

Universidad Carlos III de Madrid www.uc3m.es

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

Máster en Mecánica Estructural Avanzada

Mecánica de Materiales Compuestos

Tema 3. Determinación de las propiedades de una lámina

Curso 2010/2011

Autores: Enrique Barbero Pozuelo, Shirley K. García Castillo, Sonia Sánchez Sáez

Tema 3.1. : Modelización del comportamiento de una lámina

ÍNDICE

- Introducción
- Conceptos básicos
- Comportamiento en dirección longitudinal a las fibras
- Comportamiento en dirección transversal a las fibras
- Comportamiento a cortadura

Tipos de materiales compuestos

Fibras largas unidireccionales

Fibras largas con orientación aleatoria

Fibras largas unidireccionales

Fibras largas con orientación aleatoria

Propiedades mecánicas de un material compuesto

Medida de las propiedades de una lámina

Aproximaciones:

a) Modelos teóricos

b) Determinación experimental

Objetivo de los modelos teóricos

Material heterogéneo

Material homogéneo anisótropo

Estudiar el comportamiento de la lámina considerando las interacciones de los materiales constituyentes

Objetivo de los modelos teóricos

Contenido volumétrico de refuerzo

Contenido volumétrico de refuerzo

Relación V_f y M_f

 $V_{f} = \frac{M_{f}}{M_{f}} + \frac{M_{m}}{\rho_{f}}$

 $M_f = \frac{V_f \cdot \rho_f}{V_f \cdot \rho_f + V_m \cdot \rho_m}$

Volúmenes de fibra típicos

PROCESO DE FABRICACIÓN	V _f (%)	
Por contacto	30	
Por presión	40	
Por enrollamiento continuo (filament winding)	60-85	
Por bolsa de vacío	50-80	

Densidad del compuesto

Nivel de porosidad

$$\rho_{teo} = \rho_f \cdot V_f + \rho_m \cdot V_m$$

$$V_{poros} \% = \frac{\rho_{teo} - \rho_{exp}}{\rho_{teo}} \times 100$$

Afecta a las propiedades mecánicas

Rigidez y resistencia a cortadura Resistencias a compresión Resistencia a tracción transversal Resistencia a la fatiga Resistencia a la humedad

Relación V_f - geometría

V_f máximo: 91% aprox.

 $V_f = \frac{\pi}{4} \left(\frac{r}{R}\right)^2$ (cuadrado)

V_f máximo: 78% aprox.

Hipótesis

Material fibras

- Homogéneo
- Elástico lineal
- Isótropo

Configuración

- Fibras regularmente espaciadas
- Fibras perfectamente alineadas

Propiedades de las fibras

	FIBRAS			
	Vidrio	Kevlar	Carbono H.R	. Carbono H.M
E _{fl} (GPa)	85	124	230	390
E _{ft} (GPa)	85	8	15	6
G _f (GPa)	22	12	50	20
^v ft1	0,25	0,37	0,30	0,35
	Fibras isótropas	L	Fibras anisótropas	J }

Hipótesis

Material Matriz

- Homogéneo
- Elástico lineal
- Isótropo

Propiedades de las matrices

	MATRICES			
	Epoxi	Poliamida	Aluminio	
E _{lm} (GPa)	3,4	3,5	70	
E _{tm} (GPa)	3,4	3,5	70	
G _m (GPa)	1,3	1,3	26,9	
٧m	0,3	0,35	0,3	

Conceptos básicos

Hipótesis

Material lámina

- Macroscópicamente homogéneo
- Elástico lineal
- Macroscópicamente ortótropo

Configuración

- Ausencia de tensiones iniciales
- Unión fibra-matriz perfecta
- Ausencia de porosidad

