size Editor_C_Project.elf |tee
"Editor_C_Project.elf.size"

 text data bss dec hexfilename

 45674 528 5766 51968 cb00Editor_C_Project.elf

Finished building: Editor_C_Project.elf.size

Note the size: 51968 (decimal). Up until now, our applications have all run from block
RAM, which is memory on the FPGA. Recall from Chapter 3 and Chapter 4 that we
have 16K of memory local to the MicroBlaze processor and another 8K of memory on
the PLB for a total of 24K. Our application has grown to 51K, meaning some of it will
have to reside in external RAM. The problem is that the RAM test is destructive: if part
of the application is in external RAM, it could crash. So next you’ll fix that problem
before it occurs.

8. Open memorytest.c and scroll down to memorytest_main().

9. Position the cursor over &memory_ranges[i]. An informational window opens to
display information about memory_ranges. You can click in the window and scroll
up and down. Note that memory_ranges contains the starting address and size (in
decimal) of each memory to be tested.

10. Right click memory_ranges and select Open Declaration to open the
memory_config.c file, in which memory_ranges is defined. Note that whenever a
C file opens for editing, the Outline window, if visible, shows the variables and header
files used with the C file. You can right-click any variable in the outline view to view a
call hierarchy that shows the calling path back to main().

11. To change where the external memory test starts, modify the data structure in
memory_config.c as follows:

{
"MCB_DDR3",
"mpmc",
0x89000000, /*Change from 0x88000000 to 0x89000000*/
134217728,

},

12. Save the file. It should recompile without errors.

13. Download and run the Editor_C_Project.elf application. Confirm that it runs
correctly. The terminal window displays a message to indicate that both the memory
test and the peripheral test are working.

You can also control the running of your software in the Debug window. In the Debug
perspective, hover your cursor of the buttons on the top of the Debug window to see
what each button controls.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 47
UG683 EDK 12.3

Working with the Debugger

Working with the Debugger
Now that you have done some file manipulation in the C/C++ Perspective, let’s look at
some of the features of the Debugger.

The purpose of a debugger is to allow you to see what is happening to a program while it
is running. You can set breakpoints and watchpoints, step through program execution in a
variety of ways, view program variables, see the call stack, and view or edit the contents of
the memory in the system.

SDK provides full source-level debugging capabilities. If you've used other debuggers,
you will see that the SDK debugger has most, if not all, of the features that you are used to.

The Debug window, a key part of the Debug Perspective, contains information about the
state of your debug session. In this particular example, you’ll easily see that our call stack
is three deep. Specifically, main(), at address 0x880001dc, called memorytest_main(),
at address 0x880004d8, which then went on to call test_memory_range() at address
0x880003fc. In addition, the program state is currently suspended, which indicates that a
breakpoint was encountered. Each item on the call stack also shows which line of code
contained the calling routine.

Software execution can also be controlled from the Debug window. In the Debug
Perspective, hover your cursor of the buttons on the top of the Debug window to view
what each button controls.

Take a Test Drive! Working with the Debugger
To begin this test drive, make sure that you’ve completed “Take a Test Drive! Working with
Multiple Source Files and Projects,” page 44 and have a binary file called
Editor_C_Project.elf.

1. From the C/C++ Perspective, right-click on the executable file and select Debug As >
Launch on Hardware to download Editor_C_Project.elf to your target board.
The Debug Perspective automatically opens.

When the Debug Perspective opens, it should look similar to Figure 6-3. If some of the
views such as Disassembly and Memory are not visible, select Window > Show View
and select the view that you want to see. If the view doesn't show up in the window
that you intended, click and drag it into place.

X-Ref Target - Figure 6-3

Figure 6-3: Debug Perspective

http://www.xilinx.com

48 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 6: More on the Software Development Kit: Edit, Debug, and Release

As you can see, MicroBlaze is currently sitting at the beginning of main() with
program execution suspended at line 0x880001bc. You can correlate that with the
Disassembly view, which shows the assembly-level program execution also
suspended at 0x880001bc. Finally, the helloworld.c window also shows execution
suspended at the first executable line of C code. Select the Registers view to confirm
that the program counter, RPC register, contains 0x880001bc.

Note: If the Registers window isn't showing, select Window > Show View > Registers.

2. Double-click in the margin of the helloworld.c window next to the line of code that
reads peripheraltest_main();. This sets a breakpoint at
peripheraltest_main().

To confirm the breakpoint, review the Breakpoints window.

Note: If the Breakpoints window is not showing, select Window > Show View > Breakpoints.

3. Select Run > Resume to resume running the program to the breakpoint.

Program execution stops at the line of code that includes
peripheraltest_main();. Disassembly and the debug window both show
program execution stopped at 0x880001dc.

4. Select Run > Step Into to step into the peripheraltest_main() routine. Program
execution is suspended at location 0x88000628. The call stack is now 2 deep.

5. Select Run > Resume again to run the program to conclusion. When the program
completes running, the debug window shows that the program is suspended in a
routine called exit. This happens when you are running under control of the
debugger. Review your terminal output, which indicates that both
peripheraltest_main()and memorytest_main() have run.

6. Re-run your code several times. Experiment with single-stepping, examining memory,
breakpoints, modifying code, and adding print statements. Try adding and moving
views.

What’s Next?
The goal of this chapter was to provide you a C project with multiple files to work with,
and enough exposure to the debugger to experiment and customize SDK to work the way
you do.

In the next chapter, you will create your own IP.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 49
UG683 EDK 12.3

Chapter 7

Creating Your Own Intellectual Property

Creating an embedded processor system using Xilinx® Platform Studio (XPS) is
straightforward because XPS automates most of the design creation. The Base System
Builder (BSB) wizard reduces the design effort to a series of selections.

Benefits of XPS and
BSB

You can use the BSB to create most of the embedded processor design. You can then further
customize your design in XPS. Design customization can be as simple as tweaking a few
parameters on existing intellectual property (IP) cores (for example, changing the baud
rate for the UARTLite), or as complex as designing custom IP and integrating it into the
existing design.

Benefits of CIP
Wizard

While you are the expert regarding the functionality of the required custom IP, you might
need additional information about CoreConnect™ bus protocols, the /pcores directory
structure required by XPS, or the creation of Bus Function Model simulation frameworks.
This chapter clarifies these important system distinctions and guides you through the
process of creating custom IP using the Create and Import Peripheral (CIP) wizard.

Using the CIP Wizard
The CIP wizard is designed to provide the same benefits as the BSB wizard. It creates the
framework of the design, including bus interface logic, and provides an HDL template so
that you can integrate your custom logic in an understandable manner. All files necessary
to include your custom peripheral core (pcore) into the embedded design are supplied by
the CIP wizard.

Creation of custom IP is one of the least understood aspects of XPS. Though the CIP wizard
steps you through the creation of your pcore framework, it is important to understand
what is happening and why. This chapter provides a basic explanation and guides you
through the initial process. It also includes completed pcore design for study and analysis.

http://www.xilinx.com

50 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

Overview of IP Creation
The Bus Interface tab in the XPS System Assembly View (shown in Figure 3-1, page 20)
shows connections among buses, processors, and IP. Any piece of IP you create must be
compliant with the system you design.

To ensure compliance, you must follow these steps:

1. Determine the interface required by your IP. The bus to which you attach your custom
peripheral must be identified. For example, you could select one of the following
interfaces:

− Processor Local Bus (PLB) version 4.6. The PLBv.46 provides a high-speed
interface between the processor and high-performance peripherals. PLBv4.6 is
used in both the PowerPC® and the MicroBlaze™ processor systems.

− Fast Simplex Link (FSL). The FSL is a point-to-point FIFO-like interface. It can be
used in designs using MicroBlaze processors, but generally is not used with
PowerPC processor-based systems.

2. Implement and verify your functionality. Remember that you can reuse common
functionality available in the EDK peripherals library.

3. Verify your standalone core. Isolating the core ensures easier debugging in the future.

4. Import the IP to EDK. Your peripheral must be copied to an EDK-appropriate
repository search path. The Microprocessor Peripheral Definition (MPD) and
Peripheral Analyze Order (PAO) files for the Platform Specification Format (PSF)
interface must be created, so that the other EDK tools can recognize your peripheral.

5. Add your peripheral to the processor system created in XPS.

Using the CIP Wizard for Creating Custom IP
The CIP wizard assists you with the steps required in creating, verifying, and
implementing your Custom IP. It supports the same buses that are supported by XPS.

The most common design case is the need to connect your custom logic directly to a
PLBv46 bus. With the CIP wizard, you can make that bus connection even without
understanding bus protocol details. Both slave and master connections are available.

The CIP Wizard
Creates HDL
Templates and BFM
Simulation for your IP

The CIP wizard helps you implement and verify your design by walking you through IP
creation. It sets up a number of templates that you can populate with proprietary logic.

Besides creating HDL templates, the CIP wizard can create a pcore verification project for
Bus Functional Model (BFM) verification. The templates and the BFM project creation are
helpful for jump-starting your IP development and ensuring that your IP complies with
the system you create. For details of BFM simulation, refer to Appendix A, “Intellectual
Property Bus Functional Model Simulation.”

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 51
UG683 EDK 12.3

Using the CIP Wizard

What You Need to Know Before Running the CIP Wizard
Before creating a project with the CIP wizard, here are some things you need to know.

Supported Peripherals in the CIP Wizard

In the CIP wizard, you can create four types of PLB v4.6 peripherals using predefined IP
interface (IPIF) libraries:

• PLB v4.6 Slave for single data beat transfer

• PLB v4.6 Slave for burst data transfer

• PLB v4.6 Master for single data beat transfer

• PLB v4.6 Master for burst data transfer

The CIP wizard also supports creation of Fast Simplex Link (FSL) peripherals.

Documentation

Before launching the CIP wizard, review the documentation specific to the bus interface
you intend to use. Reviewing this information can help eliminate much of the confusion
often associated with bus system interfaces. To review the XPS Help topics related to the
CIP wizard, select Help > Help Topics and navigate to Procedures for Embedded
Processor Design > Creating and Importing Peripherals.

