

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

Master en Mecánica Estructural Avanzada

Mecánica de Materiales Compuestos

Tema 2. Análisis de la lámina

Curso 2010/2011

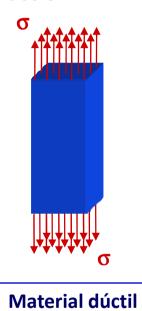
Tema 2.3 Rotura de la lámina

- Introducción
- Concepto de criterio de rotura
- Criterios de rotura
- Criterios de rotura desacoplada
- Criterios de rotura con interacción
- Criterios de rotura múltiple
- Comparación entre criterios

Introducción

Concepto de criterio de rotura para materiales isótropos

En un estado de tracción





Criterio de Plastificación

$$\sigma - \sigma_e = 0$$

Punto A: Comportamiento elástico

Punto B: Comportamiento plástico

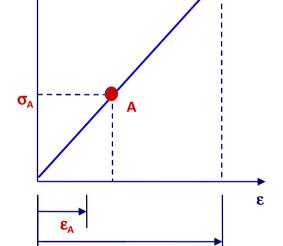
 $\sigma_A < \sigma_e$

 $\sigma_B > \sigma_e$

Introducción

Concepto de criterio de rotura para materiales isótropos

En un estado de tracción



Criterio de rotura

Material frágil

$$\sigma - \sigma_R = 0$$

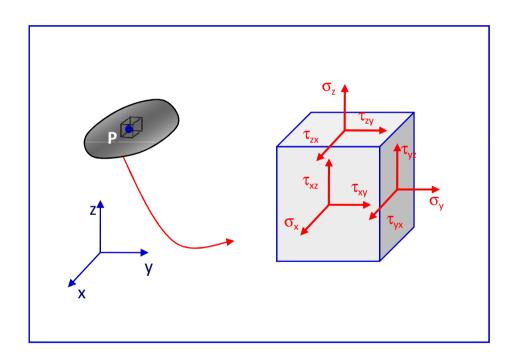
Punto A: Material intacto

Punto B: Rotura

Introducción

Concepto de criterio de rotura para materiales isótropos

En un estado de tensiones genérico

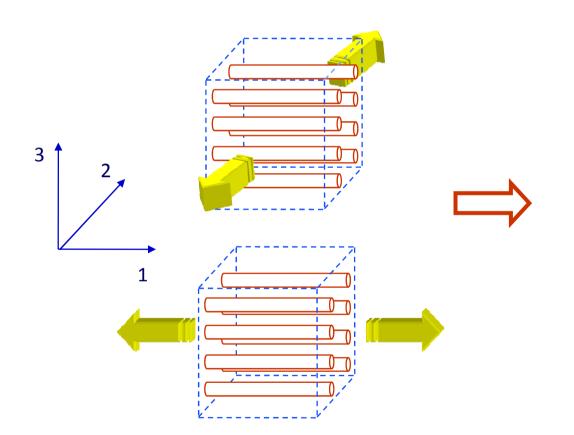


Criterio de Rotura

Para materiales isótropos no existen direcciones privilegiadas:

