

DISEÑO MECÁNICO

CÁLCULO DE LA INCERTIDUMBRE EN LA CALIBRACIÓN DE UN DECELERÓMETRO DECELERÓMETRO Enunciado

ENUNCIADO:

Se desea calibrar un decelerómetro para la comprobación rápida de los sistemas de frenado en los vehículos.

- > Equipo a calibrar: DECELERÓMETRO
- > Resolución del equipo: 1 %
- > Patrón utilizado: INCLINÓMETRO
- > Incertidumbre patrón: $1^{\circ}(k=2)$
- Operaciones previas:

✓ Cálculo de valor nominal: valor eficacia \rightarrow $E = 100 \cdot tg \theta$

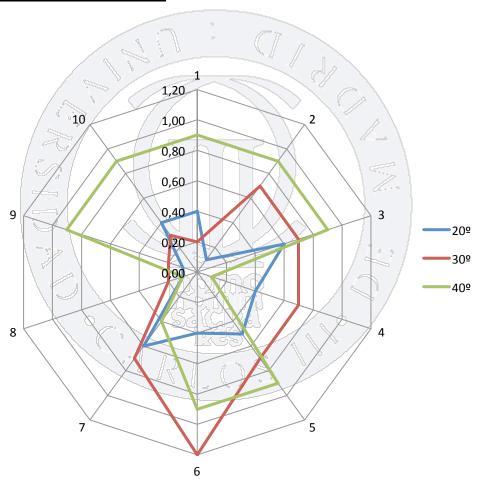

DECELERÓMETRO Datos

TABLA DE DATOS OBTENIDOS DE LAS MEDIDAS:

Puntos co	llibración	Punto 1	Punto 2	Punto 3	Punto 4
Ángulo incl	inación θ	0°	20°	30°	40°
Nominal:	E _{oi} (%)	0	36'4	57'7	83'9
	$E_{1,j}$	0'0	36'0	57′5	83'0
	E _{2,i}	0'0	36′5	57'0	83'0
	$E_{3,i}$	0'0	37′0	57'0	83'0
	$E_{4,i}$	0'0	36'0	57'0	84'0
Lecturas	$E_{5,i}$	0'0	36′5	57'0	83'0
Lecturas	E _{6,i}	0'0	36'0	56'5	83'0
	E _{7,i}	0'0	37′0	57'0	83'5
	E _{8,i}	0'0	36′5	57′5	84'0
	E_{9j}	0'0	36′5	57′5	83'0
	E_{10j}	0'0	36'0	58'0	83'0

DECELERÓMETRO Datos

DIFERENCIA CON EL PATRÓN:

DECELERÓMETRO Formulario

ECUACIONES A UTILIZAR:

Eficacia de frenado (%) $E = 100 \cdot tg \theta$

$$E = 100 \cdot tg \theta$$

Resolución del instrumento a calibrar

$$u(\delta_{escala}) = \frac{resolucion}{2\sqrt{3}}$$

Contribución a la incertidumbre debida a la repetibilidad de las medidas

$$u(\overline{E}_i) = \frac{1}{\sqrt{n}} \sqrt{n} \sum_{j=1}^{n} \left(E_{ij} - \overline{E}_i\right)^2$$

Contribución a la incertidumbre asociada al patrón

$$u(E_{i0}) = \left(\frac{100}{\cos^2(\theta)}\right) \cdot u(\theta)$$

DECELERÓMETRO Formulario

Certificado de calibración

$$u(\theta) = \frac{incertidumbre\ patr\'on}{k}$$

Incertidumbre combinada

$$u(C_i) = \sqrt{u(E_{i0})^2 + u(\overline{E}_i)^2 + u(\delta_{escala})^2}$$

Incertidumbre expandida

$$U(C_i) = k \cdot u(C_i) \implies k = 2(95\%)$$

Incertidumbre de calibración - criterio totalizador

$$U = \max_{i} \left(U_{i} \right)$$

Obtención de la función modelo
$$C_i = E_{i0} - \overline{E}_i + contribuciones$$