Accessing IP
Datasheets

XPS provides data sheets related to the IP in your system. To access these data sheets, select
Help > View Start Up Page. In the Start Up page, select the Documentation tab, expand
IP Reference and Device Drivers Documentation, and click the Processor IP Catalog
link.

If you plan to create a PLBv46 peripheral, examine one of the following data sheets for
your custom peripheral:

• plbv46_slave_single

• plbv46_master_single

• plbv46_slave_burst

• plbv46_master_burst

The sections discussing the IP Interconnect (IPIC) signal descriptions are useful in helping
identify the IPIF signals that interface to your custom logic.

Note: Normally the CIP wizard is launched from within XPS, as described in the next Test Drive, but
the CIP wizard can also run outside of XPS.

http://www.xilinx.com

52 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

Take a Test Drive! Generating and Saving Templates

In this Test Drive, you’ll use the CIP wizard to create a template for a custom peripheral.
For simplicity, you’ll accept the default values for most steps, but you will review all the
possible selections you can make.

Caution! Unless you are an advanced user, before starting this Test Drive, make sure that you
have read through and completed the Test Drives in Chapter 4, “Working with Your
Embedded Platform” and Chapter 5, “Introducing the Software Development Kit.”

1. Start the CIP Wizard and determine the location in which to store the custom
peripheral files:

a. Open Xilinx ISE® Project Navigator, load your project, select system.xmp, and
double-click the Manage Processor Design (XPS) process (located under
Design Utilities) to launch XPS.

b. In XPS, select Hardware > Create or Import Peripheral.

After the Welcome page, the Peripheral Flow page opens. On this page, you can either
create a new peripheral or import an existing peripheral.

2. Select Create templates for a new peripheral. Before continuing through the wizard,
read through the text on this page.

Note: Each CIP wizard screen is full of useful information. You can also click More Info to view
the related XPS help topic.

X-Ref Target - Figure 7-1

Figure 7-1: Peripheral Flow Page

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 53
UG683 EDK 12.3

Using the CIP Wizard

3. On the Repository or Project page, specify where to store the custom peripheral files.

For this example, you will use this peripheral for a single embedded project.

4. Select To an XPS project.

Because you launched the CIP wizard from within XPS, the directory location is filled
in automatically.

Note: If the custom pcore will be used for multiple embedded projects, you can save the file in
an EDK repository.

5. Click Next to open the Name and Version page.

6. Use the Name and Version page to indicate the name and version of your peripheral.
For this example design, use the name pwm_lights.

A version number is supplied automatically. You can also add a description of your
project.

X-Ref Target - Figure 7-2

Figure 7-2: Name and Version Page

http://www.xilinx.com

54 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

7. On the Bus Interface page, select the processor bus that connects your peripheral to
your embedded design. For this example, select PLB v46.

Note: You can access related data sheets from the Bus Interface page.
X-Ref Target - Figure 7-3

Figure 7-3: Bus Interface Page

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 55
UG683 EDK 12.3

Using the CIP Wizard

8. Click Next to open the IPIF (IP Interface) Services page.

The CIP wizard automatically creates the following:

− Master or slave connections to the PLB bus

− Necessary bus protocol logic

− Signal sets used to attach your custom HDL code

In addition to this base set of capability, you can add optional services.

Click More Info, and on the help page that opens, click the IPIF Features link. You can
read details on each of these services to help you determine whether the features are
necessary for your IP.

I

9. Unselect all check boxes on this page. For this example, none of the services is
required.

The next page is the Slave Interface page, on which you can set up burst and cache-line
support. Although you won’t use this support for this example, take a moment to
review the content about slave peripherals and data width, then move on to the next
page of the wizard.

X-Ref Target - Figure 7-4

Figure 7-4: IP Interface Services Page

http://www.xilinx.com

56 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

10. Click Next to open the IP Interconnect (IPIC) page.

On the IPIC page, review the set of IPIC signals that the CIP wizard offers for your
custom peripheral. If you don’t understand what these signals do, review the
appropriate specification. The signals selected should be adequate to connect most
custom peripherals.

In this design, multiple writes to different addresses must be decoded, so you’ll add
Bus2IP_Addr signals to create the decode logic inside your HDL.

Alternatively, you can also select User logic memory space on the IPIF Services page
to open a wizard page specific to managing user memory space.

11. Click Bus2IP_Addr. Leave the other boxes unchanged.

X-Ref Target - Figure 7-5

Figure 7-5: IP Interconnect Page

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 57
UG683 EDK 12.3

Using the CIP Wizard

12. Click Next to open the Peripheral Simulation Support page.

On the Peripheral Simulation Support page, you can elect to have the CIP generate a
BFM simulation platform for your project. Generating a BFM simulation platform
requires that you have installed the following:

− The BFM simulation package for EDK

− ModelSim-SE or ModelSim-PE

X-Ref Target - Figure 7-6

Figure 7-6: Peripheral Simulation Support Page

http://www.xilinx.com

58 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

If you’d like, you can stop here and click the BFM Package Installation Instructions
to go through the steps necessary to license, download, and install the BFMs. BFM
simulation is described in Appendix A, “Intellectual Property Bus Functional Model
Simulation.” If you think you might want to run a BFM simulation on this IP example,
generate the BFM platform now.

The CIP wizard creates two HDL files that implement your pcore framework:

− The pwm_lights.vhd file, which contains the PLBv46 bus interface logic.
Assuming your peripheral contains ports to the outside world, you must modify
this file to add the appropriate port names. This file is well documented and tells
you exactly where to add the port information.
If you are a Verilog designer, don’t panic, but realize that you must write the port
names using HDL syntax. For this example, you can find the source code in an
upcoming Test Drive and use that source as a template for future pcore creation.

− The user_logic.vhd file, which is the template file where you add the custom
RTL that defines your peripheral. Although you can always create additional
source files, the simple design example you are using requires only the
user_logic.vhd file.

13. Click Next to open the Peripheral Implementation Support page.
X-Ref Target - Figure 7-7

Figure 7-7: Peripheral Implementation Support Page

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 59
UG683 EDK 12.3

Using the CIP Wizard

Verilog Support The Peripheral Implementation Support page lists three options for creating optional
files for hardware and software implementation.

− The CIP wizard can create the user_logic template in Verilog instead of VHDL.
To create the template in Verilog, select the Generate stub ‘user_logic’ template
in Verilog instead of VHDL check box.

− If you intend to implement your pcore design to completion (for timing analysis
or timing simulation), click the Generate ISE and XST project files to help you
implement the peripheral using XST flow check box. The CIP wizard creates the
necessary ISE project files. However, if your peripheral is low-speed or very
simple, this step is not necessary.

− If your peripheral requires more complex software drivers, click the Generate
template driver files to help you implement software interface check box. The
CIP wizard creates the necessary driver structure and some prototype drivers
based on the services selected.

For this example design, leave all three boxes unchecked. The final screen displays a
summary of the CIP wizard output – files created and their locations.

Important Summary
Information

14. Review this information and click Finish. You can observe the file creation status in the
Console window.

X-Ref Target - Figure 7-8

Figure 7-8: Create and Import Peripheral Wizard Summary Page

http://www.xilinx.com

60 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

What Just Happened?

Precisely what did the CIP wizard do? Let’s stop for a moment and examine some concepts
and the resulting output.

EDK uses PLB slave and burst peripherals to implement common functionality among
various processor peripherals. The PLB slave and burst peripherals can act as bus masters
or bus slaves.

In the Bus Interface and IPIF Services Panel, the CIP wizard asked you to define the target
bus and what services the IP needs. The purpose was to determine the PLB slave and burst
peripheral elements your IP requires.

PLBv46 Slave and
Burst Peripherals

The PLB slave and burst peripherals are verified, optimized, and highly parameterizable
interfaces. They also give you a set of simplified bus protocols. Your custom RTL interfaces
to the IPIC signals, which are much easier to work with when compared to operating on
the PLB or FSL bus protocols directly. Using the PLB slave and burst peripherals with
parameterization that suits your needs greatly reduces your design and test effort.

Figure 7-5 illustrates the relationship between the bus, a simple PLB slave peripheral, IPIC,
and your user logic.

The following figure shows the directory structure and the key files that the CIP wizard
created. These file reside in the /pcores subdirectory of your project directory..
X-Ref Target - Figure 7-9

Figure 7-9: Directory Structure Generated by the CIP Wizard

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 61
UG683 EDK 12.3

Example Design Description

Information about the files generated by the CIP wizard:

• The wizard created two HDL template files: pwm_lights.vhd and user_logic.vhd.
These files are located in the hdl folder.

• The user_logic file connects to the PLB v4.6 bus using the PLB slave/burst cores
configured in pwm_lights.vhd.

− The user_logic.vhd file is equivalent to the “Custom Functionality” block.

− The pwm_lights.vhd file is equivalent to the “PLBv.46 slave/burst” blocks.

• Your custom logic interfaces using the IPIC signals.

To complete your design, you must add your proprietary logic to the two files.

Example Design Description
You can use the CIP wizard to create a fully functional peripheral, assuming that reading
and writing registers provides adequate functionality. You can choose to create a simple
peripheral this way. However, having an actual, functioning example that you can modify
is much more valuable, so now you’ll define a simple PLBv46 peripheral.

You’ll open and modify the source code files for this peripheral in the next Test Drive.
These files are located in the /pcores directory on your system. You’ll also use some
example files that are included in the .zip file for this guide. Find and review the files listed
there. You’ll open them in the Test Drive.

Note: You can find information about downloading the .zip file for this manual in “Attachments to
this Guide,” page 6.

The custom peripheral controls the 4 LEDs on the evaluation board. To make the design
interesting, the pwm_lights circuit will:

• Turn LEDs off by a write to offset 0.

• Turn LEDs on by a write to offset 4.

• Control the intensity of the lights using a simple PWM circuit. The intensity varies
over 16 discreet brightness values:

− A write to offset 8 uses a log intensity drive scale.

− A write to offset 12 uses a linear intensity log scale.

• Read back the control circuit status.