Concepto de criterio de rotura

Características distintivas de los materiales compuestos



Propiedades elásticas

$$V_{12}, V_{13}, V_{23}$$

Propiedades resistentes

$$X_t$$
, Y_t , Z_t

$$X_c, Y_c, Z_c$$

$$S_{12}, S_{13}, S_{23}$$

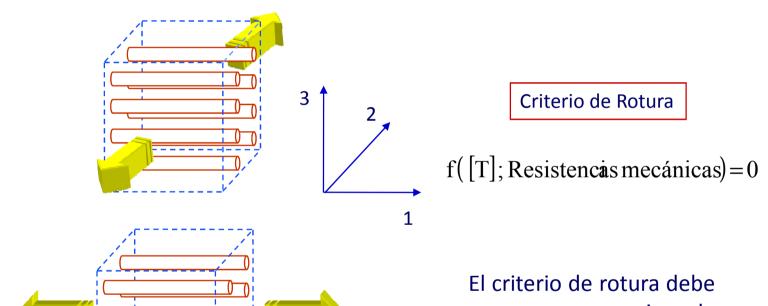
Concepto de criterio de rotura

Propiedades mecánicas de los materiales compuestos

	<u>VIDRIO</u>	ARAMIDA	CARBONO
Densidad (kg/m ³)	2080	1350	1530
X, (MPa)	1250	1410	1270
X _e (MPa)	600	280	1130
Y, (MPa)	35	28	42
Y _e (MPa)	141	141	141
E ₁ (GPa)	45	85	134
E ₁ (GPa)	12	56	7
α ₁ (°C′)⁻	0.4÷0.7x10 ⁻⁵	-0.4x10 ⁻⁵	-0.12x10 ⁻⁵
α ₂ (°C) ⁻¹	1.6÷2.0x10 ⁻⁵	5.8x10 ⁻⁵	3.4x10 ⁻⁵

Concepto de criterio de rotura

Concepto de criterio de rotura para materiales anisótropos



expresarse en ejes de ortotropía

$$f(\sigma_{1}, \sigma_{2}, \sigma_{3}, \tau_{12}, \tau_{23}, \tau_{13}, X_{t}, Y_{t}, Z_{t}, S_{xy}, S_{xz}, S_{yz}, X_{c}, Y_{c}, Z_{c}) = 0$$

Criterios de rotura

Clasificación de los criterios de rotura

Criterios de rotura desacoplada

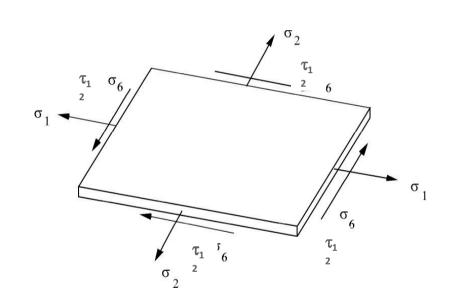
Tensión máxima Máxima deformación

Criterios de rotura con interacción

Tsai Hill Hoftmann Tsai Wu

Criterios de rotura múltiple

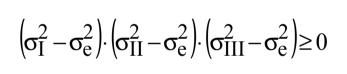
Hann, Erikson & Tsai Hashin



Criterio de tensión máxima

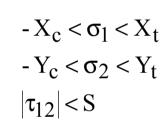
Criterio de rotura de Rankine, Lamé, Clapeyron (1858)

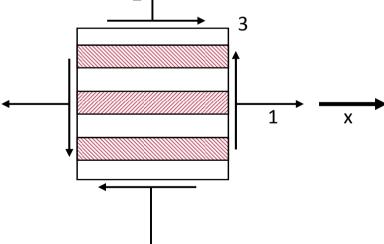
Materiales isótropos



Jenkins (1920)

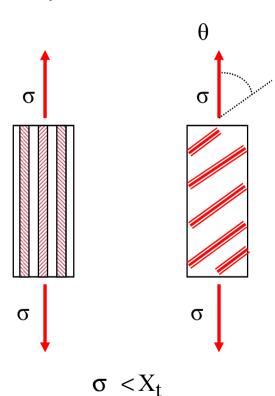
Materiales anisótropos





Criterio de tensión máxima

Aplicación a estados de carga no aplicados en ejes de ortotropía



$$\sigma_1 = \sigma \cdot \cos^2 \theta$$

$$\sigma < \frac{X_t}{\cos^2 \theta}$$

$$\sigma_2 = \sigma \cdot \sin^2 \theta$$

$$\sigma < \frac{Y_t}{\sin^2 \theta}$$

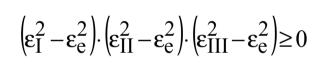
$$\tau_{12} = -\sigma \cdot \mathrm{sen}\theta \cdot \cos\theta$$

$$\sigma < \frac{S}{\operatorname{sen}\theta \cdot \cos\theta}$$

Criterio de máxima deformación

Criterio de rotura de Saint Venant (1837)