contribuciones = 0

$$\overline{E}_i = \sum_{j=1}^n E_{ij} / n$$

$$n = 10$$

Puntos ca	libración	Punto 1	Punto 2	Punto 3	Punto 4
	E _{1,i}	0′0	36'0	57′5	83'0
	E_{2i}^{J}	0'0	36′5	57'0	83'0
	E _{2j} E _{3j}	0′0	37′0	57'0	83'0
	E _{4,i}	0'0	36'0	57′0	84'0
Lecturas	E_{5j}^{S}	0′0	36′5	57'0	83'0
Lecturas	E_{6j}^{G}	0′0	36'0	56'5	83'0
	E _{7,j}	0′0	37′0	57'0	83'5
	E _{8,i}	0′0	36′5	57′5	84'0
	$E_{9,i}^{v}$	0′0	36′5	57'5	83'0
	E_{10j}	0′0	36'0	58'0	83'0
Media	Ēi	0'00	36' 40	57' 20	83' 25

$$S_{Ci} = \sqrt{\frac{1}{n-1} \sum_{j=1}^{n} \left(E_{ij} - \overline{E}_i \right)^2}$$

$$n = 10$$

Puntos ca	libración	Punto 1	Punto 2	Punto 3	Punto 4
	E _{1,i}	0′0	36'0	57′5	83'0
	E _{2j}	0'0	36′5	57'0	83'0
	E_{3j}^{-3}	0′0	37′0	57'0	83'0
	$E_{4,i}^{s_{i}}$	0′0	36'0	57'0	84'0
Lecturas	E_{5j}^{5j}	0′0	36′5	57'0	83'0
Lecturas	E_{6j}^{G}	0′0	36'0	56'5	83'0
	E _{7,i}	0′0	37′0	57'0	83'5
	E _{8,i}	0′0	36′5	57′5	84'0
	E _{9,i}	0′0	36′5	57′5	83'0
	E_{10j}	0′0	36'0	58'0	83'0
Media	Ēį	0′00	36′40	57′20	83′25
Varianza	S _{Ci}	0'00	0' 42	0' 43	0'43

Contribución a la incertidumbre debida a la repetibilidad de las medidas

$$u(\overline{E}_i) = \frac{S_{Ci}}{\sqrt{n}} \qquad n = 10$$

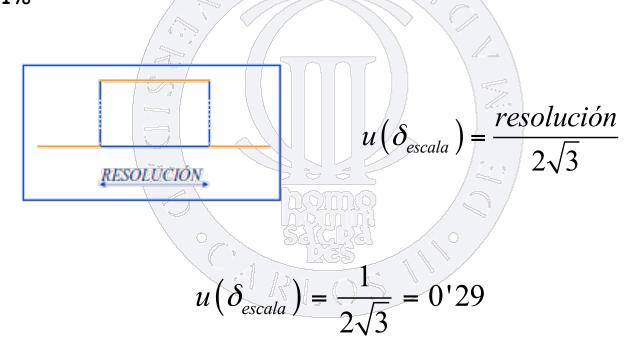
Puntos calibración		Punto 1	Punto 2	Punto 3	Punto 4
Varianza	S _{Ci}	0′00	0′42	0′43	0′43
Contribución repetibilidad	u (Ē _i)	0'00	0'13	0'14	0' 14

Certificado de calibración

Tenemos un certificado de calibración del inclinómetro con valores de incertidumbre 1° , para k=2.