In addition to the hardware design, a simple software application gives you control over
the various settings and the read back status.

http://www.xilinx.com

62 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

Take a Test Drive! Modifying the CIP Wizard Template Files
Conceptually, what you are going to do in this final Test Drive is simple: you’re going to
load and run some C code that controls the pcore created by the CIP wizard. Before
starting, you should be aware of the following software features:

• SDK tracks the system.xml file that is used in its workspace. You introduced this file
in Chapter 4, “Working with Your Embedded Platform.” If that file changes for any
reason, SDK flags the change. You’ll see an example of that feature in this Test Drive
when you add hardware to the file.

• By default, SDK maps all of your C code to block RAM. In this Test Drive, the piece of
C code you are using is larger (in terms of memory use) than that used previously.
Consequently, the available block RAM to which SDK mapped is too small. Therefore,
you must modify the Linker script. SDK has a built in GUI that simplifies modifying
your Linker Script.

Now, you’ll open and modify the template files that the CIP wizard created for your
project.

1. In XPS, select File > Open.

2. Navigate to the pcores\pwm_lights_v1_00_a\hdl\vhdl directory and locate the
pwm_lights.vhd file and the user_logic.vhd file.

Note: You might have to change the Files of type drop-down list to view and open these files.

3. Open the pwm_lights.vhd file.

Add the external port names in two places in this file:

− The top level entity port declaration

− The port map for the instantiation of the user_logic

4. Scroll down to approximately line 165. In the code segment shown in the figure below,
the user port LEDs are displayed in the appropriate location. Add the LEDs port
declaration for the top-level entity in your file as shown here.

5. Scroll down to approximately line 390. In the code segment shown in the figure below,
the user port LEDs are displayed in the appropriate location. Add the LEDs port
declaration into the user_logic port mapping in your file as shown here.

X-Ref Target - Figure 7-10

Figure 7-10: Add User Ports

X-Ref Target - Figure 7-11Ad

Figure 7-11: Add Port Mapping

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 63
UG683 EDK 12.3

Example Design Description

6. Save the file.

Where user information is required in the two template files (<ip core name>.vhd
and user_logic.vhd), comments within the file indicate the type and placement of
required information.

In most cases, adding user ports to the top-level entity and then mapping these ports
in the user_logic instantiation are the only changes required for <ip core
name>.vhd.

7. In XPS, select File > Open and navigate to the
pcores\pwm_lights_v1_00_a\hdl\vhdl directory.

8. Open and examine the user_logic.vhd file.

9. A completed user_logic.vhd file is provided in the .zip file for this guide. Replace
the contents of the currently opened user_logic.vhd file with the contents of the
provided user_logic.vhd file and save the file.

Reviewing the File Contents
Assuming you are familiar with VHDL, the code that makes up pwm_lights is easy to
understand.

The user_logic.vhd file is similar to the top-level pwm_lights.vhd file, in that the
template contains many comments and instructs you where to add custom RTL. If you
have never used the CIP wizard before, take a few minutes to study the comments, the list
of interface signals, and locations where you are instructed to add your RTL.

It is essential that you do not modify the auto-generated generics and ports. Add your
custom generics and ports only where instructed.

At approximately line 100, notice that the user port LEDs (0 to 3) were added. This output
vector drives the four LEDs on the evaluation board. Anytime you add signals specific to
your design, you must add these ports in this location. You also need to add these ports in
the top-level file and map them through to user_logic.

Most of the code after the architecture declaration is custom code.

After declaring the necessary internal signals and constants, the first block in the design
drives a simple counter. Two output signals are tapped off the counter:

• The PWM update clock (selected to be approximately 1 Khz)

• The LED update clock (selected to be approximately 4 Hz)

Modifying Clock
Rates

If you want to modify the design later, you can change these clock rates by modifying one
or both of the constants: PWM_tap and slow_clock_tap.

The decode process is used to decode the interface signals from the IPIC to select the
appropriate function. A write to the custom block occurs when Bus2IP_WrCE(0) is active
(high). Adding a few address signals to the decode logic implements the following
behavior:

• Write to offset 0x00: All LEDs turned off

• Write to offset 0x04: All LEDs turned on

• Write to offset 0x08: LED brightness varies, using a square function drive signal

• Write to offset 0x0C: LED brightness varies, using a linear function drive signal

• Write to offset 0x1x: LED brightness is set to a constant value (the range is 0 to 0xFF)

http://www.xilinx.com

64 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

The PWM process updates the drive signal based at the update rate of the slow_clock.

• The first case statement updates the drive values using a square function

• The second case statement updates the drive values in a linear manner

Feel free to change the drive values as part of your experimentation. As designed, 16
discrete drive values are used.

The LEDs are driven with a PWM-generated drive signal. The duty cycle of the drive
signals varies from 0% (no drive) to almost 100% (0xFF or 255).

The assignment to LEDs (0 to 7) near line 247 controls the LEDs based on the last
instruction written to the circuit.

All the code described above is simple and can be modified if you want to experiment later.
However, the interface signals starting at line 256 are required to have very explicit
behavior. Incorrect logic driving these signals will cause the custom pcore to interfere with
proper bus operation, and could result in unexpected behavior during debug.

IP2Bus_Data is the bus that is read by the processor during a read operation. Correct PLB
operation requires that this bus be driven with all logic zeros except when an active read is
occurring from the custom pcore. An active read is decoded correctly when reset is inactive
and the Bus2IP_RdCE is active high. When this condition occurs, the custom circuit drives
the specified value onto the bus; otherwise, zeros are driven.

For this example design, doing a read of any address within the peripheral address map
returns a 32-bit value which looks like this:

The final signals, IP2Bus_WrAck and Bus2IP_WrCE(0), are also critical. IP2Bus_WrAck
is a write acknowledge that must be returned by the custom logic. IP2Bus_WrAck must be
driven high only for a single cycle, but can be delayed if your custom logic needs to add
wait states to the response. For this example, no wait states are necessary. Connecting
IP2Bus_WrAck directly to Bus2IP_WrCE(0) provides a simple, zero wait state response.
The logic for the read acknowledge signal is identical. The peripheral can add wait states if
necessary.

The pwm_lights pcore contains a C_INCLUDE_DPHASE_TIMER parameter that can be set
to a logic one, which generates an automatic bus timeout signal if the peripheral does not
respond to a bus request.

As implemented, the data phase timer is not included. To add this logic, add the
C_INCLUDE_DPHASE_TIMER parameter to the pwm_lights peripheral in the file and set
the value to 1. Doing so guarantees that an unacknowledged bus transfer will time-out
after 128 PLB clock cycles.

The IP2Bus_Error is driven with a constant logic zero, implying that no error condition is
returned. If your custom peripheral could potentially time out based on having to wait for
other external logic, you can connect logic to drive IP2Bus_Error to terminate the bus
transfer.

Bits 0 to 15: 0xF0F0

Bits 16 to 23: One byte value written to LED drive register

Bits 24 to 27: 0x0

Bits 28 to 31: all_off (1 bit), run (1 bit), linear (2 bits)

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 65
UG683 EDK 12.3

Example Design Description

Adding Your Custom IP to Your Processor System
When you modified pwm_lights.vhd and user_logic.vhd, you added new ports to the
template design. Any time you modify the design files in a manner that modifies the ports
or parameters in the MPD file, the CIP wizard must be run again in Import mode. This
regenerates the correct PSF files, MPD and PAO, which are the interface files to EDK. When
the Import flow is completed, the custom pcore can be added to your embedded design.

Before taking this test drive, let’s do a quick review of where you are in the IP creation
process:

• The first time you ran the CIP wizard, you created the pwm_lights peripheral, set up
the bus interface, and generated the required template files.

• Next you will add pwm_lights to your project, again using the CIP wizard. In the
process, pwm_lights is imported to an XPS-appropriate directory and the CIP
wizard creates the MPD and PAO files. For more information about PSF files, see the
Platform Specification Format Reference Manual, available at
http://www.xilinx.com/ise/embedded/edk_docs.htm.

Take a Test Drive! Using the CIP Wizard to Re-Import the
Modified File into Your XPS Project

1. Open the CIP wizard and specify that you want to import an existing peripheral to an
XPS project.

2. On the Repository or Project page, select the current project.

3. On the Name and Version page, select pwm_lights from the Name drop-down list. A
version is not required, but for this example it is already selected. Use either the default
setting or a custom version number.

4. If the CIP wizard asks if you want to overwrite an existing peripheral with this name,
select Yes.

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=edk+docs

66 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

5. Select HDL source files. You can create pcores using RTL or existing netlists.
X-Ref Target - Figure 7-12

Figure 7-12: Source File Types Page

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 67
UG683 EDK 12.3

Example Design Description

6. Click Next to open the HDL Source Files page.

The CIP wizard imports pcores that were created in a variety of ways. If you used the
CIP wizard to initially create the pcore, the most straightforward manner to properly
locate and identify source files is to use the Peripheral Analysis Order (PAO) file.

7. Select Use existing Peripheral Analysis Order file (*.pao).

8. Browse to the PAO file. By default, the browse function opens at the top-level pcores
directory. The PAO file is located in the in the /pwm_lights/data subdirectory.

When you use the PAO file to locate the necessary source files (including lower level
libraries), it is not necessary to add any additional files or libraries.

If you are importing a complex peripheral made up of many files, look through the
listing of libraries and HDL source file paths to verify that any necessary files and
libraries are included.

Note: You might have to change the Files of Type drop-down to see and open the files.

9. Click Next.

X-Ref Target - Figure 7-13

Figure 7-13: HDL Source Files Page

http://www.xilinx.com

68 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

10. In the HDL Analysis Information page, make sure that user_logic.vhd and
pwm_lights.vhd show at the bottom of the list.

X-Ref Target - Figure 7-14

Figure 7-14: HDL Analysis Info Page

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 69
UG683 EDK 12.3

Example Design Description

11. If the Current Logical Library dialog box indicates that the two VHDL files that you
added have not yet been compiled, click Next to compile them and open the Bus
Interfaces page.