Materiales isótropos

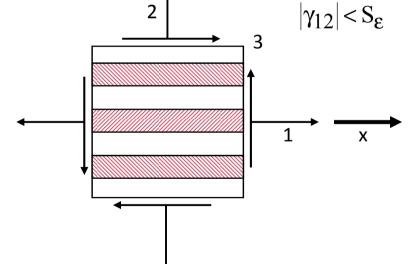


Waddoups (1967)

Materiales anisótropos

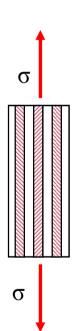
$$-X_{\varepsilon_{c}} < \varepsilon_{1} < X_{\varepsilon_{t}}$$

$$-Y_{\varepsilon_{c}} < \varepsilon_{2} < Y_{\varepsilon_{t}}$$



Criterio de máxima deformación

Aplicación a estados de carga no aplicados en ejes de ortotropía



$$\sigma_{1} = \sigma \cdot \cos^{2} \theta$$

$$\sigma_{2} = \sigma \cdot \sin^{2} \theta$$

$$\tau_{12} = -\sigma \cdot \sin \theta \cdot \cos \theta$$

$$\epsilon_{1} = \frac{1}{E_{1}} (\sigma_{1} - \nu_{12} \cdot \sigma_{2}) = \frac{1}{E_{1}} (\cos^{2}\theta - \nu_{12} \sin^{2}\theta) \cdot \sigma$$

$$\epsilon_{2} = \frac{1}{E_{2}} (\sigma_{2} - \nu_{21} \cdot \sigma_{1}) = \frac{1}{E_{2}} (\sin^{2}\theta - \nu_{21} \cos^{2}\theta) \cdot \sigma$$

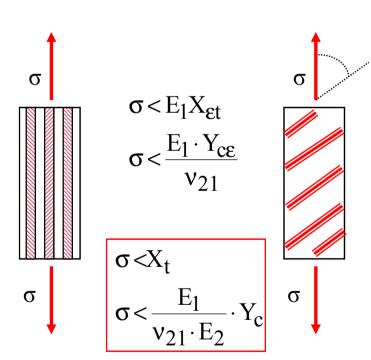
$$\gamma_{12} = \frac{\tau_{12}}{G_{12}} = -\frac{1}{G_{12}} (\sin\theta \cdot \cos\theta) \cdot \sigma$$

 $\varepsilon_1 = \frac{\sigma}{E_1}$

 $\gamma_{12} = 0$

Criterio de máxima deformación

Aplicación a estados de carga no aplicados en ejes de ortotropía



$$X_{\varepsilon t} = \frac{X_t}{E_1} \qquad Y_{\varepsilon t} = \frac{Y_t}{E_2} \qquad S_{\varepsilon} = \frac{S}{G_{12}}$$

$$X_{\varepsilon c} = \frac{X_c}{E_1} \qquad Y_{\varepsilon c} = \frac{Y_c}{E_2}$$

$$\sigma < \frac{X_t}{\cos^2 \theta - v_{12} \sin^2 \theta} \quad \sigma < \frac{X_c}{-\cos^2 \theta + v_{12} \sin^2 \theta} \quad \sigma < \frac{X_c}{-\cos^2 \theta + v_{12} \sin^2 \theta} \quad \sigma < \frac{Y_t}{\sin^2 \theta - v_{21} \cos^2 \theta} \quad \sigma < \frac{Y_c}{-\sin^2 \theta + v_{21} \cos^2 \theta} \quad \sigma < \frac{S}{\cos \theta \sin \theta}$$