Hipótesis

Celdilla unidad

Predicción del módulo de elasticidad E₁

E₁ cambia significativamente con el porcentaje de fibra

Predicción de la resistencia mecánica a tracción Xt

a) La fibra posee una deformación de rotura inferior a la de la matriz

Predicción de la resistencia mecánica a tracción Xt

a) La fibra posee una deformación de rotura inferior a la de la matriz

Predicción de la resistencia mecánica a tracción Xt

a) La fibra posee una deformación de rotura inferior a la de la matriz

Enrique Barbero Pozuelo, Shirley K. García Castillo, Sonia Sánchez Sáez

Predicción de la resistencia mecánica a tracción Xt

b) La fibra posee una deformación de rotura superior a la de la matriz

Predicción de la resistencia mecánica a tracción Xt

b) La fibra posee una deformación de rotura superior a la de la matriz

Predicción de la resistencia mecánica a tracción Xt

b) La fibra posee una deformación de rotura superior a la de la matriz

Predicción de la resistencia mecánica a tracción Xt

Todos los resultados anteriores no tienen en consideración la distribución estadística de las resistencias a la tracción de fibra y matriz

Predicción de la resistencia mecánica a compresión Xc

Modos de fallo en compresión en dirección de las fibras

Universidad Carlos III de Madrid

Comportamiento en dirección longitudinal a las fibras

Predicción de la resistencia mecánica a compresión Xc

Micropandeo de las fibras

Cuando el volumen específico de fibras es bajo, predomina el Modo extensional

$$X_{c} = 2 \cdot V_{f} \cdot \sqrt{\frac{E_{m} \cdot E_{f} \cdot V_{f}}{3 \cdot (1 - V_{f})}}$$

Para valores más altos de Vf, el modo de rotura de corte es el predominante. (Rosen, 1965)

$$X_c = \frac{G_m}{1 - V_f}$$

Predicción de la resistencia mecánica a compresión Xc

Rotura transversal por efecto Poisson

El fallo se produce cuando la deformación transversal a tracción, producida por efecto Poisson, alcanza un valor crítico (Deformación a rotura transversal)

$$X_{c} = \frac{\left(E_{f} \cdot V_{f} + E_{m} \cdot V_{m}\right) \cdot \left(1 - V_{f}^{1/3}\right)}{v_{f} \cdot V_{f} + v_{m} \cdot V_{m}} \cdot \varepsilon_{m}^{R}$$

Predicción de la resistencia mecánica a compresión Xc

Rotura por cortadura de las fibras

Aparece con cierta frecuencia en láminas con un alto contenido de fibras, está gobernado por el fallo a cortante de las propias fibras

$$X_{c} = 2 \cdot S_{f} \cdot \left[V_{f} + (1 - V_{f}) \cdot \frac{E_{m}}{E_{f}} \right]$$

$$\varepsilon_{2} = \frac{\Delta w}{w} \qquad \varepsilon_{2_{f}} = \frac{\Delta w_{f}}{w_{f}} \qquad \varepsilon_{2_{m}} = \frac{\Delta w_{m}}{w_{m}}$$
$$\varepsilon_{2} \cdot W = \varepsilon_{2_{f}} \cdot W_{f} + \varepsilon_{2_{m}} \cdot W_{m}$$
$$\varepsilon_{2} = \varepsilon_{2_{f}} \cdot \frac{W_{f}}{W} + \varepsilon_{2_{m}} \cdot \frac{W_{m}}{W}$$
$$\varepsilon_{2} = \varepsilon_{2_{f}} \cdot V_{f} + \varepsilon_{2_{m}} \cdot V_{m}$$

$$\varepsilon_{2} = \frac{\sigma_{2}}{E_{2}} \qquad \varepsilon_{2_{f}} = \frac{\sigma_{2}}{E_{2_{f}}} \qquad \varepsilon_{2_{m}} = \frac{\sigma_{2}}{E_{2_{m}}}$$
$$\sigma_{2} = E_{2} \cdot \varepsilon_{2} = E_{2} \cdot \left(\frac{\sigma_{2}}{E_{f}} \cdot V_{f} + \frac{\sigma_{2}}{E_{m}} \cdot V_{m}\right)$$

$$E_2 = E_m \left(\frac{1}{\left(1 - V_f\right) + \frac{E_m}{E_f} V_f} \right)$$

Predicción del módulo de elasticidad E₂

E₂ sólo cambia significativamente para contenidos altos de fibra Puede que no sean físicamente posible