12. Select the appropriate bus interface. The pwm_lights peripheral is a PLBv46 Slave
(SPLB).

X-Ref Target - Figure 7-15

Figure 7-15: Bus Interfaces Page

http://www.xilinx.com

70 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

13. Click Next to open the Port Details page.

This page shows a complete listing of all the PLBv46 bus signals that are used in this
design. You can scroll through the list of signals and associated bus protocols that the
Create and Import IP wizard automatically configured.

If the core was originally created by the Create and Import IP wizard, all of the
necessary signals are included. If a core was created with another tool or contains a
complex or custom bus interface, this wizard page is useful for analyzing the bus
signals.

X-Ref Target - Figure 7-16

Figure 7-16: SPLB Port Details

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 71
UG683 EDK 12.3

Example Design Description

14. Review the Port details and click Next.

The pwm_lights peripheral is mapped to a single address range, which XPS selects
when the pcore is included in the design. More complex peripherals might also
contain memory blocks or decode ranges that must be accessible.

X-Ref Target - Figure 7-17

Figure 7-17: SPLB Parameter Details

http://www.xilinx.com

72 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

15. Accept the default parameter settings and click Next.
X-Ref Target - Figure 7-18

Figure 7-18: Identify Interrupt Signals Page

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 73
UG683 EDK 12.3

Example Design Description

16. The pwm_lights peripheral contains no interrupt sources. Unselect the Select and
configure interrupts check box, and click Next to open the Parameter Attributes page.

Complex peripherals might include a large number of parameters and require careful
control of PLB bus behavior. Use the Parameter Attributes page to view and control
available settings for all parameters.

Use the drop-down menu to view parameters for your custom pcore, parameters for
the selected bus interface, and a combination of the two. The pcore parameters were
generated from an earlier CIP Wizard screen. The bus interface parameters were
automatically generated.

For this example, no changes are required.

17. Click Next to open the Port Attributes page.

X-Ref Target - Figure 7-19

Figure 7-19: Parameter Attributes Page

http://www.xilinx.com

74 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

18. On the Port Attributes page, click LEDs, and then select the Display advanced
attributes check box to get the full display. This setting gives you a finer degree of
control over the port attributes as they appear in the .mpd file.

You can see all ports that will be used by the interface between your custom pcore and
your embedded processor subsystem by selecting List All Ports from the drop-down
list. The Create and Import IP wizard managed this part of your design for you.

X-Ref Target - Figure 7-20

Figure 7-20: Port Attributes Page

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 75
UG683 EDK 12.3

Example Design Description

19. Click Next. The Project Details page appears, displaying the details of your project.

20. Click Finish. The Import function completes.

Adding the pwm_lights Pcore to Your Project

You can see your custom peripheral listed in the IP Catalog under Project Local
pcores/USER.

Before adding pwm_lights to your design, you must make one change to the existing
design. The four LEDs on the evaluation board are currently connected to GPIO
outputs. Now that pwm_lights is driving these LEDs, the LEDs_4Bit pcore must be
removed from the design.

X-Ref Target - Figure 7-21

Figure 7-21: Project Details Page

http://www.xilinx.com

76 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

1. In the System Assembly View, right-click LEDs_4Bit and select Delete Instance. The
Delete IP Instance dialog box appears:

2. Accept the default setting. You’ll add the external ports back into the design manually.

3. Locate the pwm_lights pcore in the IP Catalog, right-click the pcore, and select Add
IP.

XPS adds the IP to the System Assembly View. You can see it in the Bus Interfaces tab.

4. In the Connectivity Panel, click the PLB bus to add the bus connection.

The pwm_lights core is now added to the embedded system. However, you must
make the external connections between pwm_lights and the LEDs on the evaluation
board.

5. Click the Ports tab, expand pwm_lights_0, and select Make External from the drop-
down menu in the Net column.

A default name of pwm_lights_0_LEDs_pin was assigned as the net name. You can
view this name by expanding the Name column.

X-Ref Target - Figure 7-22

Figure 7-22: Delete IP Instance Dialog Box

X-Ref Target - Figure 7-23

Figure 7-23: Connecting Your New IP in the Bus Interfaces Tab

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 77
UG683 EDK 12.3

Example Design Description

6. To change the assigned net and pin names, click in the Name and Net columns,
respectively. Alternatively, you can manually edit the MHS file. For now, don’t change
the assigned names.

The next step is to generate or assign an address for the pwm_lights pcore.

7. Click the Addresses tab. If you don’t see pwm_lights_0 under Unmapped
Addresses, select Project > Rescan User Repositories.

8. Click Generate Addresses. The pwm_lights_0 pcore is assigned to an address range
of 0xC4600000 – 0xC460FFFF.

9. Verify that the address range for MCB_DDR3 is 0x88000000 – 0x8FFFFFFF.
If this address has changed, change it back to the original value.

If it seems strange for a simple peripheral to be assigned a 64Kbyte address space,
don’t worry. A wider address space requires decoding of fewer address lines. In an
FPGA, a decoder with many inputs is implemented as a cascade of lookup tables.

The deeper the cascade, the slower the operating frequency. By assigning wide
peripheral address ranges, the resulting FPGA implementation will run faster.

The final step is to update the UCF constraints file to assign the LED outputs to the
proper FPGA pins.

10. Select the Project tab and double-click the system.ucf file to open it in the XPS main
window.

11. Look for fpga_0_LEDs_4Bit_GPIO_IO_O. These pin assignments were left in the
UCF file even though you earlier deleted the GPIO pcore. It is important to note that
removing a pcore does not automatically trigger an update to the UCF file.

12. Replace fpga_0_LEDs_4Bit_GPIO_IO_O_pin with pwm_lights_0_LEDs_pin in all
four locations and save the UCF file.

Congratulations, you have created a custom pcore!

Exporting the Design and Generating a New Bitstream

The next steps are to export the hardware design and generate a new bitstream and then
test this new pcore in hardware.

1. In XPS, select Project > Export Hardware Design to SDK. Accept the default
directory and click Export Only.

2. When the export process completes, close XPS, return to ISE, and double-click
Generate Programming File.

3. After ISE finishes generating the programming file, launch SDK.and create a new
workspace. Put it anywhere you like.

Once SDK opens, we need to point to the exported system.xml file.

4. Select File > New > Xilinx Hardware Platform Specification to create a new hardware
project.

5. Call the Project LEDS and point to the system.xml file. It should be in the
/system/SDK/SDK_Export/HW folder of your project.

6. Click Finish.

SDK opens to the C/C++ Perspective with a table showing all the IP in your design.
Confirm that pwm_lights_0 is listed.

http://www.xilinx.com

78 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

7. Create a new Xilinx C project. Use the Hello World project template, and use the
default name that SDK provides.

Note: Recall that you can create a new Xilinx C project by selecting File > New > Xilinx C
Project.

Using the project template is useful for now, because it will do a lot of the driver setup
for you. As you become more proficient with SDK, you can do much of this manually.

8. Click Next.

The default selection on this page is to have SDK create a new BSP package. Don’t
change the default settings.

9. Click Finish to generate the project.

10. Right-click the new project in the Project Explorer and select New > Source File.

Note the “C” in the graphic for this menu selection, indicating that the source file is a
C file.

11. Make the following selections for the new source file:

− Source Folder: hello_world_0/src

− Source File: leds.c

− Template: Default C source template

12. Click Finish.

The leds.c file opens in the SDK window. This is a blank file for now, but you’ll be
adding content to it next.

13. From the Zip file that accompanies this guide, open the leds.c file that is supplied for
you. Copy the C code from the file and paste it into the leds.c file that you just
created in SDK.

Note: For information about the Zip file and where to get it, refer to “Attachments to this
Guide,” page 6.

14. Save and close leds.c. Because you have the Build Automatically feature enabled, SDK
automatically compiles the project.

Note: Recall that you can toggle the Build Automatically feature on and off by selecting Project
> Build Automatically.

The compile fails, because there are two main() functions in the project.

15. Delete hello_world.c and platform.c by right-clicking them in the SDK Project Explorer
and selecting Delete.

The project should now compile successfully.

16. Download the bitstream using Bootloop as the initialization file.

Note: Recall that you learned how to do this in “Take a Test Drive! Debugging in SDK,”
page 39.

17. Debug leds.elf.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 79
UG683 EDK 12.3

What’s Next?

18. Run leds.elf with a terminal window open. When the application code begins to
run, the HyperTerminal window displays the debug options:

Select the terminal window and type input values.

19. Experiment with the program, and verify that the LED behaves as expected.

What Just Happened?

You used the CIP wizard to create custom IP. While there are many steps required to
complete the task, you should now be familiar enough with the steps that you should be
able to use the CIP wizard efficiently in the future.

What’s Next?
In the next chapter you are going to create a dual processor design, then debug the design
in EDK.

X-Ref Target - Figure 7-24

Figure 7-24: HyperTerminal with Debug Options

http://www.xilinx.com

80 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 7: Creating Your Own Intellectual Property

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 81
UG683 EDK 12.3

Chapter 8

Dual Processor Design and Debug

MicroBlaze™ processors are soft microprocessors. There can be as many MicroBlaze
processors in an FPGA as will fit. Building a dual-processing system with the Xilinx®
Platform Studio (XPS) Base System Builder (BSB) is virtually identical to building a system
with one MicroBlaze processor. You can also debug an embedded system easily with more
than one MicroBlaze processor using the Software Development Kit (SDK).

Note: Dual processing is not supported for AXI-based designs.

Using the BSB to Create a Dual-Processor Design
If you are using an FPGA with a PowerPC® processor, these concepts also apply. You can
use the BSB to build dual-PowerPC designs (if your FPGA contains two PowerPC
processors), or a design with one PowerPC and one MicroBlaze processor. Using the
Spartan®-3A DSP board, you can create a dual-MicroBlaze processor design and then
extend it in XPS by adding more MicroBlaze processors to the design.

Take a Test Drive! Creating an Embedded System with
Two MicroBlaze Embedded Processors

In this Test Drive, you will use the Base System Builder and ISE® Project Navigator to
create and implement a dual-processor system using a method similar to that used in
“Creating a New Project,” page 11.

Note: A single embedded project can have multiple processors. In this Test Drive, the embedded
project has two MicroBlaze processors.