Criterio de máxima deformación

Comparación entre el criterio de tensión máxima y el de máxima deformación

σ

Tensión Máxima

$$\sigma < X_t$$

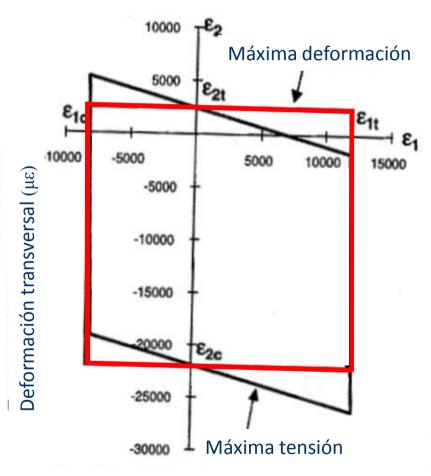
Máxima Deformación

$$\sigma < E_1 X_{\epsilon t}$$

$$\sigma < \frac{E_1 \cdot Y_{t \epsilon}}{\sigma}$$

$$\sigma < X_t$$

$$\begin{aligned} \sigma < & E_1 X_{\epsilon t} & \sigma < & X_t \\ \sigma < & \frac{E_1 \cdot Y_{t\epsilon}}{\nu_{21}} & \sigma < & \frac{E_1}{E_2 \cdot \nu_{21}} \cdot Y_t \end{aligned}$$



Deformación longitudinal (με)

Criterio de Tsai-Hill

Criterio de plastificación de Von Mises (21900)

Materiales isótropos

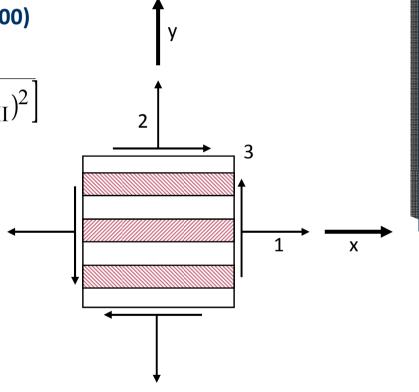
$$\sigma_e = \sqrt{\frac{1}{2} \cdot \left[(\sigma_I - \sigma_{II})^2 + (\sigma_{II} - \sigma_{III})^2 + (\sigma_I - \sigma_{III})^2 \right]}$$

Materiales anisótropos

$$\begin{split} &(G+H) \cdot \sigma_{1}^{2} + (F+H) \cdot \sigma_{2}^{2} + (F+G) \cdot \sigma_{3}^{2} \\ &- 2 \cdot H \cdot \sigma_{1} \cdot \sigma_{2} - 2 \cdot G \cdot \sigma_{1} \cdot \sigma_{3} - 2 \cdot F \cdot \sigma_{2} \cdot \sigma_{3} + \\ &+ 2 \cdot L \cdot \tau_{23}^{2} + 2 \cdot M \cdot \tau_{13}^{2} + 2 \cdot N \cdot \tau_{12}^{2} = 1 \end{split}$$

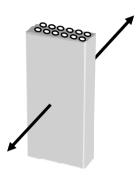
Criterio de rotura de Azzi y Tsai (1965)

Materiales anisótropos



Criterio de rotura de Tsai-Hill

Criterio de Tsai-Hill



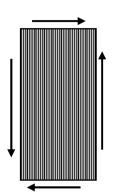
$$\sigma_3 = Z$$

$$(F+G)\sigma_3^2=1$$

$$\sigma_3 = Z$$

$$(F+G)\sigma_3^2 = 1$$

$$(F+G) = \frac{1}{Z^2}$$



$$\tau_{12} = S$$

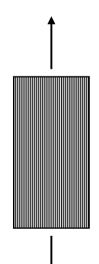
$$2 \cdot N \cdot \tau_{12}^2 = 1$$

$$2L = \frac{1}{S_{yz}^{2}}$$

$$2N = \frac{1}{S^{2}} \implies 2M = \frac{1}{S_{xz}^{2}}$$

$$2L = \frac{1}{S_{yz}^2}$$

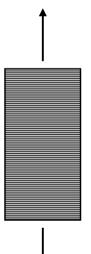
$$2M = \frac{1}{S_{xz}^2}$$



$$\sigma_1 = X$$

$$(G+H)\sigma_1^2=1$$

$$(G+H) = \frac{1}{X^2}$$



$$\sigma_2 = Y$$

$$(F+H)\sigma_2^2=1$$

$$(F+H) = \frac{1}{Y^2}$$

$$\sigma_2 = Y$$
 $2H = \frac{1}{X^2} + \frac{1}{Y^2} - \frac{1}{Z^2}$

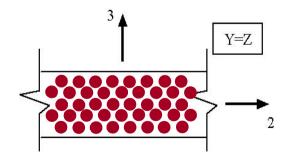
$$2G = \frac{1}{X^2} + \frac{1}{Z^2} - \frac{1}{Y^2}$$