$$u(\theta) = \frac{incertidumbre\ patr\'on}{k}$$

$$u(\theta) = \frac{18.01}{2} = 0.01$$

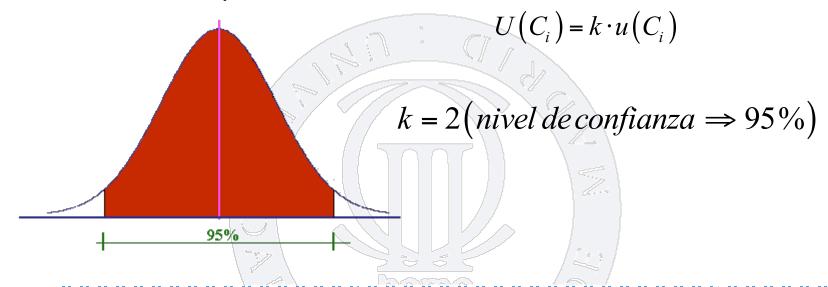

Contribución de la incertidumbre asociada al patrón

$$u(E_{i0}) = \left(\frac{100}{\cos^2(\theta)}\right) \cdot u(\theta)$$

Puntos calibración		Punto 1	Punto 2	Punto 3	Punto 4
Ángulo inclinación θ		0°	20°	30°	40°
Certificado de calibración	u (θ)	0′01			
Contribución patrón	u (E _{io})	0'87	0' 99	1'16	1'49

Resolución del instrumento a calibrar

El equipo que vamos a emplear (decelerómetro) tiene una resolución del 1%


Incertidumbre combinada

$$u(C_i) = \sqrt{u(E_{i0})^2 + u(\overline{E}_i)^2 + u(\delta_{escala})^2}$$

Puntos calibración		Punto 1	Punto 2	Punto 3	Punto 4
Contribución patrón	u (E _{i0})	0′87	0′99	1′16	1′49
Contribución repetibilidad	u (Ē _i)	0'00	0′12	0′13	0′13
Resolución decelerómetro	u (δ _{escala})	0′29			
Incertidumbre combinada	u (C _i)	0'92	1'04	1'21	1'52

DECELERÓMETRO

Puntos calib	ración	Punto 1	Punto 2	Punto 3	Punto 4
Incertidumbre combinada	u (C _i)	0′92	1′04	1′21	1′52
Incertidumbre expandida	U (C _i)	1'8	2' 1	2'4	3'0

Resultados

Incertidumbre de calibración

 $U = \max_{i} \left(U_{i} \right)$

CRITERIO TOTALIZADOR:

El criterio totalizador consiste en asignar a todo el instrumento el máximo de los valores de incertidumbre calculada en cada punto de calibración. Es decir, asignar el valor más restrictivo.

Puntos calib	ración	Punto 1	Punto 2	Punto 3	Punto 4
Incertidumbre expandida	U (C _i)	1′8	2′1	2′4	3′0
Incertidumbre calibración	U	3'0			

Obtención de la función modelo

$$C_i \neq E_{i0} - \overline{E}_i + contribuciones$$

Puntos calibración		Punto 1	Punto 2	Punto 3	Punto 4
Nominal	E _{oj}	0,00	36′4	57′7	83′9
Media	Ēi	0′00	36′40	57'20	83′25
contribuciones		0′00			
Obtención función modelo	C_{Ci}	0'00	0'00	0' 50	0' 65

TABLA DE RESULTADOS:

Puntos calibración	Punto 1	Punto 2	Punto 3	Punto 4
Ē,	0′00	36'40	57′20	83'25
S _{Ci}	0′00	0′42	0′43	0'43
u (Ē;)	0′00	0′13	0′14	0′14
u (θ)		0'	01	
u (E _{i0})	0′87	0'99	1′16	1′49
u (δ _{escala})		0′	29	
и (С _і)	0'92	1′04	1′21	1′52
U (C _i)	1′8	2′1	2′4	3′0
U	3′0			
$\mathcal{C}_{\mathcal{C}i}$	0'00	0'00	0' 50	0' 65

DECELERÓMETRO Conclusiones

CONCLUSIONES:

Cuando se realiza una medida con el instrumento calibrado el valor resultante es:

$$E_f = \overline{E} \pm U$$

La expresión de la eficiencia para nuestro caso es:

$$E_f = \overline{E} \pm 3 \, (\%)$$