1. Create a new ISE Project with a single embedded processor source.

Wait for XPS to open automatically.

2. When XPS starts, select the option to create a new project using the BSB wizard.

http://www.xilinx.com

82 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 8: Dual Processor Design and Debug

3. Accept all the defaults in the BSB except for those listed below.

4. When you complete your design, examine your new system in the System Assembly
View in XPS.

The two embedded processor systems are completely independent, each with its own
memory map. The exception is the mailbox peripheral, which is essentially a dual-port
RAM with one port connecting to the PLBv46 bus on one processor and the other port
connecting to the PLBv46 bus on the other processor. To learn more about the mailbox
peripheral, right-click it in the System Assembly View and select View PDF
Datasheet.

5. Export the system.xml file to SDK by selecting Project > Export Hardware Design to
SDK.

6. Use the default location and click Export Only.

7. Navigate back to ISE Project Navigator and add the UCF to your ISE Project.

Note: For information about adding a UCF to your ISE project, refer to Chapter 4, “Working with
Your Embedded Platform.”

8. With your .xmp file selected in the Design panel, double-click Generate
Programming File to implement the design and generate a bitstream.

You now have a bitstream ready for downloading to the target hardware and a
system.xml file for use in SDK.

Wizard Screens System Property Setting or Command to Use

System Configuration Type of system:
single-processor or dual-
processor

Select a dual-processor system.

Processor
Configuration

Processor type and
settings

Change the Local Memory to 8 KB
for both processors.

Peripheral
Configuration

Processor 1 Peripherals Remove the following peripherals
from the default list:
- DIP Switches
- Ethernet MAC
- LEDs
The remaining peripherals for
Processor 1 are DDR2, RS232, and
the DLMB and ILMB BRAM
controllers.

Shared Peripherals Remove XPS mutex. The remaining
peripheral is XPS mailbox.

Processor 2 Peripherals Remove the following peripherals
from the default list:
- Push buttons
- SPI FLASH
The remaining peripherals for
Processor 2 are the ILMB and DLMB
BRAM controllers.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 83
UG683 EDK 12.3

Using the BSB to Create a Dual-Processor Design

Take a Test Drive! Using SDK to Develop Software for a
Dual-Processor System

In this Test Drive, you will create an SDK project that can be used to develop and debug
software for both embedded processors.

This section should seem familiar after completing Chapter 5 and Chapter 6 because there
is very little difference between debugging a single-processor or dual-processor system
when using SDK.

Preparing an SDK project consists of creating software platforms and then creating C or
C++ application projects for them. This process is the same regardless of how many
processors are in your system. When you create a software platform, you must identify the
processor with which the platform will be used.

1. Launch SDK.

2. When the Workspace Launcher dialog box opens, create a new workspace called
Dual_Processor_Workspace. Save it to a directory of your choice.

3. In the New Hardware Specification File dialog box, point to the system.xml file that
you exported earlier. If you used the default project locations, the file is located at <ISE
Project Name>\system\SDK\SDK_Export\hw\system.xml.

When the system.xml file is imported, the C/C++ Perspective opens. SDK recognizes
that there are two MicroBlaze processors in the embedded system, as shown below.

4. Select File > New > Software Platform and create a new software platform project
with the following settings:

− Project Name: MicroBlaze_Platform_0

− Processor: microblaze_0 (microblaze)

− Platform Type: standalone

− Project Location: Use default

X-Ref Target - Figure 8-1

Figure 8-1: Dual MicroBlaze Processors Displayed in the Embedded System

http://www.xilinx.com

84 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 8: Dual Processor Design and Debug

5. Use the same procedure to create a second software platform project with the
following settings:

− Project Name: MicroBlaze_Platform_1

− Processor: microblaze_1 (microblaze)

− Platform Type: standalone

− Project Location: Use default

Each MicroBlaze processor has a single associated software platform, as shown in the
following figure.

The next step is to create a Managed C Application Project for each processor. In this
example, you will create and modify a “hello world” project for each processor.

6. Select File > New > Managed Make C Application Project and create a new Managed
Make C application project with the following settings:

− Project Name: hello_world_0

− Software Platform: MicroBlaze_Platform_0

− Project Location: Use Default Location for Project

− Sample Applications: Hello World

7. Use the same procedure to create a second Managed Make C application project with
the following settings:

− Project Name: hello_world_1

− Software Platform: MicroBlaze_Platform_1

− Project Location: Use Default Location for Project

− Sample Applications: Hello World

You now have two sample C applications, one for each processor, as shown in the
following figure.

X-Ref Target - Figure 8-2

Figure 8-2: MicroBlaze Processors and Associated Software Platforms

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 85
UG683 EDK 12.3

Using the BSB to Create a Dual-Processor Design

8. Modify the src\helloworld.c file in each MicroBlaze platform to indicate which
processor it is running on. For example, open the helloworld.c file in the
MicroBlaze_Platform_0 project and change the code

print(“Hello World\n\r”);

to

print(“Hello From Processor 0!\n\r”);

9. Modify the helloworld.c file in the MicroBlaze_Platform_1 project in the same
way.

10. Save each file. SDK automatically builds the files while saving. Note the output in the
console window:

************** Determining Size of ELF File **************

mb-size hello_world_1.elf
 text data bss dec hexfilename
 1958 296 2090 4344 10f8hello_world_1.elf

Build complete for project hello_world_1

X-Ref Target - Figure 8-3

Figure 8-3: MicroBlaze Processors and Associated Managed C Application
Projects

http://www.xilinx.com

86 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 8: Dual Processor Design and Debug

Programs must have enough memory on which to run the application.
In this sample design, only MicroBlaze_Platform_0 has access to the external DDR2
memory, and MicroBlaze_Platform_1 only has access to 8 KB of on-chip block RAM. As
you can see in the console output displayed above, hello_world_1.elf is 4.344 KB, less
than 8 KB, so there is sufficient memory.

Take a Test Drive! Modifying the Software Platform
Settings

The MicroBlaze_Platform_0 processor uses its UART for the stdin and stdout
peripherals. However, the MicroBlaze_Platform_1 processor does not have a UART and
must use XMD with MDM-UART for the stdin and stdout peripherals. Consequently,
the software platform settings for MicroBlaze_Platform_1 might need to be modified.

1. Select Tools > Software Platform Settings to modify the settings for the
MicroBlaze_Platform_1 processor.

2. In the OS and Libraries settings page, review the stdin and stdout settings. In this
case, the hardware on which XMD runs needs to be set to MDM. The default value is
mdm_0, so this is already correctly set.

If you run through the same exercise to view the settings for the MicroBlaze_Platform_0
processor, you’ll notice that stdin and stdout are set to use xps_uartlite.

Take a Test Drive! Debugging Multiple Processors in a
Single SDK Debug Perspective

Each embedded processor must have a separate binary ELF file. SDK names the file
automatically based on the processor name. For example, the MicroBlaze_Platform_0
processor binary file is called hello_world_0.elf, and the MicroBlaze_Platform_1
processor binary file is called hello_world_1.elf.

Each binary file is individually downloaded. Before that happens, you must download the
bitstream for the design with the dual processor system to the target hardware.

1. Select Tools > Program FPGA and select your bitstream and block memory map files
from the following locations:

− <ISE Project Name>\system.bit

− <ISE Project Name>\edkBmmFile_bd.bmm

2. Confirm that the initialization file for each processor is set to BootLoop, then click
Save and Program.

The target hardware has now been programmed with the bitstream for the dual
processor design.

The next step is to download an ELF file for each processor.

3. Right-click the binary file hello_world_0.elf in the hello_world_0
{MicroBlaze_Platform_0} folder of the C/C++ Projects tree, and select Debug As >
Debug on Hardware.

The Debug Perspective opens for the MicroBlaze_Platform_0 processor.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 87
UG683 EDK 12.3

Using the BSB to Create a Dual-Processor Design

4. Go back to the C/C++ Perspective, and use the same procedure to debug the
hello_world_1.elf file and to download this file to the MicroBlaze_Platform_1
processor.

The Debug Perspective opens again. There are two debugging tasks in the Debug
window.

5. Before debugging these programs, connect an RS232 cable between your computer
and the target board to observe the console I/O in a terminal window.

6. In the XMD window, type terminal to stream terminal I/O over the MDM. You can
use this window to monitor the output of MicroBlaze_Platform_1.

Note: If the XMD window isn’t available, select Window > Show View > Other and select
Xilinx > XMD Console.

7. Highlight the call stack in the Debug window for either hello_world_0 or
hello_world_1, and select Run > Resume.

Note: Both call stacks should read “1 main() at...”

X-Ref Target - Figure 8-4

Figure 8-4: The SDK Debug Perspective

http://www.xilinx.com

88 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Chapter 8: Dual Processor Design and Debug

The processor output displays in the terminal window or XMD console, as shown in the
following figure.

Debugging more than one processor design in SDK is similar to debugging a single
processor. This was a simple example. You can perform other software development tasks
with SDK as well, such as stepping, setting breakpoints, and examining registers and
memory.

X-Ref Target - Figure 8-5

Figure 8-5: Processor Output in the Terminal and XMD Console Windows

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 89
UG683 EDK 12.3

Appendix A

Intellectual Property Bus Functional
Model Simulation

This chapter uses the pwm_lights design and the bus functional model (BFM) simulation
platform from Chapter 7, “Creating Your Own Intellectual Property.” Before proceeding,
you must complete the design described in Chapter 7, and you must have also compiled
the EDK simulation libraries.

What are BFMs and Why Should I Use Them?
Bus functional models are simulation models used to model the behavior of bus
transactions. In this case, the PLBv46 bus. BFMs are typically used only to model the
behavior of custom IP. A secondary use of BFMs is to speed up the simulation of complex
transactions, because BFM simulation runs much faster than post-synthesis or timing
simulation.

The specification for PLBv46 is long and complex. You might need to attach custom IP to
the bus and then verify that the IP meets the bus specification. If you had to create the
testbenches to create the proper stimulus and checking necessary to confirm proper
operation, few if any designers would ever simulate the bus behavior. In addition, you
could never be certain that the testbenches were written correctly.