$$2F = \frac{1}{Y^2} + \frac{1}{Z^2} - \frac{1}{X^2}$$

Criterio de Tsai-Hill

$$\begin{split} &\frac{1}{X^2}\sigma_1^2 + \frac{1}{Y^2}\sigma_2^2 + \frac{1}{Z^2}\sigma_3^2 - \left(\frac{1}{X^2} + \frac{1}{Y^2} - \frac{1}{Z^2}\right)\sigma_1\sigma_2 - \left(\frac{1}{X^2} + \frac{1}{Z^2} - \frac{1}{Y^2}\right)\sigma_1\sigma_3 - \\ &- \left(\frac{1}{Y^2} + \frac{1}{Z^2} - \frac{1}{X^2}\right)\sigma_2\sigma_3 + \frac{1}{S_{vz}^2}\tau_{23}^2 + \frac{1}{S_{xz}^2}\tau_{13}^2 + \frac{1}{S^2}\tau_{12}^2 = 1 \end{split}$$

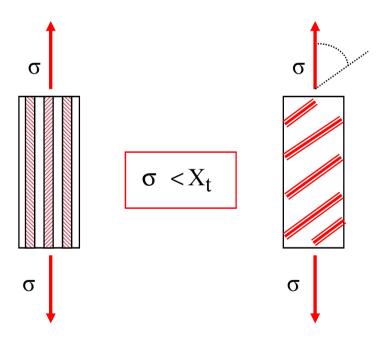
Para una lámina unidireccional trabajando en tensión plana



$$\frac{\sigma_1^2}{X^2} - \frac{\sigma_1 \cdot \sigma_2}{X^2} + \frac{\sigma_2^2}{Y^2} + \frac{\tau_{12}^2}{S^2} = 1$$

Criterio de Tsai-Hill

Aplicación a estados de carga no aplicados en ejes de ortotropía



$$\sigma_1 = \sigma \cdot \cos^2 \theta$$

$$\sigma_2 = \sigma \cdot \sin^2 \theta$$

$$\tau_{12} = -\sigma \cdot \cos\theta \cdot \sin\theta$$

$$\frac{\cos^4 \theta}{X^2} + \left(\frac{1}{S^2} - \frac{1}{X^2}\right) \cos^2 \theta \cdot \sin^2 \theta + \frac{\sin^4 \theta}{Y^2} = \frac{1}{\sigma^2}$$

Criterio de Tsai-Hill

Limitaciones del criterio de Tsai-Hill

- No considera que la Resistencia Mecánica a tracción pueda ser diferente que a compresión
- El criterio de Hill asume que bajo un estado hidrostático no se produce la plastificación

Criterio de Tsai-Hill modificado

$$\frac{\sigma_1^2}{X_1^2} - \left(\frac{\sigma_1}{X_1}\right) \cdot \left(\frac{\sigma_2}{X_2}\right) + \frac{\sigma_2^2}{Y^2} + \frac{\tau_{12}^2}{S^2} = 1$$

$$X_{1} = \begin{vmatrix} X_{t}, \sigma_{1} \ge 0 \\ X_{c}, \sigma_{1} \le 0 \end{vmatrix}$$

$$X_{2} = \begin{vmatrix} X_{t}, \sigma_{2} \ge 0 \\ X_{c}, \sigma_{2} \le 0 \end{vmatrix}$$

$$Y = \begin{vmatrix} Y_{t}, \sigma_{2} \ge 0 \\ Y_{c}, \sigma_{2} \le 0 \end{vmatrix}$$