Predicción del módulo de elasticidad E₂

Efecto de la concentración de Poisson

$$E_{2} = \frac{E_{m}^{'} \cdot E_{f}}{E_{f} \cdot (1 - V_{f}) + V_{f} \cdot E_{m}^{'}}$$
$$E_{m}^{'} = \frac{E_{m}}{1 - V_{m}^{2}}$$

$$E_2 = E_m \cdot \frac{1 + \xi_1 \cdot \eta_1 \cdot V_f}{1 - \eta_1 \cdot V_f}$$
$$\eta_1 = \frac{E_f - E_m}{E_f + \xi_1 \cdot E_m}$$

 ξ_1 = Eficiencia del refuerzo

Material boro/epoxi $E_f = 414 \text{ GPa}$ $v_f = 0.2$ $E_m = 4.14 \text{ GPa}$ $v_m = 0.35$

Z. Hashin, 1970 NASA Technical Report NAS1-8818

Predicción del coeficiente de Poisson v21

Predicción de la resistencia mecánica a tracción Yt

Este modo de solicitación puede ser el más crítico por la baja resistencia a tracción de la resina. Es el primero que aparece

Cuando actúan cargas en el sentido transversal de la lámina, aparece el fenómeno de concentración de tensiones en zonas de la matriz próximas a las fibras (interfase fibra/matriz).

La resistencia mecánica a tracción en dirección transversal es menor que la de la matriz

Predicción de la resistencia mecánica a tracción Yt

Está gobernada por muchos factores:

- Propiedades de las fibras y de la matriz
- La resistencia de la entrecara fibramatriz
- La presencia y distribución de huecos
- Distribución interna de tensiones y deformaciones

Predicción de la resistencia mecánica a tracción Yt

Si la unión de la entrecara es débil: (Para una distribución cuadrada de fibras)

Si la unión de la entrecara es fuerte: (Kies, 1962)

$$Y_{t} = \frac{E_{2} \cdot \sigma_{m}^{R}}{E_{m} \cdot F} \qquad F = \frac{1}{\left(\frac{2 \cdot r}{R} \cdot \left(\frac{E_{m}}{E_{f_{2}}} - 1\right) + 1\right)}$$

Predicción de la resistencia mecánica a tracción Yt

V_f máximo: 91% aprox.

 $V_f = \frac{\pi}{4} \left(\frac{r}{R}\right)^2$ (cuadrado)

V_f máximo: 78% aprox.

Predicción de la resistencia mecánica a compresión Yc

Existen varios mecanismos:

- Fallo por cortadura de la matriz
- Fallo por cortadura de la matriz con despegue fibramatriz
- Fallo por aplastamiento de las fibras

La rotura se produce por cortadura en un plano paralelo a las fibras en una dirección perpendicular a ellas. El plano forma un ángulo de 45º respecto a la dirección de carga.

$$Y_{c} = E_{2} \cdot \left[\frac{2 \cdot r}{R} \cdot \frac{E_{m}}{E_{f}} + \left(1 - \frac{2 \cdot r}{R} \right) \right] \cdot \epsilon_{m}^{R}$$

La resistencia mecánica en compresión es menor que en tracción

Comportamiento a cortadura

Enrique Barbero Pozuelo, Shirley K. García Castillo, Sonia Sánchez Sáez

Predicción del Módulo a cortadura G₁₂

Ecuación de Halpin-Tsai

Predicción de la resistencia a cortadura plana S₁₂

En estas condiciones aparece una gran concentración de tensiones a lo largo de la interfase fibra/matriz. Estas tensiones pueden causar el fallo por cortadura de la matriz y/o el despegue fibra-matriz.