To assist with this, a set of Bus Functional Models (BFMs) were created as known good
stimulus models. In addition to containing models for PLBv46 master and slave devices, a
monitor module captures and verifies the correctness of the transactions.

The final piece involves the BFM compiler (BFC). Using a specific design language, you
can write a series of read and write bus transactions along with expected values.

While conceptually simple, manually setting up an entire simulation environment to run
bus functional simulation is difficult. The CIP wizard automates most of this for you,
because it can automatically connect the necessary BFM simulation models to your IP
under test.

Note: If the Version Management wizard opens when you launch the bfm_system project, use the
it to update any required cores.

http://www.xilinx.com

90 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Appendix A: Intellectual Property Bus Functional Model Simulation

Take a Test Drive! Running the BFM

Before starting this Test Drive, close any open XPS projects. If you elected to create the
BFMs, the CIP wizard created the bfmsim sub-directory in your
\pcores\pwm_lights_v1_00_a\devl directory, in which it saved the XPS BFM
simulation project called bfm_system.xmp.

1. Open the bfm_system.xmp project in XPS. The Bus Interfaces window appears:

2. Select Project > Project Options and click the HDL and Simulation tab.

3. Select the HDL format in which to simulate. For this example, use the default, VHDL.

4. Because BFM offers Behavioral Simulation only, leave the Simulation Model selection
set to its default.

5. Select OK when you have finished setting up the simulation options.

6. Select Simulation > Generate Simulation HDL Files to run the Simulation Model
Generator (Simgen) for this test project.

Simgen creates a simulation directory structure under the /bfmsim directory. The
simulation directory contains the HDL wrapper files along with the DO script files
needed to run a behavioral simulation.

7. Click Custom Button 1 in the XPS GUI tool bar. The CIP wizard configures this tool
bar button when it creates the BFM simulation project.

Custom Button 1 initiates the following:

− Launches a Bash shell to run a make file.

− Calls the IBM CoreConnect™ ToolKit Bus Functional Compiler (BFC) to operate
on a sample.bfl file using the simulation options that were previously set. See
<project name>\pcores\pwm_lights_v1_00_a\devl\bfmsim\scripts\
sample.bfl for more information.

− Invokes the simulator with the BFC output command files (INCLUDE or DO files)
depending on the simulator to execute the commands in the sample.bfl file.

X-Ref Target - Figure A-1

Figure A-1: XPS BFM User PCORE Simulation Project

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 91
UG683 EDK 12.3

What are BFMs and Why Should I Use Them?

The simulator waveform result is similar to the one shown below.

What Just Happened?

Before running the simulation, the CIP wizard created the following:

CIP Wizard Creates a
Test Project

• A set of HDL templates files, which you modified to become a working pcore

• A test project, which isolates your pcore and allows you to verify its functionality
with the bus before hooking it to a larger system

This project resides in the
<project_name>\pcores\pwm_lights_v1_00_a\devl\bfmsim directory.

This test project uses several BFMs supplied by the CoreConnect ToolKit. In this case, there
is a model of the processor, bus, memory, and bus monitor, all connected to your core.

Benefits of XPS Tools By using the XPS tools, you avoided having to create these models yourself and XPS
automatically made all the correct connections.

After generating the simulation platform, you created your own custom button (Custom
Button 1) to automate several steps in the simulation process. These steps run the
sample.bfl through the CoreConnect Bus Functional compiler, and must be performed
to generate the command file the simulator uses.

To see more information associated with these buttons, select Project > Customize
Buttons and press F1 to view the related help topic. The location of the make file you will
use is provided in the following Test Drive.

X-Ref Target - Figure A-2

Figure A-2: BFM Waveform Simulation Results for sample.bfl

http://www.xilinx.com

92 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Appendix A: Intellectual Property Bus Functional Model Simulation

In addition to compiling the BFL, the make file executed by Custom Button 1 called the
simulator with the command files to start simulation, simplifying the simulation launch
and compilation process to a single button click.

Take a Test Drive! Writing a Script to Perform Bus
Transactions

1. In XPS, select File > Open and navigate to the
<project name>\pcores\pwm_lights_v1_00_a\devl\bfmsim\scripts
directory.

2. Open the sample.bfl file.

Replace this file with the attached sample.bfl file if you want to see what happens in
this Test Drive without walking through all the steps. If you elect to replace the file,
you can skip ahead to step 5.

Approximately the first 160 lines of code set command aliases to make it easier to use
and read the command lines. These commands automatically populate source and
destination memory, and test the various core features. You can add or subtract
commands to various sections as your core requires or create a completely new BFL
command file.

BFL Command
Information

Note: If you create a new BFL file, you must also adjust the bfm_sim_xps.make file in the
/bfmsim directory to reflect your command file. For more information about the BFL commands,
look in your $XILINX_EDK\third_party\doc directory for the PLBToolkit.pdf file.

Next, you’ll modify the BFM code and run an actual simulation of pwm_lights to
demonstrate the power of bus functional simulation.

The completed sample.bfl file is included in the .zip file for this guide. You can use
it for comparison once you complete this Test Drive or to replace the sample.bfl file
that you will generate. The following commands that you about to add to your
sample.bfl file are saved in the attached text file,
bus_transaction_bfl_code.txt.

Adding Commands to
sample.bfl

3. In the sample.bfl template, at approximately line 175, change the line starting with
configure to read:

configure(msize = 01)

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 93
UG683 EDK 12.3

What are BFMs and Why Should I Use Them?

4. After the start testing section near the end of the file, add the following code from
the bus_transaction_bfl_code.txt. These commands generate bus transactions.

--
-- Define several bus transactions for pwm_lights
-- Memory updates are 64 bits write, bus transactions are 32 bits wide.
--
--
-- Write value of 22 hex to LED register
--
mem_update(addr=30000010,data=22222222_22222222)
write (addr=30000010,size=0000,be=11110000)
-- Read status register, expect to get F0F02207
read (addr=30000000,size=0000,be=11110000)
-- Write to offset 0, then read status, expect to get F0F02208
mem_update(addr=30000000,data=00000000_00000000)
write (addr=30000000,size=0000,be=11110000)
read (addr=30000000,size=0000,be=11110000)
-- Write to offset 4, then read status, expect to get F0F02200
--mem_update(addr=30000000,data=00000000_00000000)
write (addr=30000004,size=0000,be=00001111)
read (addr=30000000,size=0000,be=00001111)
-- Write to offset 8, then read status, expect to get F0F02208
mem_update(addr=30000008,data=00000000_00000000)
write (addr=30000008,size=0000,be=11110000)
read (addr=30000000,size=0000,be=11110000)
-- Write to offset C, then read status, expect to get F0F02200
--mem_update(addr=30000000,data=00000000_00000000)
write (addr=3000000C,size=0000,be=00001111)
read (addr=30000000,size=0000,be=00001111)
001111)

Modifying the code results in the following:

− The mem_update sets the write data value at the address to which you want to
write.

− The write command initiates the PLB write.

− The read command initiates the PLB read.

− A size setting of 0000 implies a single transaction.

− The be (byte enable) settings correspond to a 64 bit bus.

− Addresses aligned to 0, 8, and so on, set the byte enables to 11110000.

− Addresses aligned to 4, c, and so on, set the byte enables to 00001111.

5. Open the attached sample.bfl file.

6. Make sure your sample.bfl file matches the attached file and then save your file.

7. Click Custom Button 1.

8. In ModelSim, scroll down to the end of the signal listing in the Waveform window. The
last signals listed correspond to user_logic signals, which are the custom signals in
the pwm_logic pcore.

http://www.xilinx.com

94 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Appendix A: Intellectual Property Bus Functional Model Simulation

What Just Happened?

The BFM script performed a series of five writes followed by reads in the pcore. Read the
BFM script to see the order in which the writes were done:

− When ip2bus_rdack is high, the ip2bus_data signal contains the value read
back from pwm_lights.

− For the order of writes to the core, the simulation will show (in order) F0F02207,
F0F02208, FF002200, FF002204, and FF002205.

Verify this information for your simulation. The first value read back occurs at 450ns. This
exercise helps you understand why these specific values were read back.

In addition to the BFL file, the CIP wizard created a corresponding /pcores directory
under the /BFMSIM project that contains the template for the BFM test bench.

You can add to the template test bench as your core logic requires.

You have now seen the power of bus functional simulation, and how you might take
advantage of how XPS does all the hard work (except, of course, writing the correct
stimulus). As you create custom IP in the future, BFM simulation can both reduce your
testing time and provide assurance that your IP functions as expected.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 95
UG683 EDK 12.3

Appendix B

Creating an AXI-Based Design in EDK

Introduction
Beginning with the ISE® Design Suite release 12.3, Xilinx introduces support for the
Advanced eXtensible Interface (AXI) in software tools and IP.

AXI is part of the ARM® Adavanced Microcontroller Bus Architecture (AMBA®) family of
interfaces. For more information on AXI and AMBA,consult www.amba.com and the
Xilinx AXI Reference Guide, available at www.xilinx.com/ipcenter/axi4.htm.

For embedded systems, the effect of the move to AXI is that the PLB interfaces on PLB-
based peripherals will be replaced with AXI4 and AXI4-Lite interfaces. The way AXI4 and
AXI4-Lite systems are built is also different from PLB. This appendix illustrates the
changes in both of these areas.

The following table describes AXI4 and AXI4-Lite in more detail.

Additional Resources
More detailed documentation about AXI is available at:
http://www.xilinx.com/ipcenter/axi4.htm.

Table B-1: AXI4 and AXI4-Lite Details

Interface Features Replaces

AXI4 • Traditional memory
mapped address/data
interface.

• Data burst support.

PLB v4.6

NPI

XCL

AXI4-Lite • Traditional memory
mapped address/data
interface.

• Single data cycle only.

PLBv4.6 (singles only)

http://www.xilinx.com/ipcenter/axi4.htm
http://www.xilinx.com
http://www.amba.com
http://www.xilinx.com/ipcenter/axi4.htm

96 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Appendix B: Creating an AXI-Based Design in EDK

Creating an AXI Project
This guide describes, in detail, how to create a new PLB project using ISE, EDK, and SDK.
When you use these tools to create an AXI project, however, some settings will be different.
Follow this outline for creating an AXI project.