Criterio de Hoffman

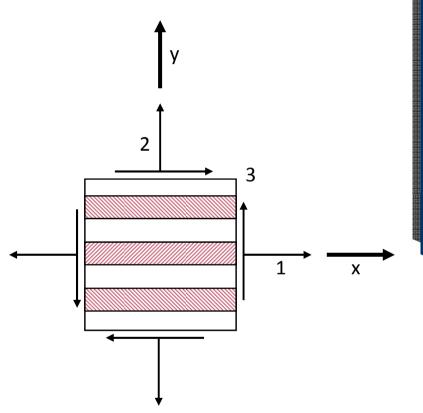
Hoffman (1967)

Para una lámina unidireccional trabajando en tensión plana

$$F_{1} \cdot \sigma_{1} + F_{2} \cdot \sigma_{2} + F_{11} \cdot \sigma_{1}^{2} + F_{22} \cdot \sigma_{2}^{2} + F_{66} \cdot \tau_{12}^{2} + 2 \cdot B_{12} \cdot \sigma_{1} \cdot \sigma_{2} = 1$$

$$F_{1} = \frac{1}{X_{t}} + \frac{1}{X_{c}} \qquad F_{2} = \frac{1}{Y_{t}} + \frac{1}{Y_{c}}$$

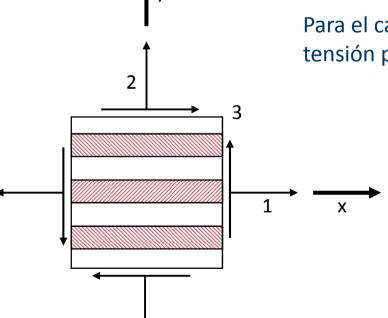
$$F_{11} = -\frac{1}{X_{t}X_{c}} \qquad F_{22} = -\frac{1}{Y_{t}Y_{c}} \qquad B_{12} = \frac{1}{2 \cdot X_{t} \cdot X_{c}}$$



Criterio de Tsai-Wu

Criterio de rotura polinómico (1971) $F_{i} \sigma_{i} + F_{ij} \cdot \sigma_{i} \sigma_{j} + F_{ijk} \cdot \sigma_{i} \sigma_{j} \sigma_{k} + ... = 1$ $F_{i} \sigma_{i} + F_{ij} \sigma_{i} \sigma_{j} = 1$

siendo Fi y Fij dos tensores de orden 2 y 4 respectivamente.



Para el caso de una lámina ortótropa trabajando en tensión plana:

$$F_{1} \cdot \sigma_{1} + F_{2} \cdot \sigma_{2} + F_{6} \cdot \tau_{12} + F_{11} \cdot \sigma_{1}^{2} + F_{12} \cdot \sigma_{2}^{2} + F_{66} \cdot \tau_{12}^{2} + F_{12} \cdot \sigma_{1} \cdot \sigma_{2} = 1$$

Criterio de Tsai-Wu

¿ Y F₁₂?

a) Mediante un ensayo biaxial

$$\sigma_{1} = \sigma_{1}^{R}$$

$$\sigma_{2} = \sigma_{2}^{R}$$

$$F_{1}\sigma_{1} + F_{2}\sigma_{2} + F_{1}\sigma_{1}^{2} + F_{2}\sigma_{2}^{2} + 2F_{1}\sigma_{1}\sigma_{2} = 1$$

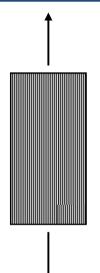
$$(F_{1} + F_{2})\sigma + (F_{1}\sigma_{1} + F_{2}\sigma_{2} + 2F_{1}\sigma_{2})\sigma^{2} = 1$$

$$F_{12} = \frac{1}{2\sigma^{2}} \left[1 - \left(\frac{1}{X_{t}} + \frac{1}{X_{c}} + \frac{1}{Y_{t}} + \frac{1}{Y_{t}} \right) \sigma + \left(\frac{1}{X_{t}X_{c}} + \frac{1}{Y_{t}Y_{c}} \right) \sigma^{2} \right]$$

$$F_{12} = f(X_{t} X_{c} Y_{t} Y_{c} \sigma_{rotura biaxial})$$

¡ No es una propiedad de la lámina!