Hardware and Software Requirements
AXI-based designs are only supported in Spartan®-6 and Virtex®-6 Devices.

To create an AXI-based design using this guide, review the hardware and software
requirements for this guide listed in Chapter 1, “Introduction.”

Creating a New AXI Project
Start by creating your design in ISE as described in Chapter 2, “Creating a New Project.”

When XPS opens, create your BSB project using the settings listed in the following table.

Note: If no setting or command is indicated in the table, accept the default values.
.

Wizard Screens System Property Setting or Command to Use

Interconnect Type Interconnect type AXI system

Welcome to the
Base System
Builder

Project type options I would like to create a new
design.

Board Selection Board Vendor Xilinx

Board Name Spartan-6 SP605 Evaluation
Platform

Board Revision 1.0

System
Configuration

Type of system AXI System with Single
MicroBlaze Processor

Processor
Configuration

Reference Clock Frequency 200 MHz

Processor Frequencey 100 MHz

Local Memory Size 16 KB

Debugging Interface MDM

Enable Floating Point Unit Do not enable the floating point unit.

Peripheral
Configuration

Processor 1 (MicroBlaze)
Peripherals list

Remove the following peripherals
from the “Processor 1 (MicroBlaze)
Peripherals” list of default values:

• IIC_DVI
• IIC_SFP

Add the axi_timer peripheral and
select the Use Interrupt check box.

Cache
Configuration

Instruction Cache Size 8 KB

Data Cache Size 8 KB

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 97
UG683 EDK 12.3

Creating an AXI Project

Using Xilinx Platform Studio
Explore the XPS software as described in Chapter 3, “Using Xilinx Platform Studio.”

When you open an AXI design in XPS, the Bus Interfaces tab allows all masters to talk to all
slaves. You can disable unnecessary connections by clicking the connection point in the
Patch Panel. This reduces the overall size of the AXI Interconnect.

The Bus Connectivity panel and the System Assembly view are color coded to assist in
rapid recognition of the bus standard type. The same color coding is used in the System
Block Diagram.

In both the Bus Interfaces and Ports tabs, you can reorder the top-to-bottom list of IPs.

XPS automatically applies the connectivity rule for associated bus standards and adjusts
related connections as needed. For example, each bus interface can have one connector
connected to a point-to-point bus, and a slave AXI bus interface can be connected to
multiple AXI master interconnections within the same AXI interconnect. Switching
connection from one AXI interconnect to another automatically disconnects all the
connections from the previous AXI interconnect.

As you make connectivity changes in the Connectivity panel, the corresponding Bus
Connection column in the System Assembly view is also updated. When you move your
mouse pointer over a connector, XPS displays connection information, such as the bus
standard and instance names and the connected bus interface.

Summary System Summary page After you’ve selected and
configured all of your system
components, the BSB displays an
overview of the system for you to
verify your selections.

You should have a processor system
with the following components:

• MicroBlaze™ processor
• DIP Switch interface
• Ethernet lite
• IIC EEPROM interface
• 4-bit LED interface
• DDR3 interface
• 4-bit pushbutton interface
• UARTlite
• Compact Flash Interface
• Timer
• One Debug module
• Two LMB Block RAM interfaces
• AXI Interconnect

You can go back to any previous
wizard page and make revisions.

The BSB creates a default memory
map. The memory map cannot be
modified inside the BSB, but it can
be changed after the BSB is finished.

Wizard Screens System Property Setting or Command to Use

http://www.xilinx.com

98 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Appendix B: Creating an AXI-Based Design in EDK

Right-click on one of the AXI Interconnects and note the View PDF Datasheet option. The
datasheet for the AXI Interconnect has a great deal more detail regarding the configuration
possibilities of AXI-based embedded systems. Perhaps the most powerful feature that AXI
provides is the ability to have finer granularity in clock domain partitioning over what PLB
allows. This flexibility enables higher performance in embedded systems.

Working with Your Embedded Platform
Follow the procedures listed in Chapter 4, “Working with Your Embedded Platform” to
learn how to work with your embedded hardware platform.

Working with your AXI Design in SDK
Export your design to SDK and continue working with it as described in Chapter 5,
“Introducing the Software Development Kit.”

Continue use SDK to edit, debug, and release your design as described in Chapter 6, “More
on the Software Development Kit: Edit, Debug, and Release.”

Note: Dual Processor design is not supported for AXI designs.

X-Ref Target - Figure B-1

Figure B-1: EDK Main Window

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 99
UG683 EDK 12.3

Migrating to Xilinx AXI Protocols

Using the Create and Import Peripheral Wizard with an AXI Design
XPS contains a Create and Import IP (CIP) wizard that automates adding your IP to the IP
repository in Platform Studio. To aid in creating AXI IP, refer to solution record, 37425,
available at http://www.xilinx.com/support/answers/37425.htm, which contains simple
templates that help create AXI-compliant IP. Creation of AXI-based IP is not covered in
this guide.

Migrating to Xilinx AXI Protocols
Migrating an existing core is a process of mapping your core's existing I/O signals to
corresponding AXI protocol signals. In some cases, additional logic might be needed. The
MicroBlaze™ embedded processor changed its endianan-ness to go from having a Big-
endian orientation, (which aligned with the PLB interfaces of the PowerPC® embedded
processors), to Little-endian (which aligns with ARM processor requirements and the AXI
protocol).

For more information on the implications of the move to Litle Endian, consult the Xilinx
AXI Reference Guide.

AXI to PLBv46 Bridge

The Advanced Microcontroller Bus Architecture (AMBA) Advanced eXtensible Interface
(AXI4) to Processor Local Bus (PLB v4.6) Bridge translates AXI transactions into PLBv.46
transactions. It functions as 32- or 64-bit Slave on AXI4 and a 32- or 64-bit Master on the
PLBv.46.

For more information about the AXI to PLB v.46 Bridge, refer to the Xilinx AXI Reference
Guide.

PLBv46 to AXI Bridge

The PLBv46 to AXI Bridge translates PLB v.46 transactions into AXI transactions. This IP
has the Slave on a PLBv46 bus and a Master for an AXI Interconnect Bus.

For more information about the AXI to PLBv46 Bridge, refer to the Xilinx AXI Reference
Guide. You can also examine the AXI to PLBv46 Bridge data sheet, accessible from within
Xilinx Platform Studio.

BFM
Bus functional models (BFMs) are not supported for AXI designs.

http://www.xilinx.com/support/answers/37425.htm
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide. pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide. pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide. pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide. pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide. pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide. pdf
http://www.xilinx.com

100 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Appendix B: Creating an AXI-Based Design in EDK

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 101
UG683 EDK 12.3

Appendix C

Glossary

A

AXI
Advanced eXtensible Interface (AXI).

B

BBD file
Black Box Definition file. The BBD file lists the netlist files used by a
peripheral.

BFL
Bus Functional Language.

BFM
Bus Functional Model.

BIT File
Xilinx® Integrated Software Environment (ISE™) Bitstream file.

BitInit
The Bitstream Initializer tool. It initializes the instruction memory of
processors on the FPGA and stores the instruction memory in
blockRAMs in the FPGA.

block RAM (BRAM)
A block of random access memory built into a device, as distinguished
from distributed, LUT based random access memory.

BMM file
Block Memory Map file. A BMM file is a text file that has syntactic
descriptions of how individual block RAMs constitute a contiguous
logical data space. Data2MEM uses BMM files to direct the translation
of data into the proper initialization form. Since a BMM file is a text
file, it is directly editable.

http://www.xilinx.com

102 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Appendix C: Glossary

BSB
Base System Builder. A wizard for creating a complete design in Xilinx
Platform Studio (XPS). BSB is also the file type used in the Base System
Builder.

BSP
See Standalone BSP.

C

CFI
Common Flash Interface

D

DCM
Digital Clock Manager

DCR
Device Control Register.

DLMB
Data-side Local Memory Bus. See also: LMB.

DMA
Direct Memory Access.

DOPB
Data-side On-chip Peripheral Bus. See also: OPB.

DRC
Design Rule Check.

DSPLB
Data-side Processor Local Bus. See also: ISPLB.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 103
UG683 EDK 12.3

E

EDIF file
Electronic Data Interchange Format file. An industry standard file
format for specifying a design netlist.

EDK
Xilinx Embedded Development Kit.

ELF file
Executable and Linkable Format file.

EMC
External Memory Controller.

EST
Embedded System Tools.

F

FATfs (XilFATfs)
LibXil FATFile System. The XilFATfs file system access library
provides read/write access to files stored on a Xilinx SystemACE
CompactFlash or IBM microdrive device.

Flat View
Flat view provides information in the Name column of the IP Catalog
and System Assembly Panel as directly visible and not organized in
expandable lists.

FPGA
Field Programmable Gate Array.

FSL
MicroBlaze Fast Simplex Link. Unidirectional point-to-point data
streaming interfaces ideal for hardware acceleration. The MicroBlaze
processor has FSL interfaces directly to the processor.

http://www.xilinx.com

104 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Appendix C: Glossary

G

GDB
GNU Debugger.

GPIO
General Purpose Input and Output. A 32-bit peripheral that attaches
to the on-chip peripheral bus.

H

Hardware Platform
Xilinx FPGA technology allows you to customize the hardware logic
in your processor subsystem. Such customization is not possible using
standard off-the-shelf microprocessor or controller chips. Hardware
platform is a term that describes the flexible, embedded processing
subsystem you are creating with Xilinx technology for your
application needs.

HDL
Hardware Description Language.

Hierarchical View
This is the default view for both the IP Catalog and System Assembly
panel, grouped by IP instance. The IP instance ordering is based on
classification (from top to bottom: processor, bus, bus bridge,
peripheral, and general IP). IP instances of the same classification are
ordered alphabetically by instance name. When grouped by IP, it is
easier to identify all data relevant to an IP instance. This is especially
useful when you add IP instances to your hardware platform.

I

IBA
Integrated Bus Analyzer.

IDE
Integrated Design Environment.

ILA
Integrated Logic Analyzer.

ILMB
Instruction-side Local Memory Bus. See also: LMB.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 105
UG683 EDK 12.3

IOPB
Instruction-side On-chip Peripheral Bus. See also: OPB.

IPIC
Intellectual Property Interconnect.

IPIF
Intellectual Property Interface.

ISA
Instruction Set Architecture. The ISA describes how aspects of the
processor (including the instruction set, registers, interrupts,
exceptions, and addresses) are visible to the programmer.

ISC
Interrupt Source Controller.

ISE
Xilinx ISE Project Navigator project file.

ISOCM
Instruction-side On-Chip Memory.

ISPLB
Instruction-side Peripheral Logical Bus. See also: DSPLB.

ISS
Instruction Set Simulator.

J

JTAG
Joint Test Action Group.

http://www.xilinx.com

106 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Appendix C: Glossary

L

Libgen
Library Generator sub-component of the Xilinx Platform Studio
technology.

LibXil Standard C Libraries
EDK libraries and device drivers provide standard C library functions,
as well as functions to access peripherals. Libgen automatically
configures the EDK libraries for every project based on the MSS file.

LMB
Local Memory Bus. A low latency synchronous bus primarily used to
access on-chip block RAM. The MicroBlaze processor contains an
instruction LMB bus and a data LMB bus.

M

MDD File
Microprocessor Driver Description file.

MDM
Microprocessor Debug Module.

MFS File
LibXil Memory File System. The MFS provides user capability to
manage program memory in the form of file handles.

MHS file
Microprocessor Hardware Specification file. The MHS file defines the
configuration of the embedded processor system including
buses,peripherals, processors, connectivity, and address space.

MLD file
Microprocessor Library Definition file.

MVS file
Microprocessor Verification Specification file.

MOST®

Media Oriented Systems Transport. A developing standard in
automotive network devices.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 107
UG683 EDK 12.3

MPD file
Microprocessor Peripheral Definition file. The MPD file contains all of
the available ports and hardware parameters for a peripheral.

MSS file
Microprocessor Software Specification file.

N

NCF file
Netlist Constraints file.

NGC file
The NGC file is a netlist file that contains both logical design data and
constraints. This file replaces both EDIF and NCF files.

NGD file
Native Generic Database file. The NGD file is a netlist file that
represents the entire design.

NGO File
A Xilinx-specific format binary file containing a logical description of
the design in terms of its original components and hierarchy.

NPI
Native Port Interface.

NPL File
Xilinx® Integrated Software Environment (ISE®) Project Navigator
project file.

O

OCM
On Chip Memory.

OPB
On-chip Peripheral Bus.

http://www.xilinx.com

108 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Appendix C: Glossary

P

PACE
Pinout and Area Constraints Editor.

PAO file
Peripheral Analyze Order file. The PAO file defines the ordered list of
HDL files needed for synthesis and simulation.

PBD file
Processor Block Diagram file.

Platgen
Hardware Platform Generator sub-component of the Platform Studio
technology.

PLB
Processor Local Bus.

PROM
Programmable ROM.

PSF
Platform Specification Format. The specification for the set of data
files that drive the EDK tools.

S

SDF file
Standard Data Format file. A data format that uses fields of fixed
length to transfer data between multiple programs.

SDK
Software Development Kit.

SDMA
Soft Direct Memory Access

Simgen
The Simulation Generator sub-component of the Platform Studio
technology.

http://www.xilinx.com

EDK Concepts, Tools, and Techniques www.xilinx.com 109
UG683 EDK 12.3

Software Platform
A software platform is a collection of software drivers and, optionally,
the operating system on which to build your application. Because of
the fluid nature of the hardware platform and the rich Xilinx and
Xilinx third-party partner support, you may create several software
platforms for each of your hardware platforms.

SPI
Serial Peripheral Interface.

Standalone BSP
Standalone Board Support Package. A set of software modules that
access processor-specific functions. The Standalone BSP is designed
for use when an application accesses board or processor features
directly (without an intervening OS layer).

SVF File
Serial Vector Format file.

U

UART
Universal Asynchronous Receiver-Transmitter.

UCF
User Constraints File.

V

VHDL
VHSIC Hardware Description Language.

X

XBD File
Xilinx Board Definition file.

XCL
Xilinx CacheLink. A high performance external memory cache
interface available on the MicroBlaze processor.

http://www.xilinx.com

110 www.xilinx.com EDK Concepts, Tools, and Techniques
UG683 EDK 12.3

Appendix C: Glossary

Xilkernel
The Xilinx Embedded Kernel, shipped with EDK. A small, extremely
modular and configurable RTOS for the Xilinx embedded software
platform.

XMD
Xilinx Microprocessor Debugger.

XMP File
Xilinx Microprocessor Project file. This is the top-level project file for
an EDK design.

XPS
Xilinx Platform Studio. The GUI environment in which you can
develop your embedded design.

XST
Xilinx Synthesis Technology.

Z

ZBT
Zero Bus Turnaround™.

http://www.xilinx.com

	EDK Concepts, Tools, and Techniques
	Chapter 1: Introduction
	About This Guide
	Take a Test Drive!
	Additional Documentation
	Attachments to this Guide

	How EDK Simplifies Embedded Processor Design
	The Integrated Design Suite, Embedded Edition
	The Embedded Development Kit (EDK)
	Xilinx Platform Studio (XPS)
	Software Development Kit (SDK)
	Other EDK Components

	How the EDK Tools Expedite the Design Process
	What You Need to Set Up Before Starting
	Installation Requirements: What You Need to Run EDK Tools
	ISE and EDK
	Bash Shell for Linux
	Software Licensing
	Simulation Installation Requirements

	Hardware Requirements for this Guide

	Chapter 2: Creating a New Project
	The Base System Builder
	Why Use the BSB?
	What You Can Do in the BSB Wizard
	Selecting a Board Type
	Supported Boards
	Custom Boards

	Selecting and Configuring a Processor
	Selecting and Configuring Multiple I/O Interfaces
	Adding Internal Peripherals
	Setting Up Software
	Viewing a System Summary Page

	The BSB Wizard and the ISE Design Suite
	Take a Test Drive! Creating a New Embedded Project

	A Note on the BSB and Custom Boards
	What’s Next?

	Chapter 3: Using Xilinx Platform Studio
	What is XPS?
	The XPS Software
	Project Information Area
	Project Tab
	Applications Tab
	IP Catalog Tab
	Take a Test Drive! Reviewing the Project Information Area

	System Assembly View
	Bus Interface, Ports, and Addresses Tabs
	Connectivity Panel
	Filters Pane
	View Buttons
	Take a Test Drive! Exploring the System Assembly View

	Console Window
	Start Up Page

	XPS Tools
	Take a Test Drive! Reviewing the XPS Structure
	XPS Directory Structure
	Directory View
	Take a Test Drive! Exploring the Directory Structure

	What’s Next?

	Chapter 4: Working with Your Embedded Platform
	What’s in a Hardware Platform?
	Hardware Platform Development in Xilinx Platform Studio
	Take a Test Drive! Examining the MHS File

	The Hardware Platform in System Assembly View
	Converting the Hardware Platform to a Bitstream
	Generating the Netlist

	Exporting Your Hardware Platform
	Take a Test Drive! Exporting Your Hardware Platform to SDK
	What Just Happened?
	Take a Test Drive! Generating the Bitstream

	What’s Next?

	Chapter 5: Introducing the Software Development Kit
	About SDK
	Take a Test Drive! Creating a Hardware Platform
	Take a Test Drive! Creating a Board Support Package
	What Just Happened?
	Take a Test Drive! Setting Up the Software Environment
	Take a Test Drive! Debugging in SDK
	What Just Happened?

	What’s Next?

	Chapter 6: More on the Software Development Kit: Edit, Debug, and Release
	SDK Drivers and Windows
	More on Drivers
	SDK Windows

	Take a Test Drive! Editing Software
	Setting Up Your Workspace
	Creating New Xilinx C Projects
	Running Your Applications

	Take a Test Drive! Working with Multiple Source Files and Projects
	Working with the Debugger
	Take a Test Drive! Working with the Debugger
	What’s Next?

	Chapter 7: Creating Your Own Intellectual Property
	Using the CIP Wizard
	Overview of IP Creation
	Using the CIP Wizard for Creating Custom IP
	What You Need to Know Before Running the CIP Wizard
	Supported Peripherals in the CIP Wizard
	Documentation
	Take a Test Drive! Generating and Saving Templates
	What Just Happened?

	Example Design Description
	Take a Test Drive! Modifying the CIP Wizard Template Files
	Reviewing the File Contents
	Adding Your Custom IP to Your Processor System
	Take a Test Drive! Using the CIP Wizard to Re-Import the Modified File into Your XPS Project
	Adding the pwm_lights Pcore to Your Project
	Exporting the Design and Generating a New Bitstream
	What Just Happened?

	What’s Next?

	Chapter 8: Dual Processor Design and Debug
	Using the BSB to Create a Dual-Processor Design
	Take a Test Drive! Creating an Embedded System with Two MicroBlaze Embedded Processors
	Take a Test Drive! Using SDK to Develop Software for a Dual-Processor System
	Take a Test Drive! Modifying the Software Platform Settings
	Take a Test Drive! Debugging Multiple Processors in a Single SDK Debug Perspective

	Appendix A: Intellectual Property Bus Functional Model Simulation
	What are BFMs and Why Should I Use Them?
	Take a Test Drive! Running the BFM
	What Just Happened?
	Take a Test Drive! Writing a Script to Perform Bus Transactions
	What Just Happened?

	Appendix B: Creating an AXI-Based Design in EDK
	Introduction
	Additional Resources

	Creating an AXI Project
	Hardware and Software Requirements
	Creating a New AXI Project
	Using Xilinx Platform Studio
	Working with Your Embedded Platform
	Working with your AXI Design in SDK
	Using the Create and Import Peripheral Wizard with an AXI Design

	Migrating to Xilinx AXI Protocols
	AXI to PLBv46 Bridge
	PLBv46 to AXI Bridge
	BFM

	Appendix C: Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