Criterio de Tsai-Wu



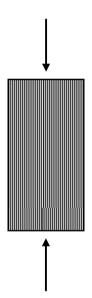
$$\sigma_1 = X$$

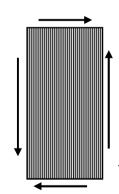
$$F_1\sigma_1 + F_{11}\sigma_1^2 = 1$$

$$F_1X + F_{11}X^2 = 1$$

$$F_{11} = -\frac{1}{X_t} + \frac{1}{X_c}$$

$$F_{11} = -\frac{1}{X_t X_c}$$





Análogamente:

$$F_2 = \frac{1}{Y_t} + \frac{1}{Y_c}$$

$$F_{22} = -\frac{1}{Y_t Y_c}$$

Análogamente:
$$\tau_{12} = S$$

$$F_{6} = 0$$

$$F_{10} + F_{11}\sigma_{1}^{2} = 1$$

$$F_{10} + F_{11}\sigma_{1}^$$

Criterios de rotura múltiple

Criterio de Tsai-Wu

b) Por equivalencia con el criterio de Von Mises

Aplicando el criterio de Tsai-Wu como criterio de plastificación de un material metálico isótropo en ejes principales:

$$F_1\sigma_1 + F_2\sigma_2 + F_{11}\sigma_1^2 + F_{22}\sigma_2^2 + 2F_{12}\sigma_1\sigma_2 = 1$$

$$X_t = X_c = \sigma_e$$

$$Y_t = Y_c = \sigma_e$$

$$F_{11} = F_{22} = \frac{1}{\sigma_e^2}$$

$$\left(\frac{\sigma_1}{\sigma_e}\right)^2 + \left(\frac{\sigma_2}{\sigma_e}\right)^2 + 2F_{12}\sigma_1\sigma_2 = 1$$

Criterio de Tsai-Wu

Por otro lado aplicando el criterio de Von Mises:

$$\left(\frac{\sigma_1}{\sigma_e}\right)^2 + \left(\frac{\sigma_2}{\sigma_e}\right)^2 - \frac{\sigma_1\sigma_2}{\sigma_e^2} = 1 \qquad 2 \cdot F_{12} = -\frac{1}{\sigma_e^2} \qquad 2 \cdot F_{12} = -\left(\frac{1}{\sigma_e}\right) \cdot \left(\frac{1}{\sigma_e}\right)$$

$$2 \cdot F_{12} = -\frac{1}{\sigma_e^2}$$

$$2 \cdot F_{12} = -\left(\frac{1}{\sigma_e}\right) \cdot \left(\frac{1}{\sigma_e}\right)$$

Generalizando a un material anisótropo:

$$2 \cdot F_{12} = -\sqrt{F_{11} \cdot F_{22}}$$

$$F_{12} = F_{12}^* \cdot \sqrt{F_{11} \cdot F_{22}} -0.5 < F_{12}^* < 0$$

Criterios de rotura múltiple

Criterio de Hahn, Erikson y Tsai

Rotura de las fibras

$$(F_{11} \cdot \sigma_1^2) + (F_1 \cdot \sigma_1) = 1$$

Rotura de la matriz

$$F_{22} \cdot \sigma_2^2 + F_{66} \cdot \tau_{12}^2 + F_{44} \cdot \tau_{13}^2 + F_{55} \cdot \tau_{23}^2 + F_2 \cdot \sigma_2 = 1$$

Criterio de Hashin

Rotura de las fibras

$$F_{11} \cdot \sigma_1^2 + F_{66} \cdot \tau_{12}^2 + F_1 \cdot \sigma_1 = 1$$

Rotura de la matriz

$$F_{22} \cdot \sigma_2^2 + F_{66} \cdot \sigma_{12}^2 + F_{44} \cdot \tau_{13}^2 + F_{55} \cdot \tau_{23}^2 + F_2 \cdot \sigma_2 = 1$$

